Возможности персонификации терапии рефрактерных и рецидивирующих форм медуллобластомы у детей: обзор литературы
Возможности персонификации терапии рефрактерных и рецидивирующих форм медуллобластомы у детей: обзор литературы
Диникина Ю. В., Желудкова О. Г., Белогурова М. Б., Спельников Д. М., Осипов Н. Н., Никитина И. Л. Возможности персонификации терапии рефрактерных и рецидивирующих форм медуллобластомы у детей: обзор литературы. Современная Онкология. 2023;25(4):454–465.
DOI: 10.26442/18151434.2023.4.202521
Dinikina YuV, Zheludkova OG, Belogurova MB, Spelnikov DM, Osipov NN, Nikitina IL. Personalized treatment options of refractory and relapsed medulloblastoma in children: literature review. Journal of Modern Oncology. 2023;25(4):454–465. DOI: 10.26442/18151434.2023.4.202521
Возможности персонификации терапии рефрактерных и рецидивирующих форм медуллобластомы у детей: обзор литературы
Диникина Ю. В., Желудкова О. Г., Белогурова М. Б., Спельников Д. М., Осипов Н. Н., Никитина И. Л. Возможности персонификации терапии рефрактерных и рецидивирующих форм медуллобластомы у детей: обзор литературы. Современная Онкология. 2023;25(4):454–465.
DOI: 10.26442/18151434.2023.4.202521
Медуллобластома (МБ) является наиболее частой злокачественной опухолью центральной нервной системы у детей. Несмотря на использование комбинированных методов противоопухолевого лечения, рефрактерные и рецидивирующие формы заболевания, составляющие примерно 30%, остаются в большинстве случаев фатальными. В качестве пролонгирующих жизнь методов лечения применяют повторные оперативные вмешательства, облучение, химиотерапию, однако следует подчеркнуть отсутствие стандартизированных подходов, основанных на существующих представлениях о молекулярно-генетических вариантах МБ. Очевидно, что только глубокое понимание биологических механизмов в совокупности с клиническими аспектами при рефрактерных и рецидивирующих формах МБ позволит персонализировать терапию 2‑й и последующих линий с целью достижения максимальной эффективности, минимизировать проявления ранней и отдаленной токсичности. В статье отражено современное представление о прогностических факторах при рецидивирующих и рефрактерных формах МБ, методах современной диагностики, а также о существующих и перспективных методах лечения, основанных на совокупности биологических и клинических аспектов заболевания.
Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in pediatric patients. Despite the complex anticancer therapy approach, refractory and relapsing forms of the disease remain fatal in most cases and account for approximately 30%. To date, repeated surgery, radiation, and chemotherapy can be used as life-prolonging treatment options; nevertheless, it should be emphasized that there are no standardized approaches based on existing data of molecular variants of MB. It is obvious that only a deep understanding of the biological mechanisms in association with clinical aspects in refractory and relapsing forms of MB would make it possible to personalize second- and subsequent-line therapy in order to achieve maximum efficiency and minimize early and long-term toxicity. The article presents the current understanding of prognostic factors in relapsed/refractory forms of MB, methods of modern diagnostics, as well as existing and perspective treatment options based on the biological and clinical aspects of the disease.
1. Ning MS, Perkins SM, Dewees T, Shinohara ET. Evidence of high mortality in long term survivors of childhood medulloblastoma. J Neurooncol. 2015;122:321‑7. DOI:10.1007/s11060‑014‑1712‑y
2. Johnston DL, Keene D, Strother D, et al. Survival Following Tumor Recurrence in Children With Medulloblastoma. J Pediatr Hematol Oncol. 2018;40(3):e159‑63. DOI:10.1097/MPH.0000000000001095
3. Board PPTE. Childhood Medulloblastoma and Other Central Nervous System Embryonal Tumors Treatment (PDQ®). PDQ Cancer Information Summaries (Internet): National Cancer Institute (US). 2008.
4. Onodera S, Nakamura Y, Azuma T. Gorlin Syndrome: Recent Advances in Genetic Testing and Molecular and Cellular Biological Research. Int J Mol Sci. 2020;21(20):7559. DOI:10.3390/ijms21207559
5. Langenberg KPS, Meister MT, Bakhuizen JJ, et al. Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’. Eur J Cancer. 2022;175:311‑25. DOI:10.1016/j.ejca.2022.09.011
6. Kuhlen M, Borkhardt A. Cancer susceptibility syndromes in children in the area of broad clinical use of massive parallel sequencing. Eur J Pediatr. 2015;174:987‑97. DOI:10.1007/s00431‑015‑2565‑x
7. Hill RM, Plasschaert SLA, Timmermann B, et al. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel). 2021;14(1):126. DOI:10.3390/cancers14010126
8. Lafay-Cousin L, Dufour C. High-Dose Chemotherapy in Children with Newly Diagnosed Medulloblastoma. Cancers (Basel). 2022;14(837):1‑14. DOI:10.3390/cancers14030837
9. Kram DE, Henderson JJ, Baig M, et al. Embryonal Tumors of the Central Nervous System in Children: The Era of Targeted Therapeutics. Bioengineering (Basel). 2018;5(4):78. DOI:10.3390/bioengineering5040078
10. Cavalli FMG, Remke M, Rampasek L, et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2017;31:737‑54.e6. DOI:10.1016/j.ccell.2017.05.005
11. Ramaswamy V, Remke M, Bouffet E, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131:821‑31. DOI:10.1007/s00401‑016‑1569‑6
12. Schwalbe EC, Lindsey JC, Nakjang S, et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 2017;18:958‑71. DOI:10.1016/S1470‑2045(17)30243‑7
13. Northcott PA, Buchhalter I, Morrissy AS, et al. The whole-genome landscape of medul loblastoma subtypes. Nature. 2017;547:311‑17. DOI:10.1038/nature22973
14. Sharma T, Schwalbe EC, Williamson D, et al. Second-generation molecular subgrouping of medulloblastoma: an indernational meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 2019;138(2):309‑26. DOI:10.1007/s00401‑019‑02020‑0
15. Thompson EM, Hielscher T, Bouffet E, et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: A retrospective integrated clinical and molecular analysis. Lancet Oncol. 2016;17(4):484‑95. DOI:10.1016/S1470‑2045(15)00581‑1
16. Rutkowski S, Gerber NU, von Hoff K, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro Oncol. 2009;11(2):201‑10. DOI:10.1215/15228517‑2008‑084
17. St. Jude Children’s Research Hospital; Genentech, Inc; National Cancer Institute. A Clinical and Molecular Risk-Directed Therapy for Newly Diagnosed Medulloblastoma. Available at: http://clinicaltrials.gov/ct2/show/NCT01878617. Accessed: 01.05.2023.
18. Hill RM, Richardson S, Schwalbe EC, et al. Time, pattern, and outcome of medulloblastoma relapse and their association with tumour biology at diagnosis and therapy: a multicentre cohort study. Lancet Child Adolesc Health. 2020;4:865‑74. DOI:10.1016/S2352‑4642(20)30246‑7
19. Gaab C, Adolph JE, Tippelt S, et al. Local and Systemic Therapy of Recurrent Medulloblastomas in Children and Adolescents: Results of the P-HIT-Rez 2005 Study. Cancers (Basel). 2022;14(3):471. DOI:10.3390/cancers14030471
20. Kumar R, Smith KS, Deng M, et al. Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. J Clin Oncol. 2021;39(7):807‑21. DOI:10.1200/JCO.20.01359
21. Levy AS, Krailo M, Chi S, et al. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr Blood Cancer. 2021;68:e2903. DOI:10.1002/pbc.29031
22. Packer RJ, Zhou T, Holmes E, et al. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of Children’s Oncology Group trial A9961. Neuro Oncol. 2013;15(1):97‑103. DOI:10.1093/neuonc/nos267
23. Müller K, Mynarek M, Zwiener I, et al. Postponed is not canceled: role of craniospinal radiation therapy in the management of recurrent infant medulloblastoma – an experience from the HIT-REZ 1997 & 2005 studies. Int J Radiat Oncol Biol Phys. 2014;88:1019‑24. DOI:10.1016/j.ijrobp.2014.01.013
24. Sabel M, Fleischhack G, Tippelt S, et al. Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study. J Neurooncol. 2016;129:515‑24. DOI:10.1007/s11060‑016‑2202‑1
25. Mokhtech M, Morris CG, Indelicato DJ, et al. Patterns of Failure in Patients With Adult Medulloblastoma Presenting Without Extraneural Metastasis. Am J Clin Oncol. 2018;41(10):1015‑18. DOI:10.1097/COC.0000000000000407
26. Cistaro A, Albano D, Alongi, P, et al. The Role of PET in Supratentorial and Infratentorial Pediatric Brain Tumors. Curr Oncol. 2021;28(4):2481‑95. DOI:10.3390/curroncol28040226
27. Le Fevre C, Constans J-M, Chambrelant I, et al. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 – Radiological features and metric markers. Crit Rev Oncol Hematol. 2021;159:103230. DOI:10.1016/j.critrevonc.2021.103230
28. Warren KE, Vezina G, Poussaint TY, et al. Response assessment in medulloblastoma and leptomeningeal seeding tumors: recommendations from the Response Assessment in Pediatric Neuro-Oncology committee. Neuro Oncol. 2018;20(1):13‑23. DOI:10.1093/neuonc/nox087
29. Tumani H, Petereit HF, Gerritzen A, et al. S1 guidelines “lumbar puncture and cerebrospinal fluid analysis” (abridged and translated version). Neurol Res Pract. 2020;2:8. DOI:10.1186/s42466‑020‑0051‑z
30. Liu APY, Smith KS, Kumar R, et al. Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell. 2021;39(11):1519‑30.e4. DOI:10.1016/j.ccell.2021.09.012
31. Waszak SM, Northcott PA, Buchhalter I, et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 2018;19(6):785‑98. DOI:10.1016/S1470‑2045(18)30242‑0
32. Huybrechts S, Le Teuff G, Tauziède-Espariat A, et al. Prognostic Clinical and Biologic Features for Overall Survival after Relapse in Childhood Medulloblastoma. Cancers (Basel). 2020;13(1):53. DOI:10.3390/cancers13010053
33. Ramaswamy V, Remke M, Bouffet E, et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol. 2013;14(12):1200‑07. DOI:10.1016/S1470‑2045(13)70449‑2
34. Koschmann C, Bloom K, Upadhyaya S, et al. Survival After Relapse of Medulloblastoma. J Pediatr Hematol Oncol. 2016;38(4):269‑73. DOI:10.1097/MPH.0000000000000547
35. Sharma T, Schwalbe EC, Williamson D, et al. Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 2019;138(2):309‑26. DOI:10.1007/s00401‑019‑02020‑0
36. Robinson GW, Rudneva VA, Buchhalter I, et al. Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol. 2018;19(6):768‑84. DOI:10.1016/S1470‑2045(18)30204‑3
37. Lefkowitz IB, Packer RJ, Siegel KR, et al. Results of treatment of children with recurrent medulloblastoma/primitive neuroectodermal tumors with lomustine, cisplatin, and vincristine. Cancer. 1990;65(3):412‑7. DOI:10.1002/1097‑0142(19900201)65:3<412:: aid-cncr2820650306>3.0.co;2‑4
38. Friedman HS, Mahaley MS Jr, Schold SC Jr, et al. Efficacy of vincristine and cyclophosphamide in the therapy of recurrent medulloblastoma. Neurosurgery. 1986;18(3):335‑40. DOI:10.1227/00006123‑198603000‑00014
39. Peyrl A, Chocholous M, Kieran MW, et al. Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr Blood Cancer. 2012;59(3):511‑7. DOI:10.1002/pbc.24006
40. Wang X, Dubuc AM, Ramaswamy V, et al. Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathol. 2015;129(3):449‑57. DOI:10.1007/s00401‑015‑1389‑0
41. Morrissy AS, Cavalli FMG, Remke M, et al. Spatial heterogeneity in medulloblastoma. Nat Genet. 2017;49(5):780‑8. DOI:10.1038/ng.3838
42. Morrissy AS, Garzia L, Shih DJH, et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature. 2016;529(7586):351‑7. DOI:10.1038/nature16478
43. Wu X, Northcott PA, Dubuc A, et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature. 2012;482(7386):529‑33. DOI:10.1038/nature10825
44. Walter AW, Mulhern RK, Gajjar A, et al. Survival and neurodevelopmental outcome of young children with medulloblastoma at St Jude Children’s Research Hospital. J Clin Oncol. 1999;17(12):3720‑8. DOI:10.1200/JCO.1999.17.12.3720
45. Gits HC, Anderson M, Stallard S, et al. Medulloblastoma therapy generates risk of a poorly-prognostic H3 wild-type subgroup of diffuse intrinsic pontine glioma: a report from the International DIPG Registry. Acta Neuropathol Commun. 2018;6(1):67. DOI:10.1186/s40478‑018‑0570‑9
46. Constine LS, Olch AJ, Jackson A, et al. Pediatric Normal Tissue Effects in the Clinic (PENTEC): An International Collaboration to Assess Normal Tissue Radiation Dose-Volume-Response Relationships for Children With Cancer. Int J Radiat Oncol Biol Phys. 2021;S0360‑3016(21)00129‑2. DOI:10.1016/j.ijrobp.2020.10.040
47. Gupta T, Maitre M, Sastri GJ, et al. Outcomes of salvage re-irradiation in recurrent medulloblastoma correlate with age at initial diagnosis, primary risk-stratification, and molecular subgrouping. J Neurooncol. 2019;144(2):283‑91. DOI:10.1007/s11060‑019‑03225‑9
48. Mayer R, Sminia P. Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys. 2008;70(5):1350‑60. DOI:10.1016/j.ijrobp.2007.08.015
49. Paul S, Sesikeran BN, Patro KC, Bhattacharya K. Re-irradiation in central nervous system tumors. J Curr Oncol. 2018;1(1):40‑2. DOI:10.4103/jco.jco_11_17
50. Baroni LV, Freytes C, Ponce NF, et al. Craniospinal irradiation as part of re-irradiation for children with recurrent medulloblastoma. J Neurooncol. 2021;155(1):53‑61. DOI:10.1007/s11060‑021‑03842‑3
51. Tsang DS, Sarhan N, Ramaswamy V, et al. Re-irradiation for children with recurrent medulloblastoma in Toronto, Canada: A 20‑year experience. J Neurooncol. 2019;145(1):107‑14. DOI:10.1007/s11060‑019‑03272‑2
52. Nicholson HS, Kretschmar CS, Krailo M, et al. Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children’s Oncology Group. Cancer. 2007;110(7):1542‑50. DOI:10.1002/cncr.22961
53. Le Teuff G, Castaneda-Heredia A, Dufour C, et al. Phase II study of temozolomide and topotecan (TOTEM) in children with relapsed or refractory extracranial and central nervous system tumors including medulloblastoma with post hoc Bayesian analysis: A European ITCC study. Pediatr Blood Cancer. 2020;67(1): e28032. DOI:10.1002/pbc.28032
54. Grill J, Geoerger B, Gesner L, et al. Phase II Study of irinotecan in combination with temozolomide (TEMIRI) in children with recurrent or refractory medulloblastoma: a joint ITCC and SIOPE brain tumor study. Neuro Oncol. 2013;15(9):1236‑43. DOI:10.1093/neuonc/not097
55. Aguilera D, Mazewski C, Fangusaro J, et al. Response to bevacizumab, irinotecan, and temozolomide in children with relapsed medulloblastoma: a multi-institutional experience. Childs Nerv Syst. 2013;29(4):589‑96. DOI:10.1007/s00381‑012‑2013‑4
56. Slongo ML, Molena B, Brunati AM, et al. Functional VEGF and VEGF receptors are expressed in human medulloblastomas. Neuro Oncol. 2007;9(4):384‑92. DOI:10.1215/15228517‑2007‑032
57. Fangusaro J, Gururangan S, Poussaint TY, et al. Bevacizumab (BVZ)- associated toxicities in children with recurrent central nervous system tumors treated with BVZ and irinotecan (CPT‑11): a Pediatric Brain Tumor Consortium Study (PBTC‑022). Cancer. 2013;119(23):4180‑7. DOI:10.1002/cncr.28343
58. Alammar H, Nassani R, Alshehri MM, et al. Deficiency in the Treatment Description of mTOR Inhibitor Resistance in Medulloblastoma, a Systematic Review. Int J Mol Sci. 2021;23(1):464. DOI:10.3390/ijms23010464
59. Stempak D, Gammon J, Halton J, et al. A pilot pharmacokinetic and antiangiogenic biomarker study of celecoxib and low-dose metronomic vinblastine or cyclophosphamide in pediatric recurrent solid tumors. J Pediatr Hematol Oncol. 2006;28(11):720‑8. DOI:10.1097/01.mph.0000243657.64056.c3
60. Sterba J, Valik D, Mudry P, et al. Combined biodifferentiating and antiangiogenic oral metronomic therapy is feasible and effective in relapsed solid tumors in children: single-center pilot study. Oncologie. 2006;29(7):308‑13. DOI:10.1159/000093474
61. Bahl A, Bakhshi S. Metronomic chemotherapy in progressive pediatric malignancies: old drugs in new package. Indian J Pediatr. 2012;79(12):1617‑22. DOI:10.1007/s12098‑012‑0759‑z
62. Simsek C, Esin E, Yalcin S. Metronomic Chemotherapy: a Systematic Review of the literature and Clinical Experience. J Oncol. 2019:5483791. DOI:10.1155/2019/5483791
63. Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56(5):641‑8. DOI:10.1007/s00262‑006‑0225‑8
64. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4(6):423‑36. DOI:10.1038/nrc1369
65. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401‑10. DOI:10.1038/nrc1093
66. Bowers DC, Aquino VM, Leavey PJ, et al. Phase I study of oral cyclophosphamide and oral topotecan for children with recurrent or refractory solid tumors. Pediatr Blood Cancer. 2004;42(1):93‑8. DOI:10.1002/pbc.10456
67. Sterba J, Pavelka Z, Andre N, et al. Second complete remission of relapsed medulloblastoma induced by metronomic chemotherapy. Pediatr Blood Cancer. 2010;54(4):616‑7. DOI:10.1002/pbc.22382
68. Yoshida S, Amano H, Hayashi I, et al. COX‑2/VEGF-dependent facilitation of tumor-associated angiogenesis and tumor growth in vivo. Lab Invest. 2003;83(10):1385‑94. DOI:10.1097/01.lab.0000090159.53224.b9
69. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91(9):4082‑5. DOI:10.1073/pnas.91.9.4082
70. Carcamo B, Francia G. Cyclic Metronomic Chemotherapy for Pediatric Tumors: Six Case Reports and a Review of the Literature. J Clin Med. 2022;11(10):2849. DOI:10.3390/jcm11102849
71. Vo KT, Karski EE, Nasholm NM, et al. Phase 1 study of sirolimus in combination with oral cyclophosphamide and topotecan in children and young adults with relapsed and refractory solid tumors. Oncotarget. 2017;8(14):23851‑61. DOI:10.18632/oncotarget.12904
72. Slavc I, Peyrl A, Gojo J, et al. MBCL‑43. Reccurent medulloblastoma – long-term survival with a “MEMMAT” based antiangiogenic approach. Neuro-Oncology. 2020;22(Suppl. 3):iii397.
73. Slavc I, Mayr L, Stepien N, et al. Improved Long-Term Survival of Patients with Recurrent Medulloblastoma Treated with a “MEMMAT-like” Metronomic Antiangiogenic Approach. Cancers (Basel). 2022;14(20):5128. DOI:10.3390/cancers14205128
74. Chinnaswamy G, Sankaran H, Bhat V, et al. DEV‑19. The role of COMBAT (Combined Oral Metronomic Bioifferentiating Antiangiogenic Areatment) in high-risk and relapsed medulloblastoma: A single institution experience. Neuro Oncol. 2018;20(Suppl. S2):i48‑9. DOI:10.1093/neuonc/noy059.094
75. Zapletalova D, Andre N, Deak L, et al. Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: a multicenter experience. Oncology. 2012;82(5):249‑60. DOI:10.1159/000336483
76. Qayed M, Cash T, Tighiouart M, et al. A phase I study of sirolimus in combination with metronomic therapy in children with recurrent and refractory solid/CNS tumors. Journal of Clin Oncology. 2015;33:15.
77. Dunkel IJ, Gardner SL, Garvin JJH, et al. High-dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. Neuro Oncol. 2010;12(3):297‑303. DOI:10.1093/neuonc/nop031
78. Valteau-Couanet D, Fillipini B, Benhamou E, et al. High-dose busulfan and thiotepa followed by autologous stem cell transplantation (ASCT) in previously irradiated medulloblastoma patients: High toxicity and lack of efficacy. Bone Marrow Transplant. 2005;36(11):939‑45. DOI:10.1038/sj.bmt.1705162
79. Park JE, Kang J, Yoo KH, et al. Efficacy of high-dose chemotherapy and autologous stem cell transplantation in patients with relapsed medulloblastoma: a report on the Korean Society for Pediatric Neuro-Oncology (KSPNO)-S‑053 study. J Korean Med Sci. 2010;25(8):1160‑6. DOI:10.3346/jkms.2010.25.8.1160
80. Pajtler KW, Tippelt S, Siegler N, et al. Intraventricular etoposide safety and toxicity profile in children and young adults with refractory or recurrent malignant brain tumors. J Neurooncol. 2016;128(3):463‑71. DOI:10.1007/s11060‑016‑2133‑x
81. Fleischhack G, Jaehde U, Bode U. Pharmacokinetics following intraventricular administration of chemotherapy in patients with neoplastic meningitis. Clin Pharmacokinet. 2005;44(1):1‑31. DOI:10.2165/00003088‑200544010‑00001
82. De Oca Delgado MM, Diaz BC, Zambrano JS, et al. The Comparative Treatment of Intraventricular Chemotherapy by Ommaya Reservoir vs Lumbar Puncture in Patients With Leptomeningeal Carcinomatosis. Front Oncol. 2018;8:509. DOI:10.3389/fonc.2018.00509
83. Pereira V, Torrejon J, Kariyawasam D, et al. Clinical and molecular analysis of smoothened inhibitors in Sonic Hedgehog medulloblastoma. Neurooncol Adv. 2021;3(1):vdab097. DOI:10.1093/noajnl/vdab097
84. Fouladi M, Park JR, Stewart CF, et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J Clin Oncol. 2010;28(22):3623‑29. DOI:10.1200/JCO.2009.25.9119
85. Muscal JA, Thompson PA, Horton TM, et al. A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatr Blood Cancer. 2013;60(3):390‑5. DOI:10.1002/pbc.24271
86. Diao S, Gu C, Zhang H, Yu C. Immune cell infiltration and cytokine secretion analysis reveal a non-inflammatory microenvironment of medulloblastoma. Oncol Lett. 2020;20(6):397. DOI:10.3892/ol.2020.12260
87. Pham CD, Mitchell DA. Know your neighbors: Different tumor microenvironments have implications in immunotherapeutic targeting strategies across MB subgroups. Oncoimmunology. 2016;5(11): e1144002. DOI:10.1080/2162402X.2016.1144002
88. Martin AM, Nirschl CJ, Polanczyk MJ, et al. PD-L1 expression in medulloblastoma: An evaluation by subgroup. Oncotarget. 2018;9(27)19177‑91. DOI:10.18632/oncotarget.24951
89. Kramer K, Pandit-Taskar N, Humm JL, et al. A phase II study of radioimmunotherapy with intraventricular (131) I‑3F8 for medulloblastoma. Pediatr Blood Cancer. 2018;65(1):10.1002/pbc.26754. DOI:10.1002/pbc.26754
90. Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397(10278):1010‑22. DOI:10.1016/S0140‑6736(20)32598‑8
91. Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society: Series B (Methodological). 1972;34:187‑202. DOI:10.1111/j.2517‑6161‑1972.th00899.x
92. Therneau TM. A Package for Survival Analysis in R. 2023. Available at: https://CRAN.R-project.org/package=survival. Accessed: 01.05.2023.
93. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. NY: Springer, 2000.
94. R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. Available at: https://www.R-project.org. Accessed: 01.05.2023.
________________________________________________
1. Ning MS, Perkins SM, Dewees T, Shinohara ET. Evidence of high mortality in long term survivors of childhood medulloblastoma. J Neurooncol. 2015;122:321‑7. DOI:10.1007/s11060‑014‑1712‑y
2. Johnston DL, Keene D, Strother D, et al. Survival Following Tumor Recurrence in Children With Medulloblastoma. J Pediatr Hematol Oncol. 2018;40(3):e159‑63. DOI:10.1097/MPH.0000000000001095
3. Board PPTE. Childhood Medulloblastoma and Other Central Nervous System Embryonal Tumors Treatment (PDQ®). PDQ Cancer Information Summaries (Internet): National Cancer Institute (US). 2008.
4. Onodera S, Nakamura Y, Azuma T. Gorlin Syndrome: Recent Advances in Genetic Testing and Molecular and Cellular Biological Research. Int J Mol Sci. 2020;21(20):7559. DOI:10.3390/ijms21207559
5. Langenberg KPS, Meister MT, Bakhuizen JJ, et al. Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’. Eur J Cancer. 2022;175:311‑25. DOI:10.1016/j.ejca.2022.09.011
6. Kuhlen M, Borkhardt A. Cancer susceptibility syndromes in children in the area of broad clinical use of massive parallel sequencing. Eur J Pediatr. 2015;174:987‑97. DOI:10.1007/s00431‑015‑2565‑x
7. Hill RM, Plasschaert SLA, Timmermann B, et al. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel). 2021;14(1):126. DOI:10.3390/cancers14010126
8. Lafay-Cousin L, Dufour C. High-Dose Chemotherapy in Children with Newly Diagnosed Medulloblastoma. Cancers (Basel). 2022;14(837):1‑14. DOI:10.3390/cancers14030837
9. Kram DE, Henderson JJ, Baig M, et al. Embryonal Tumors of the Central Nervous System in Children: The Era of Targeted Therapeutics. Bioengineering (Basel). 2018;5(4):78. DOI:10.3390/bioengineering5040078
10. Cavalli FMG, Remke M, Rampasek L, et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2017;31:737‑54.e6. DOI:10.1016/j.ccell.2017.05.005
11. Ramaswamy V, Remke M, Bouffet E, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131:821‑31. DOI:10.1007/s00401‑016‑1569‑6
12. Schwalbe EC, Lindsey JC, Nakjang S, et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol. 2017;18:958‑71. DOI:10.1016/S1470‑2045(17)30243‑7
13. Northcott PA, Buchhalter I, Morrissy AS, et al. The whole-genome landscape of medul loblastoma subtypes. Nature. 2017;547:311‑17. DOI:10.1038/nature22973
14. Sharma T, Schwalbe EC, Williamson D, et al. Second-generation molecular subgrouping of medulloblastoma: an indernational meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 2019;138(2):309‑26. DOI:10.1007/s00401‑019‑02020‑0
15. Thompson EM, Hielscher T, Bouffet E, et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: A retrospective integrated clinical and molecular analysis. Lancet Oncol. 2016;17(4):484‑95. DOI:10.1016/S1470‑2045(15)00581‑1
16. Rutkowski S, Gerber NU, von Hoff K, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro Oncol. 2009;11(2):201‑10. DOI:10.1215/15228517‑2008‑084
17. St. Jude Children’s Research Hospital; Genentech, Inc; National Cancer Institute. A Clinical and Molecular Risk-Directed Therapy for Newly Diagnosed Medulloblastoma. Available at: http://clinicaltrials.gov/ct2/show/NCT01878617. Accessed: 01.05.2023.
18. Hill RM, Richardson S, Schwalbe EC, et al. Time, pattern, and outcome of medulloblastoma relapse and their association with tumour biology at diagnosis and therapy: a multicentre cohort study. Lancet Child Adolesc Health. 2020;4:865‑74. DOI:10.1016/S2352‑4642(20)30246‑7
19. Gaab C, Adolph JE, Tippelt S, et al. Local and Systemic Therapy of Recurrent Medulloblastomas in Children and Adolescents: Results of the P-HIT-Rez 2005 Study. Cancers (Basel). 2022;14(3):471. DOI:10.3390/cancers14030471
20. Kumar R, Smith KS, Deng M, et al. Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. J Clin Oncol. 2021;39(7):807‑21. DOI:10.1200/JCO.20.01359
21. Levy AS, Krailo M, Chi S, et al. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr Blood Cancer. 2021;68:e2903. DOI:10.1002/pbc.29031
22. Packer RJ, Zhou T, Holmes E, et al. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of Children’s Oncology Group trial A9961. Neuro Oncol. 2013;15(1):97‑103. DOI:10.1093/neuonc/nos267
23. Müller K, Mynarek M, Zwiener I, et al. Postponed is not canceled: role of craniospinal radiation therapy in the management of recurrent infant medulloblastoma – an experience from the HIT-REZ 1997 & 2005 studies. Int J Radiat Oncol Biol Phys. 2014;88:1019‑24. DOI:10.1016/j.ijrobp.2014.01.013
24. Sabel M, Fleischhack G, Tippelt S, et al. Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study. J Neurooncol. 2016;129:515‑24. DOI:10.1007/s11060‑016‑2202‑1
25. Mokhtech M, Morris CG, Indelicato DJ, et al. Patterns of Failure in Patients With Adult Medulloblastoma Presenting Without Extraneural Metastasis. Am J Clin Oncol. 2018;41(10):1015‑18. DOI:10.1097/COC.0000000000000407
26. Cistaro A, Albano D, Alongi, P, et al. The Role of PET in Supratentorial and Infratentorial Pediatric Brain Tumors. Curr Oncol. 2021;28(4):2481‑95. DOI:10.3390/curroncol28040226
27. Le Fevre C, Constans J-M, Chambrelant I, et al. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 – Radiological features and metric markers. Crit Rev Oncol Hematol. 2021;159:103230. DOI:10.1016/j.critrevonc.2021.103230
28. Warren KE, Vezina G, Poussaint TY, et al. Response assessment in medulloblastoma and leptomeningeal seeding tumors: recommendations from the Response Assessment in Pediatric Neuro-Oncology committee. Neuro Oncol. 2018;20(1):13‑23. DOI:10.1093/neuonc/nox087
29. Tumani H, Petereit HF, Gerritzen A, et al. S1 guidelines “lumbar puncture and cerebrospinal fluid analysis” (abridged and translated version). Neurol Res Pract. 2020;2:8. DOI:10.1186/s42466‑020‑0051‑z
30. Liu APY, Smith KS, Kumar R, et al. Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell. 2021;39(11):1519‑30.e4. DOI:10.1016/j.ccell.2021.09.012
31. Waszak SM, Northcott PA, Buchhalter I, et al. Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol. 2018;19(6):785‑98. DOI:10.1016/S1470‑2045(18)30242‑0
32. Huybrechts S, Le Teuff G, Tauziède-Espariat A, et al. Prognostic Clinical and Biologic Features for Overall Survival after Relapse in Childhood Medulloblastoma. Cancers (Basel). 2020;13(1):53. DOI:10.3390/cancers13010053
33. Ramaswamy V, Remke M, Bouffet E, et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol. 2013;14(12):1200‑07. DOI:10.1016/S1470‑2045(13)70449‑2
34. Koschmann C, Bloom K, Upadhyaya S, et al. Survival After Relapse of Medulloblastoma. J Pediatr Hematol Oncol. 2016;38(4):269‑73. DOI:10.1097/MPH.0000000000000547
35. Sharma T, Schwalbe EC, Williamson D, et al. Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 2019;138(2):309‑26. DOI:10.1007/s00401‑019‑02020‑0
36. Robinson GW, Rudneva VA, Buchhalter I, et al. Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncol. 2018;19(6):768‑84. DOI:10.1016/S1470‑2045(18)30204‑3
37. Lefkowitz IB, Packer RJ, Siegel KR, et al. Results of treatment of children with recurrent medulloblastoma/primitive neuroectodermal tumors with lomustine, cisplatin, and vincristine. Cancer. 1990;65(3):412‑7. DOI:10.1002/1097‑0142(19900201)65:3<412:: aid-cncr2820650306>3.0.co;2‑4
38. Friedman HS, Mahaley MS Jr, Schold SC Jr, et al. Efficacy of vincristine and cyclophosphamide in the therapy of recurrent medulloblastoma. Neurosurgery. 1986;18(3):335‑40. DOI:10.1227/00006123‑198603000‑00014
39. Peyrl A, Chocholous M, Kieran MW, et al. Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr Blood Cancer. 2012;59(3):511‑7. DOI:10.1002/pbc.24006
40. Wang X, Dubuc AM, Ramaswamy V, et al. Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathol. 2015;129(3):449‑57. DOI:10.1007/s00401‑015‑1389‑0
41. Morrissy AS, Cavalli FMG, Remke M, et al. Spatial heterogeneity in medulloblastoma. Nat Genet. 2017;49(5):780‑8. DOI:10.1038/ng.3838
42. Morrissy AS, Garzia L, Shih DJH, et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature. 2016;529(7586):351‑7. DOI:10.1038/nature16478
43. Wu X, Northcott PA, Dubuc A, et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature. 2012;482(7386):529‑33. DOI:10.1038/nature10825
44. Walter AW, Mulhern RK, Gajjar A, et al. Survival and neurodevelopmental outcome of young children with medulloblastoma at St Jude Children’s Research Hospital. J Clin Oncol. 1999;17(12):3720‑8. DOI:10.1200/JCO.1999.17.12.3720
45. Gits HC, Anderson M, Stallard S, et al. Medulloblastoma therapy generates risk of a poorly-prognostic H3 wild-type subgroup of diffuse intrinsic pontine glioma: a report from the International DIPG Registry. Acta Neuropathol Commun. 2018;6(1):67. DOI:10.1186/s40478‑018‑0570‑9
46. Constine LS, Olch AJ, Jackson A, et al. Pediatric Normal Tissue Effects in the Clinic (PENTEC): An International Collaboration to Assess Normal Tissue Radiation Dose-Volume-Response Relationships for Children With Cancer. Int J Radiat Oncol Biol Phys. 2021;S0360‑3016(21)00129‑2. DOI:10.1016/j.ijrobp.2020.10.040
47. Gupta T, Maitre M, Sastri GJ, et al. Outcomes of salvage re-irradiation in recurrent medulloblastoma correlate with age at initial diagnosis, primary risk-stratification, and molecular subgrouping. J Neurooncol. 2019;144(2):283‑91. DOI:10.1007/s11060‑019‑03225‑9
48. Mayer R, Sminia P. Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys. 2008;70(5):1350‑60. DOI:10.1016/j.ijrobp.2007.08.015
49. Paul S, Sesikeran BN, Patro KC, Bhattacharya K. Re-irradiation in central nervous system tumors. J Curr Oncol. 2018;1(1):40‑2. DOI:10.4103/jco.jco_11_17
50. Baroni LV, Freytes C, Ponce NF, et al. Craniospinal irradiation as part of re-irradiation for children with recurrent medulloblastoma. J Neurooncol. 2021;155(1):53‑61. DOI:10.1007/s11060‑021‑03842‑3
51. Tsang DS, Sarhan N, Ramaswamy V, et al. Re-irradiation for children with recurrent medulloblastoma in Toronto, Canada: A 20‑year experience. J Neurooncol. 2019;145(1):107‑14. DOI:10.1007/s11060‑019‑03272‑2
52. Nicholson HS, Kretschmar CS, Krailo M, et al. Phase 2 study of temozolomide in children and adolescents with recurrent central nervous system tumors: a report from the Children’s Oncology Group. Cancer. 2007;110(7):1542‑50. DOI:10.1002/cncr.22961
53. Le Teuff G, Castaneda-Heredia A, Dufour C, et al. Phase II study of temozolomide and topotecan (TOTEM) in children with relapsed or refractory extracranial and central nervous system tumors including medulloblastoma with post hoc Bayesian analysis: A European ITCC study. Pediatr Blood Cancer. 2020;67(1): e28032. DOI:10.1002/pbc.28032
54. Grill J, Geoerger B, Gesner L, et al. Phase II Study of irinotecan in combination with temozolomide (TEMIRI) in children with recurrent or refractory medulloblastoma: a joint ITCC and SIOPE brain tumor study. Neuro Oncol. 2013;15(9):1236‑43. DOI:10.1093/neuonc/not097
55. Aguilera D, Mazewski C, Fangusaro J, et al. Response to bevacizumab, irinotecan, and temozolomide in children with relapsed medulloblastoma: a multi-institutional experience. Childs Nerv Syst. 2013;29(4):589‑96. DOI:10.1007/s00381‑012‑2013‑4
56. Slongo ML, Molena B, Brunati AM, et al. Functional VEGF and VEGF receptors are expressed in human medulloblastomas. Neuro Oncol. 2007;9(4):384‑92. DOI:10.1215/15228517‑2007‑032
57. Fangusaro J, Gururangan S, Poussaint TY, et al. Bevacizumab (BVZ)- associated toxicities in children with recurrent central nervous system tumors treated with BVZ and irinotecan (CPT‑11): a Pediatric Brain Tumor Consortium Study (PBTC‑022). Cancer. 2013;119(23):4180‑7. DOI:10.1002/cncr.28343
58. Alammar H, Nassani R, Alshehri MM, et al. Deficiency in the Treatment Description of mTOR Inhibitor Resistance in Medulloblastoma, a Systematic Review. Int J Mol Sci. 2021;23(1):464. DOI:10.3390/ijms23010464
59. Stempak D, Gammon J, Halton J, et al. A pilot pharmacokinetic and antiangiogenic biomarker study of celecoxib and low-dose metronomic vinblastine or cyclophosphamide in pediatric recurrent solid tumors. J Pediatr Hematol Oncol. 2006;28(11):720‑8. DOI:10.1097/01.mph.0000243657.64056.c3
60. Sterba J, Valik D, Mudry P, et al. Combined biodifferentiating and antiangiogenic oral metronomic therapy is feasible and effective in relapsed solid tumors in children: single-center pilot study. Oncologie. 2006;29(7):308‑13. DOI:10.1159/000093474
61. Bahl A, Bakhshi S. Metronomic chemotherapy in progressive pediatric malignancies: old drugs in new package. Indian J Pediatr. 2012;79(12):1617‑22. DOI:10.1007/s12098‑012‑0759‑z
62. Simsek C, Esin E, Yalcin S. Metronomic Chemotherapy: a Systematic Review of the literature and Clinical Experience. J Oncol. 2019:5483791. DOI:10.1155/2019/5483791
63. Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007;56(5):641‑8. DOI:10.1007/s00262‑006‑0225‑8
64. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4(6):423‑36. DOI:10.1038/nrc1369
65. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401‑10. DOI:10.1038/nrc1093
66. Bowers DC, Aquino VM, Leavey PJ, et al. Phase I study of oral cyclophosphamide and oral topotecan for children with recurrent or refractory solid tumors. Pediatr Blood Cancer. 2004;42(1):93‑8. DOI:10.1002/pbc.10456
67. Sterba J, Pavelka Z, Andre N, et al. Second complete remission of relapsed medulloblastoma induced by metronomic chemotherapy. Pediatr Blood Cancer. 2010;54(4):616‑7. DOI:10.1002/pbc.22382
68. Yoshida S, Amano H, Hayashi I, et al. COX‑2/VEGF-dependent facilitation of tumor-associated angiogenesis and tumor growth in vivo. Lab Invest. 2003;83(10):1385‑94. DOI:10.1097/01.lab.0000090159.53224.b9
69. D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91(9):4082‑5. DOI:10.1073/pnas.91.9.4082
70. Carcamo B, Francia G. Cyclic Metronomic Chemotherapy for Pediatric Tumors: Six Case Reports and a Review of the Literature. J Clin Med. 2022;11(10):2849. DOI:10.3390/jcm11102849
71. Vo KT, Karski EE, Nasholm NM, et al. Phase 1 study of sirolimus in combination with oral cyclophosphamide and topotecan in children and young adults with relapsed and refractory solid tumors. Oncotarget. 2017;8(14):23851‑61. DOI:10.18632/oncotarget.12904
72. Slavc I, Peyrl A, Gojo J, et al. MBCL‑43. Reccurent medulloblastoma – long-term survival with a “MEMMAT” based antiangiogenic approach. Neuro-Oncology. 2020;22(Suppl. 3):iii397.
73. Slavc I, Mayr L, Stepien N, et al. Improved Long-Term Survival of Patients with Recurrent Medulloblastoma Treated with a “MEMMAT-like” Metronomic Antiangiogenic Approach. Cancers (Basel). 2022;14(20):5128. DOI:10.3390/cancers14205128
74. Chinnaswamy G, Sankaran H, Bhat V, et al. DEV‑19. The role of COMBAT (Combined Oral Metronomic Bioifferentiating Antiangiogenic Areatment) in high-risk and relapsed medulloblastoma: A single institution experience. Neuro Oncol. 2018;20(Suppl. S2):i48‑9. DOI:10.1093/neuonc/noy059.094
75. Zapletalova D, Andre N, Deak L, et al. Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: a multicenter experience. Oncology. 2012;82(5):249‑60. DOI:10.1159/000336483
76. Qayed M, Cash T, Tighiouart M, et al. A phase I study of sirolimus in combination with metronomic therapy in children with recurrent and refractory solid/CNS tumors. Journal of Clin Oncology. 2015;33:15.
77. Dunkel IJ, Gardner SL, Garvin JJH, et al. High-dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. Neuro Oncol. 2010;12(3):297‑303. DOI:10.1093/neuonc/nop031
78. Valteau-Couanet D, Fillipini B, Benhamou E, et al. High-dose busulfan and thiotepa followed by autologous stem cell transplantation (ASCT) in previously irradiated medulloblastoma patients: High toxicity and lack of efficacy. Bone Marrow Transplant. 2005;36(11):939‑45. DOI:10.1038/sj.bmt.1705162
79. Park JE, Kang J, Yoo KH, et al. Efficacy of high-dose chemotherapy and autologous stem cell transplantation in patients with relapsed medulloblastoma: a report on the Korean Society for Pediatric Neuro-Oncology (KSPNO)-S‑053 study. J Korean Med Sci. 2010;25(8):1160‑6. DOI:10.3346/jkms.2010.25.8.1160
80. Pajtler KW, Tippelt S, Siegler N, et al. Intraventricular etoposide safety and toxicity profile in children and young adults with refractory or recurrent malignant brain tumors. J Neurooncol. 2016;128(3):463‑71. DOI:10.1007/s11060‑016‑2133‑x
81. Fleischhack G, Jaehde U, Bode U. Pharmacokinetics following intraventricular administration of chemotherapy in patients with neoplastic meningitis. Clin Pharmacokinet. 2005;44(1):1‑31. DOI:10.2165/00003088‑200544010‑00001
82. De Oca Delgado MM, Diaz BC, Zambrano JS, et al. The Comparative Treatment of Intraventricular Chemotherapy by Ommaya Reservoir vs Lumbar Puncture in Patients With Leptomeningeal Carcinomatosis. Front Oncol. 2018;8:509. DOI:10.3389/fonc.2018.00509
83. Pereira V, Torrejon J, Kariyawasam D, et al. Clinical and molecular analysis of smoothened inhibitors in Sonic Hedgehog medulloblastoma. Neurooncol Adv. 2021;3(1):vdab097. DOI:10.1093/noajnl/vdab097
84. Fouladi M, Park JR, Stewart CF, et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J Clin Oncol. 2010;28(22):3623‑29. DOI:10.1200/JCO.2009.25.9119
85. Muscal JA, Thompson PA, Horton TM, et al. A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatr Blood Cancer. 2013;60(3):390‑5. DOI:10.1002/pbc.24271
86. Diao S, Gu C, Zhang H, Yu C. Immune cell infiltration and cytokine secretion analysis reveal a non-inflammatory microenvironment of medulloblastoma. Oncol Lett. 2020;20(6):397. DOI:10.3892/ol.2020.12260
87. Pham CD, Mitchell DA. Know your neighbors: Different tumor microenvironments have implications in immunotherapeutic targeting strategies across MB subgroups. Oncoimmunology. 2016;5(11): e1144002. DOI:10.1080/2162402X.2016.1144002
88. Martin AM, Nirschl CJ, Polanczyk MJ, et al. PD-L1 expression in medulloblastoma: An evaluation by subgroup. Oncotarget. 2018;9(27)19177‑91. DOI:10.18632/oncotarget.24951
89. Kramer K, Pandit-Taskar N, Humm JL, et al. A phase II study of radioimmunotherapy with intraventricular (131) I‑3F8 for medulloblastoma. Pediatr Blood Cancer. 2018;65(1):10.1002/pbc.26754. DOI:10.1002/pbc.26754
90. Meric-Bernstam F, Larkin J, Tabernero J, Bonini C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397(10278):1010‑22. DOI:10.1016/S0140‑6736(20)32598‑8
91. Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society: Series B (Methodological). 1972;34:187‑202. DOI:10.1111/j.2517‑6161‑1972.th00899.x
92. Therneau TM. A Package for Survival Analysis in R. 2023. Available at: https://CRAN.R-project.org/package=survival. Accessed: 01.05.2023.
93. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. NY: Springer, 2000.
94. R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. Available at: https://www.R-project.org. Accessed: 01.05.2023.
Авторы
Ю. В. Диникина*1, О. Г. Желудкова2, М. Б. Белогурова1, Д. М. Спельников3, Н. Н. Осипов4,5, И. Л. Никитина1
1ФГБУ «Национальный медицинский исследовательский центр им. В. А. Алмазова», Санкт-Петербург, Россия; 2ГБУЗ «Научно-практический центр специализированной медицинской помощи им. В. Ф. Войно-Ясенецкого Департамента здравоохранения г. Москвы», Москва, Россия; 3ТОО “Darwin Tech Labs”, Астана, Казахстан; 4ФГБУН «Санкт-Петербургское отделение Математического института им. В. А. Стеклова» РАН, Санкт-Петербург, Россия; 5ФГБОУ ВО «Санкт-Петербургский государственный университет», Санкт-Петербург, Россия
*dinikinayulia@mail.ru
________________________________________________
Yulia V. Dinikina*1, Olga G. Zheludkova2, Margarita B. Belogurova1, Dmitry M. Spelnikov3, Nikolay N. Osipov4,5, Irina L. Nikitina1
1Almazov National Medical Research Centre, Saint Petersburg, Russia; 2Voino-Yasenetskiy Scientific and Practical Center of Specialized Healthсare for Children, Moscow, Russia; 3Darwin Tech Labs, Astana, Kazakhstan; 4Saint Petersburg Department of Steklov Mathematical Institute, Saint Petersburg, Russia; 5Saint Petersburg State University, Saint Petersburg, Russia
*dinikinayulia@mail.ru