Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Перспективы молекулярного профилирования при стратификации и лечении рака мочевого пузыря
Перспективы молекулярного профилирования при стратификации и лечении рака мочевого пузыря
Любченко Л.Н., Чернавина К.М., Казарян К.А., Заборский И.Н., Карякин О.Б. Перспективы молекулярного профилирования при стратификации и лечении рака мочевого пузыря. Современная Онкология. 2025;27(3):1–8. DOI: 10.26442/18151434.2025.3.203421
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Современные тенденции онкологической помощи строятся на принципах прецизионной медицины, что обусловливает необходимость идентификации прогностических и предиктивных молекулярно-генетических маркеров. Результаты геномного профилирования рака мочевого пузыря (РМП) представляют широкий спектр генов, вовлеченных в канцерогенез, однако функциональная значимость и клинический потенциал большинства из них изучены недостаточно. Цель настоящего исследования – обобщение современных научно-практических данных о тенденциях прецизионной медицины в области онкоурологии при РМП. Материалами для исследования послужили отечественные и зарубежные базы научных данных, в частности National Library of Medicine (http://www.ncbi.nlm.nih.gov/) с использованием электронного ресурса PubMed (https://pubmed.ncbi.nlm.nih.gov/), eLIBRARY.RU (https://www.elibrary.ru/) и Google Scholar (https://scholar.google.ru/schhp?hl=ru), при поиске по ключевым словам: РМП, уротелиальная карцинома, NGS, молекулярное профилирование, гены, FGFR3, TERT, PIK3CA, TP53, мутации, экспрессия. Аналитический обзор, касающийся клинических, патоморфологических и молекулярно-генетических данных по проблематике диагностики и лечения РМП, включал отчеты о доклинических экспериментальных и клинических исследованиях, метаанализы, систематические обзоры, когортные рандомизированные исследования за период 2002–2025 гг. В ряде исследований продемонстрирована связь молекулярно-генетических изменений генов, кодирующих рецепторные и внутриклеточные киназы (FGFR2/3, PIK3CA и др.), с ранними этапами канцерогенеза РМП при условии вариабельной мультифакторной прогностической значимости с учетом наличия современных молекулярно-направленных препаратов. В частности, в настоящее время для лечения распространенных форм РМП одобрен продемонстрировавший свою эффективность пан-FGFR-ингибитор – эрдафитиниб. Учитывая патогенетические механизмы, важной дальнейшей перспективой применения ингибиторов рецепторных и внутриклеточных киназ при РМП считается разработка и внедрение в клиническую практику высокоселективных системных и локально-доставляемых форм с возможностью их использованиях в клинически разнородных группах пациентов, в том числе с ранними стадиями заболевания. В свою очередь, альтерации генов, ответственных за репарацию ДНК (TP53 и др.), ассоциированы с агрессивным течением заболевания и соответствующим менее благоприятным прогнозом. В этом направлении ключевая точка приложения персонализированной терапии – разработка и применение агентов, способных модулировать активность белков системы репарации на различных этапах канцерогенеза. Таким образом, мутационный и функциональный статус генов, вовлеченных в ключевые онкогенные и репарационные пути при РМП, играет важную роль в контексте разработки прогностической модели, а также служит предиктивной мишенью для терапевтического воздействия.
Ключевые слова: рак мочевого пузыря, уротелиальная карцинома, NGS, молекулярное профилирование, гены, FGFR3, TERT, PIK3CA, TP53, мутации, экспрессия
Keywords: bladder cancer, urothelial carcinoma, NGS, molecular profiling, gene, FGFR3, TERT, PIK3CA, TP53, mutation, expression
Ключевые слова: рак мочевого пузыря, уротелиальная карцинома, NGS, молекулярное профилирование, гены, FGFR3, TERT, PIK3CA, TP53, мутации, экспрессия
________________________________________________
Keywords: bladder cancer, urothelial carcinoma, NGS, molecular profiling, gene, FGFR3, TERT, PIK3CA, TP53, mutation, expression
Полный текст
Список литературы
1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. DOI:10.3322/caac.21834
2. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024 [Malignant tumors in Russia in 2023 (morbidity and mortality). Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2024 (in Russian)].
3. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404-23. DOI:10.3322/caac.21631
4. Liao Y, Tang H, Wang M, et al. The potential diagnosis role of TP53 mutation in advanced bladder cancer: A meta-analysis. J Clin Lab Anal. 2021;35(5). DOI:10.1002/jcla.23765
5. Dinney CP, McConkey DJ, Millikan RE, et al. Focus on bladder cancer. Cancer Cell. 2004;6(2):111-6. DOI:10.1016/j.ccr.2004.08.002
6. Ma J, Roumiguie M, Hayashi T, et al. Long-term Recurrence Rates of Low-risk Non-muscle-invasive Bladder Cancer-How Long Is Cystoscopic Surveillance Necessary? Eur Urol Focus. 2024;10(1):189-96. DOI:10.1016/j.euf.2023.06.012
7. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25-41. DOI:10.1038/nrc3817
8. Henry NL, MacVicar G, Hussain M. Management of patients with muscle-invasive and metastatic bladder cancer. Oncology (Williston Park). 2005;19(10):1333-42.
9. Мещеряков И.А., Крюков К.А., Митин Н.П., и др. Молекулярные подтипы уротелиальных карцином мочевого пузыря у пациентов молодого возраста. Journal of Siberian Medical Sciences. 2021;(3):82-104 [Meshcheryakov IA, Kryukov KA, Mitin NP, et al. Molecular subtypes of urothelial carcinomas of the bladder in young patients. Journal of Siberian Medical Sciences. 2021;(3):82-104 (in Russian)]. DOI:10.31549/2542-1174-2021-3-82-104
10. Lindgren D, Frigyesi A, Gudjonsson S, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 2010;70(9):3463-72. DOI:10.1158/0008-5472.CAN-09-4213
11. Sjödahl G, Lauss M, Lövgren K, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18(12):3377-86. DOI:10.1158/1078-0432.CCR-12-0077-T
12. Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA. 2014;111(8):3110-5. DOI:10.1073/pnas.1318376111
13. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315-22. DOI:10.1038/nature12965
14. Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 2018;174(4):1033. DOI:10.1016/j.cell.2018.07.036
15. Kamoun A, de Reyniès A, Allory Y, et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol. 2020;77(4):420-33. DOI:10.1016/j.eururo.2019.09.006
16. Nickerson ML, Dancik GM, Im KM, et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res. 2014;20(18):4935-48. DOI:10.1158/1078-0432.CCR-14-0330
17. Ross JS, Wang K, Al-Rohil RN, et al. Advanced Urothelial Carcinoma: Next-Generation Sequencing Reveals Diverse Genomic Alterations and Targets of Therapy. Mod Pathology. 2014;27:271-80. DOI:10.1038/modpathol.2013.135
18. Pietzak EJ, Bagrodia A, Cha EK, et al. Next-Generation Sequencing of Non-muscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur Urol. 2017;72:952-9. DOI:10.1016/j.eururo.2017.05.032
19. Ward DG, Gordon NS, Boucher RH, et al. Targeted Deep Sequencing of Urothelial Bladder Cancers and Associated Urinary DNA: A 23-Gene Panel with Utility for Non-Invasive Diagnosis and Risk Stratification. BJU Int. 2019;124(3):532-44. DOI:10.1111/bju.14808
20. Garczyk S, Ortiz-Brüchle N, Schneider U, et al. Next-Generation Sequencing Reveals Potential Predictive Biomarkers and Targets of Therapy for Urothelial Carcinoma in Situ of the Urinary Bladder. Am J Pathol. 2020;190:323-32. DOI:10.1016/j.ajpath.2019.10.004
21. Shao Y, Hu X, Yang Z, et al. Prognostic Factors of Non-Muscle Invasive Bladder Cancer: A Study Based on Next-Generation Sequencing. Cancer Cell Int. 2021;21(1):23. DOI:10.1186/s12935-020-01731-9
22. Carrasco R, Ingelmo-Torres M, Gomez A, et al. Prognostic implication of TERT promoter mutation and circulating tumor cells in muscle-invasive bladder cancer. World J Urol. 2022;40(8):2033-9. DOI:10.1007/s00345-022-04061-9
23. Гриднева Я.В., Хмелькова Д.Н., Волкова М.И., и др. Опыт исследования образцов уротелиальной карциномы с помощью панели секвенирования нового поколения на 523 гена. Современная онкология. 2024;26(4):489-94 [Gridneva YV, Khmelkova DN, Volkova MI, et al. Experience of Next-Generation Sequencing in urothelial carcinoma specimens with panel for 523 genes. Modern Oncology. 2024;26(4):489-94 (in Russian)]. DOI:10.26442/18151434.2024.4.203018
24. Myszka A, Ciesla M, Siekierzynska A, et al. Predictive Molecular Biomarkers of Bladder Cancer Identified by Next-Generation Sequencing-Preliminary Data. J Clin Med. 2024;13(24):7701. DOI:10.3390/jcm13247701
25. McConkey DJ, Choi W. Molecular Subtypes of Bladder Cancer. Curr Oncol Rep. 2018;20(10):77. DOI:10.1007/s11912-018-0727-5
26. Bakkar AA, Wallerand H, Radvanyi F, et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 2003;63(23):8108-12.
27. Neuzillet Y, Paoletti X, Ouerhani S, et al. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer. PLoS One. 2012;7(12):e48993. DOI:10.1371/journal.pone.0048993
28. Михайленко Д.С., Сергиенко С.А., Кузнецова Е.Б., и др. Мутации FGFR3, TERT, ТР53 и экспрессия гена FGFR3 как прогностические критерии при раке мочевого пузыря. Онкоурология. 2021;17(1):89-100 [Mikhaylenko DS, Sergienko SA, Kuznetsova EB, et al. FGFR3, TERT, ТР53 mutations and the FGFR3 gene expression in bladder cancer as prognostic markers. Cancer Urology. 2021;17(1):89-100 (in Russian)]. DOI:10.17650/1726-9776-2021-17-1-89-100
29. Hafner C, Di Martino E, Pitt E, et al. FGFR3 mutation affects cell growth, apoptosis and attachment in keratinocytes. Exp Cell Res. 2010;316(12):2008-16. DOI:10.1016/j.yexcr.2010.04.021
30. Benjamin DJ, Mar N, Rezazadeh Kalebasty A. Immunotherapy With Checkpoint Inhibitors in FGFR-Altered Urothelial Carcinoma. Clin Med Insights Oncol. 2022;16:11795549221126252. DOI:10.1177/11795549221126252
31. Dienstmann R, Rodon J, Prat A, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol. 2014;25(3):552-63. DOI:10.1093/annonc/mdt419
32. van Rhijn BW, van Tilborg AA, Lurkin I, et al. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur J Hum Genet. 2002;10(12):819-24. DOI:10.1038/sj.ejhg.5200883
33. Lott S, Wang M, Zhang S, et al. FGFR3 and TP53 mutation analysis in inverted urothelial papilloma: incidence and etiological considerations. Modern Pathology. 2009;22(5):627-32. DOI:10.1038/modpathol.2009.28
34. Bernard-Pierrot I, Brams A, Dunois-Larde C, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis. 2006;27(4):740-7. DOI:10.1093/carcin/bgi290
35. Олюшина Е.М., Завалишина Л.Э., Алексеенок Е.Ю., и др. Исследование мутационного статуса гена FGFR3 в уротелиальной карциноме мочевого пузыря. Архив патологии. 2023;85(2):5-12 [Oliushina EM, Zavalishina LE, Alekseenok EYu, et al. Investigation of the mutational status of the FGFR3 gene in urothelial bladder carcinoma. Archive of Pathology. 2023;85(2):5-12 (in Russian)]. DOI:10.17116/patol2023850215
36. van Oers JM, Adam C, Denzinger S, et al. Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer. 2006;119(5):1212-5. DOI:10.1002/ijc.21958
37. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213(1):91-8. DOI:10.1002/path.2207
38. Kwon W-A. FGFR Inhibitors in Urothelial Cancer: From Scientific Rationale to Clinical Development. J Korean Med Sci. 2024;39(43):e320. DOI:10.3346/jkms.2024.39.e320
39. Peng M, Chu X, Peng Y, et al. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (2020). 2023;4(6):e455. DOI:10.1002/mco2.455
40. Li R, Linscott J, Catto JWF, et al. FGFR Inhibition in Urothelial Carcinoma. European Urology. 2025;87(2):110-22. DOI:10.1016/j.eururo.2024.09.012
41. Ascione CM, Napolitano F, Esposito D, et al. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat Rev. 2023;115:102530. DOI:10.1016/j.ctrv.2023.102530
42. Catto JWF, Tran B, Roupret M, et al. Erdafitinib in BCG-treated high-risk non-muscle-invasive bladder cancer. Ann Oncol. 2024;35(1):98-106. DOI:10.1016/j.annonc.2023.09.3116
43. Benjamin DJ, Hsu R. Frontiers. Treatment approaches for FGFR-altered urothelial carcinoma: targeted therapies and immunotherapy. Front Immunol. 2023;14:1258388. DOI:10.3389/fimmu.2023.1258388
44. Julian Chavarriaga M. AUA 2024: First Safety and Efficacy Results of the TAR-210 Erdafitinib Intravesical Delivery System in Patients with Non-muscle-Invasive Bladder Cancer with Sel ect FGFR Alterations. American Urological Association (AUA) Annual Meeting, San Antonio, 2024.
45. Jing W, Wang G, Cui Z, et al. FGFR3 Destabilizes PD-L1 via NEDD4 to Control T-cell-Mediated Bladder Cancer Immune Surveillance. Cancer Res. 2022;82(1):114-29. DOI:10.1158/0008-5472.CAN-21-2362
46. Siefker-Radtke AO, Powles T, Moreno V, et al. Erdafitinib (ERDA) vs ERDA plus cetrelimab (ERDA+CET) for patients (pts) with metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): Final results fr om the phase 2 Norse study. J Clin Oncol. 2023;41(16_suppl). DOI:10.1200/JCO.2023.41.16_suppl.4504
47. Tully KH, Jütte H, Wirtz RM, et al. Prognostic Role of FGFR Alterations and FGFR mRNA Expression in Metastatic Urothelial Cancer Undergoing Checkpoint Inhibitor Therapy. Urology. 2021;157:93-101. DOI:10.1016/j.urology.2021.05.055
48. Sweis RF, Gajate P, Morales-Barrera R, et al. Rogaratinib Plus Atezolizumab in Cisplatin-Ineligible Patients With FGFR RNA-Overexpressing Urothelial Cancer. JAMA Oncology. 2024;10(11):1565-70. DOI:10.1001/jamaoncol.2024.3900
49. Liu H-P, Jia W, Kadeerhan G, et al. Individualized prognosis stratification in muscle invasive bladder cancer: A pairwise TP53-derived transcriptome signature. Transl Oncol. 2023;29:101629. DOI:10.1016/j.tranon.2023.101629
50. Rocca V, Blandino G, D’Antona L, et al. Li-Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers. 2022;14(15):3664. DOI:10.3390/cancers14153664
51. Tao Y, Li X, Zhang Y, et al. TP53-related signature for predicting prognosis and tumor microenvironment characteristics in bladder cancer: A multi-omics study. Front Genet. 2022;13:1057302. DOI:10.3389/fgene.2022.1057302
52. Wu X, Lv D, Cai C, et al. A TP53-Associated Immune Prognostic Signature for the Prediction of Overall Survival and Therapeutic Responses in Muscle-Invasive Bladder Cancer. Front Immunol. 2020;11:590618. DOI:10.3389/fimmu.2020.590618
53. Li H, Lu H, Cui W, et al. A TP53-based immune prognostic model for muscle-invasive bladder cancer. Aging (Albany NY). 2020;13(2):1929-46. DOI:10.18632/aging.202150
54. Lyu Q, Lin A, Cao M, et al. Alterations in TP53 Are a Potential Biomarker of Bladder Cancer Patients Who Benefit From Immune Checkpoint Inhibition. Cancer Control. 2020;27(1):1073274820976665. DOI:10.1177/1073274820976665
55. Ciccarese C, Massari F, Blanca A, et al. Tp53 and its potential therapeutic role as a target in bladder cancer. Expert Opin Ther Targets. 2017;21(4):401-14. DOI:10.1080/14728222.2017.1297798
56. Шкурлатовская К.М., Орлова А.С., Силина Е.В., и др. Молекулярно-генетические механизмы мастоцитоза. Патологическая физиология и экспериментальная терапия. 2019;63(3):127-33 [Shkurlatovskaia KM, Orlova AS, Silina EV, et al. Molecular and genetic mechanisms mastocytosis. Patologicheskaya Fiziologiya i Eksperimentalnaya terapiya (Pathological Physiology and Experimental Therapy). 2019;63(3):127-33 (in Russian)]. DOI:10.25557/0031-2991.2019.03.127-133
57. Wang Z, Shang J, Li Z, et al. PIK3CA Is Regulated by CUX1, Promotes Cell Growth and Metastasis in Bladder Cancer via Activating Epithelial-Mesenchymal Transition. Front Oncol. 2020;10:536072. DOI:10.3389/fonc.2020.536072
58. Platt FM, Hurst CD, Taylor CF, et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res. 2009;15(19):6008-17. DOI:10.1158/1078-0432.CCR-09-0898
59. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A. 2008;105(7):2652-7. DOI:10.1073/pnas.0712169105
60. Lopez-Knowles E, Hernandez S, Malats N, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006;66(15):7401-4. DOI:10.1158/0008-5472.CAN-06-1182
61. Ousati Ashtiani Z, Mehrsai AR, Pourmand MR, Pourmand GR. High Resolution Melting Analysis for Rapid Detection of PIK3CA Gene Mutations in Bladder Cancer: A Mutated Target for Cancer Therapy. Urol J. 2018;15(1):26-31. DOI:10.22037/uj.v0i0.3987
62. Duenas M, Martínez-Fernández M, García-Escudero R, et al. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors. Mol Carcinog. 2015;54(7):566-76. DOI:10.1002/mc.22125
63. Shuman L, Pham J, Wildermuth T, et al. Urothelium-Specific Expression of Mutationally Activated PIK3CA Initiates Early Lesions of Noninvasive Bladder Cancer. Am J Pathol. 2023;193(12):2133-43. DOI:10.1016/j.ajpath.2023.07.001
64. McPherson V, Reardon B, Bhayankara A, et al. A phase 2 trial of buparlisib in patients with platinum-resistant metastatic urothelial carcinoma. Cancer. 2020;126(20):4532-44. DOI:10.1002/cncr.33071
65. Wang L, Sustic T, Oliveira R, et al. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma. Eur Urol. 2017;71(6):858-62. DOI:10.1016/j.eururo.2017.01.021
66. Hyman DM, Tran B, Paz-Ares L, et al. Combined PIK3CA and FGFR Inhibition With Alpelisib and Infigratinib in Patients With PIK3CA-Mutant Solid Tumors, With or Without FGFR Alterations. JCO Precis Oncol. 2019;3:1-13. DOI:10.1200/PO.19.00221
67. Borcoman E, De La Rochere P, Richer W, et al. Inhibition of PI3K pathway increases immune infiltrate in muscle-invasive bladder cancer. Oncoimmunology. 2019;8(5):e1581556. DOI:10.1080/2162402X.2019.1581556
68. Liu M, Zhang Y, Jian Y, et al. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis. 2024;15(1):90. DOI:10.1038/s41419-024-06454-7
69. Селиванова Л.С., Волганова К.С., Абросимов А.Ю. Мутации промотора теломеразной обратной транскриптазы (TERT) в опухолях эндокринных органов человека: биологическое и прогностическое значение. Архив патологии. 2016;78(1):62-9 [Selivanova LS, Volganova KS, Abrosimov AIu. Telomerase reverse transcriptase (TERT) promoter mutations in the tumors of human endocrine organs: Biological and prognostic value. Archive of Pathology. 2016;78(1):62-9 (in Russian)]. DOI:10.17116/patol201678162-68
70. Рубцова М.П., Василькова Д.П., Малявко А.Н., и др. Функции теломеразы: удлинение теломер и не только. Acta Naturae. 2012;4(2):44-61 [Rubtsova MP, Vasilkova DP, Malyavko AN, et al. Funktsii telomerazy: udlinenie telomer i ne tolko. Acta Naturae. 2012;4(2):44-61 (in Russian)]. EDN:PBFZAN
71. El Azzouzi M, El Ahanidi H, Hassan I, et al. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol. 2024;42(12):451.e19-29. DOI:10.1016/j.urolonc.2024.06.024
72. Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol. 2023;133:56-75. DOI:10.1016/j.humpath.2022.06.005
73. Gupta S, Vanderbilt CM, Lin YT, et al. A Pan-Cancer Study of Somatic TERT Promoter Mutations and Amplification in 30,773 Tumors Profiled by Clinical Genomic Sequencing. J Mol Diagn. 2021;23(2):253-63. DOI:10.1016/j.jmoldx.2020.11.003
74. Agarwal N, Rinaldetti S, Cheikh BB, et al. TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proc Natl Acad Sci USA. 2021;118(38):e2102423118. DOI:10.1073/pnas.2102423118
75. Huang DS, Wang Z, He XJ, et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer. 2015;51(8):969-76. DOI:10.1016/j.ejca.2015.03.010
76. Tran L, Xiao JF, Agarwal N, et al. Advances in bladder cancer biology and therapy. Nat Rev Cancer. 2021;21(2):104-21. DOI:10.1038/s41568-020-00313-1
77. Allory Y, Beukers W, Sagrera A, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: High frequency across stages, detection in urine, and lack of association with outcome. Eur Urol. 2014;65:360-6. DOI:10.1016/j.eururo.2013.08.052
78. Rachakonda PS, Hosen I, de Verdier PJ, et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA. 2013;110:17426-31. DOI:10.1073/pnas.1310522110
79. Batista R, Lima L, Vinagre J, et al. TERT Promoter Mutation as a Potential Predictive Biomarker in BCG-Treated Bladder Cancer Patients. Int J Mol Sci. 2020;21(3):947. DOI:10.3390/ijms21030947
80. Shuai H, Duan X, Zhou JJ, et al. Effect of the TERT mutation on the prognosis of patients with urothelial carcinoma: a systematic review and meta-analysis. BMC Urol. 2023;23(1):177. DOI:10.1186/s12894-023-01349-9
81. Wan S, Liu X, Hua W, et al. The role of telomerase reverse transcriptase (TERT) promoter mutations in prognosis in bladder cancer. Bioengineered. 2021;12(1):1495-504. DOI:10.1080/21655979.2021.1915725
82. Descotes F, Kara N, Decaussin-Petrucci M, et al. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br J Cancer. 2017;117:583-7. DOI:10.1038/bjc.2017.210
83. Kovacs A, Sükösd F, Kuthi L, et al. Novel method for detecting frequent TERT promoter hot spot mutations in bladder cancer samples. Clin Exp Med. 2024;24(1):192. DOI:10.1007/s10238-024-01464-3
84. Zvereva M, Pisarev E, Hosen I, et al. Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. Int J Mol Sci. 2020;21(17):6034. DOI:10.3390/ijms21176034
85. Agarwal N, Zhou Q, Arya D, et al. AST-487 Inhibits RET Kinase Driven TERT Expression in Bladder Cancer. Int J Mol Sci. 2022;23(18):10819. DOI:10.3390/ijms231810819
86. Saitoh H, Mori K, Kudoh S, et al. BCG effects on telomerase activity in bladder cancer cell lines. Int J Clin Oncol. 2002;7(3):165-70. DOI:10.1007/s101470200024
87. Kailashiya C, Sharma HB, Kailashiya J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine. 2017;35(43):5768-75. DOI:10.1016/j.vaccine.2017.09.011
2. Malignant tumors in Russia in 2023 (morbidity and mortality). Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2024 (in Russian).
3. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404-23. DOI:10.3322/caac.21631
4. Liao Y, Tang H, Wang M, et al. The potential diagnosis role of TP53 mutation in advanced bladder cancer: A meta-analysis. J Clin Lab Anal. 2021;35(5). DOI:10.1002/jcla.23765
5. Dinney CP, McConkey DJ, Millikan RE, et al. Focus on bladder cancer. Cancer Cell. 2004;6(2):111-6. DOI:10.1016/j.ccr.2004.08.002
6. Ma J, Roumiguie M, Hayashi T, et al. Long-term Recurrence Rates of Low-risk Non-muscle-invasive Bladder Cancer-How Long Is Cystoscopic Surveillance Necessary? Eur Urol Focus. 2024;10(1):189-96. DOI:10.1016/j.euf.2023.06.012
7. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25-41. DOI:10.1038/nrc3817
8. Henry NL, MacVicar G, Hussain M. Management of patients with muscle-invasive and metastatic bladder cancer. Oncology (Williston Park). 2005;19(10):1333-42.
9. Meshcheryakov IA, Kryukov KA, Mitin NP, et al. Molecular subtypes of urothelial carcinomas of the bladder in young patients. Journal of Siberian Medical Sciences. 2021;(3):82-104 (in Russian). DOI:10.31549/2542-1174-2021-3-82-104
10. Lindgren D, Frigyesi A, Gudjonsson S, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 2010;70(9):3463-72. DOI:10.1158/0008-5472.CAN-09-4213
11. Sjödahl G, Lauss M, Lövgren K, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18(12):3377-86. DOI:10.1158/1078-0432.CCR-12-0077-T
12. Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA. 2014;111(8):3110-5. DOI:10.1073/pnas.1318376111
13. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315-22. DOI:10.1038/nature12965
14. Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 2018;174(4):1033. DOI:10.1016/j.cell.2018.07.036
15. Kamoun A, de Reyniès A, Allory Y, et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol. 2020;77(4):420-33. DOI:10.1016/j.eururo.2019.09.006
16. Nickerson ML, Dancik GM, Im KM, et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res. 2014;20(18):4935-48. DOI:10.1158/1078-0432.CCR-14-0330
17. Ross JS, Wang K, Al-Rohil RN, et al. Advanced Urothelial Carcinoma: Next-Generation Sequencing Reveals Diverse Genomic Alterations and Targets of Therapy. Mod Pathology. 2014;27:271-80. DOI:10.1038/modpathol.2013.135
18. Pietzak EJ, Bagrodia A, Cha EK, et al. Next-Generation Sequencing of Non-muscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur Urol. 2017;72:952-9. DOI:10.1016/j.eururo.2017.05.032
19. Ward DG, Gordon NS, Boucher RH, et al. Targeted Deep Sequencing of Urothelial Bladder Cancers and Associated Urinary DNA: A 23-Gene Panel with Utility for Non-Invasive Diagnosis and Risk Stratification. BJU Int. 2019;124(3):532-44. DOI:10.1111/bju.14808
20. Garczyk S, Ortiz-Brüchle N, Schneider U, et al. Next-Generation Sequencing Reveals Potential Predictive Biomarkers and Targets of Therapy for Urothelial Carcinoma in Situ of the Urinary Bladder. Am J Pathol. 2020;190:323-32. DOI:10.1016/j.ajpath.2019.10.004
21. Shao Y, Hu X, Yang Z, et al. Prognostic Factors of Non-Muscle Invasive Bladder Cancer: A Study Based on Next-Generation Sequencing. Cancer Cell Int. 2021;21(1):23. DOI:10.1186/s12935-020-01731-9
22. Carrasco R, Ingelmo-Torres M, Gomez A, et al. Prognostic implication of TERT promoter mutation and circulating tumor cells in muscle-invasive bladder cancer. World J Urol. 2022;40(8):2033-9. DOI:10.1007/s00345-022-04061-9
23. Gridneva YV, Khmelkova DN, Volkova MI, et al. Experience of Next-Generation Sequencing in urothelial carcinoma specimens with panel for 523 genes. Modern Oncology. 2024;26(4):489-94 (in Russian). DOI:10.26442/18151434.2024.4.203018
24. Myszka A, Ciesla M, Siekierzynska A, et al. Predictive Molecular Biomarkers of Bladder Cancer Identified by Next-Generation Sequencing-Preliminary Data. J Clin Med. 2024;13(24):7701. DOI:10.3390/jcm13247701
25. McConkey DJ, Choi W. Molecular Subtypes of Bladder Cancer. Curr Oncol Rep. 2018;20(10):77. DOI:10.1007/s11912-018-0727-5
26. Bakkar AA, Wallerand H, Radvanyi F, et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 2003;63(23):8108-12.
27. Neuzillet Y, Paoletti X, Ouerhani S, et al. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer. PLoS One. 2012;7(12):e48993. DOI:10.1371/journal.pone.0048993
28. Mikhaylenko DS, Sergienko SA, Kuznetsova EB, et al. FGFR3, TERT, ТР53 mutations and the FGFR3 gene expression in bladder cancer as prognostic markers. Cancer Urology. 2021;17(1):89-100 (in Russian). DOI:10.17650/1726-9776-2021-17-1-89-100
29. Hafner C, Di Martino E, Pitt E, et al. FGFR3 mutation affects cell growth, apoptosis and attachment in keratinocytes. Exp Cell Res. 2010;316(12):2008-16. DOI:10.1016/j.yexcr.2010.04.021
30. Benjamin DJ, Mar N, Rezazadeh Kalebasty A. Immunotherapy With Checkpoint Inhibitors in FGFR-Altered Urothelial Carcinoma. Clin Med Insights Oncol. 2022;16:11795549221126252. DOI:10.1177/11795549221126252
31. Dienstmann R, Rodon J, Prat A, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol. 2014;25(3):552-63. DOI:10.1093/annonc/mdt419
32. van Rhijn BW, van Tilborg AA, Lurkin I, et al. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur J Hum Genet. 2002;10(12):819-24. DOI:10.1038/sj.ejhg.5200883
33. Lott S, Wang M, Zhang S, et al. FGFR3 and TP53 mutation analysis in inverted urothelial papilloma: incidence and etiological considerations. Modern Pathology. 2009;22(5):627-32. DOI:10.1038/modpathol.2009.28
34. Bernard-Pierrot I, Brams A, Dunois-Larde C, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis. 2006;27(4):740-7. DOI:10.1093/carcin/bgi290
35. Oliushina EM, Zavalishina LE, Alekseenok EYu, et al. Investigation of the mutational status of the FGFR3 gene in urothelial bladder carcinoma. Archive of Pathology. 2023;85(2):5-12 (in Russian). DOI:10.17116/patol2023850215
36. van Oers JM, Adam C, Denzinger S, et al. Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer. 2006;119(5):1212-5. DOI:10.1002/ijc.21958
37. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213(1):91-8. DOI:10.1002/path.2207
38. Kwon W-A. FGFR Inhibitors in Urothelial Cancer: From Scientific Rationale to Clinical Development. J Korean Med Sci. 2024;39(43):e320. DOI:10.3346/jkms.2024.39.e320
39. Peng M, Chu X, Peng Y, et al. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (2020). 2023;4(6):e455. DOI:10.1002/mco2.455
40. Li R, Linscott J, Catto JWF, et al. FGFR Inhibition in Urothelial Carcinoma. European Urology. 2025;87(2):110-22. DOI:10.1016/j.eururo.2024.09.012
41. Ascione CM, Napolitano F, Esposito D, et al. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat Rev. 2023;115:102530. DOI:10.1016/j.ctrv.2023.102530
42. Catto JWF, Tran B, Roupret M, et al. Erdafitinib in BCG-treated high-risk non-muscle-invasive bladder cancer. Ann Oncol. 2024;35(1):98-106. DOI:10.1016/j.annonc.2023.09.3116
43. Benjamin DJ, Hsu R. Frontiers. Treatment approaches for FGFR-altered urothelial carcinoma: targeted therapies and immunotherapy. Front Immunol. 2023;14:1258388. DOI:10.3389/fimmu.2023.1258388
44. Julian Chavarriaga M. AUA 2024: First Safety and Efficacy Results of the TAR-210 Erdafitinib Intravesical Delivery System in Patients with Non-muscle-Invasive Bladder Cancer with Sel ect FGFR Alterations. American Urological Association (AUA) Annual Meeting, San Antonio, 2024.
45. Jing W, Wang G, Cui Z, et al. FGFR3 Destabilizes PD-L1 via NEDD4 to Control T-cell-Mediated Bladder Cancer Immune Surveillance. Cancer Res. 2022;82(1):114-29. DOI:10.1158/0008-5472.CAN-21-2362
46. Siefker-Radtke AO, Powles T, Moreno V, et al. Erdafitinib (ERDA) vs ERDA plus cetrelimab (ERDA+CET) for patients (pts) with metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): Final results fr om the phase 2 Norse study. J Clin Oncol. 2023;41(16_suppl). DOI:10.1200/JCO.2023.41.16_suppl.4504
47. Tully KH, Jütte H, Wirtz RM, et al. Prognostic Role of FGFR Alterations and FGFR mRNA Expression in Metastatic Urothelial Cancer Undergoing Checkpoint Inhibitor Therapy. Urology. 2021;157:93-101. DOI:10.1016/j.urology.2021.05.055
48. Sweis RF, Gajate P, Morales-Barrera R, et al. Rogaratinib Plus Atezolizumab in Cisplatin-Ineligible Patients With FGFR RNA-Overexpressing Urothelial Cancer. JAMA Oncology. 2024;10(11):1565-70. DOI:10.1001/jamaoncol.2024.3900
49. Liu H-P, Jia W, Kadeerhan G, et al. Individualized prognosis stratification in muscle invasive bladder cancer: A pairwise TP53-derived transcriptome signature. Transl Oncol. 2023;29:101629. DOI:10.1016/j.tranon.2023.101629
50. Rocca V, Blandino G, D’Antona L, et al. Li-Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers. 2022;14(15):3664. DOI:10.3390/cancers14153664
51. Tao Y, Li X, Zhang Y, et al. TP53-related signature for predicting prognosis and tumor microenvironment characteristics in bladder cancer: A multi-omics study. Front Genet. 2022;13:1057302. DOI:10.3389/fgene.2022.1057302
52. Wu X, Lv D, Cai C, et al. A TP53-Associated Immune Prognostic Signature for the Prediction of Overall Survival and Therapeutic Responses in Muscle-Invasive Bladder Cancer. Front Immunol. 2020;11:590618. DOI:10.3389/fimmu.2020.590618
53. Li H, Lu H, Cui W, et al. A TP53-based immune prognostic model for muscle-invasive bladder cancer. Aging (Albany NY). 2020;13(2):1929-46. DOI:10.18632/aging.202150
54. Lyu Q, Lin A, Cao M, et al. Alterations in TP53 Are a Potential Biomarker of Bladder Cancer Patients Who Benefit From Immune Checkpoint Inhibition. Cancer Control. 2020;27(1):1073274820976665. DOI:10.1177/1073274820976665
55. Ciccarese C, Massari F, Blanca A, et al. Tp53 and its potential therapeutic role as a target in bladder cancer. Expert Opin Ther Targets. 2017;21(4):401-14. DOI:10.1080/14728222.2017.1297798
56. Shkurlatovskaia KM, Orlova AS, Silina EV, et al. Molecular and genetic mechanisms mastocytosis. Patologicheskaya Fiziologiya i Eksperimentalnaya terapiya (Pathological Physiology and Experimental Therapy). 2019;63(3):127-33 (in Russian). DOI:10.25557/0031-2991.2019.03.127-133
57. Wang Z, Shang J, Li Z, et al. PIK3CA Is Regulated by CUX1, Promotes Cell Growth and Metastasis in Bladder Cancer via Activating Epithelial-Mesenchymal Transition. Front Oncol. 2020;10:536072. DOI:10.3389/fonc.2020.536072
58. Platt FM, Hurst CD, Taylor CF, et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res. 2009;15(19):6008-17. DOI:10.1158/1078-0432.CCR-09-0898
59. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A. 2008;105(7):2652-7. DOI:10.1073/pnas.0712169105
60. Lopez-Knowles E, Hernandez S, Malats N, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006;66(15):7401-4. DOI:10.1158/0008-5472.CAN-06-1182
61. Ousati Ashtiani Z, Mehrsai AR, Pourmand MR, Pourmand GR. High Resolution Melting Analysis for Rapid Detection of PIK3CA Gene Mutations in Bladder Cancer: A Mutated Target for Cancer Therapy. Urol J. 2018;15(1):26-31. DOI:10.22037/uj.v0i0.3987
62. Duenas M, Martínez-Fernández M, García-Escudero R, et al. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors. Mol Carcinog. 2015;54(7):566-76. DOI:10.1002/mc.22125
63. Shuman L, Pham J, Wildermuth T, et al. Urothelium-Specific Expression of Mutationally Activated PIK3CA Initiates Early Lesions of Noninvasive Bladder Cancer. Am J Pathol. 2023;193(12):2133-43. DOI:10.1016/j.ajpath.2023.07.001
64. McPherson V, Reardon B, Bhayankara A, et al. A phase 2 trial of buparlisib in patients with platinum-resistant metastatic urothelial carcinoma. Cancer. 2020;126(20):4532-44. DOI:10.1002/cncr.33071
65. Wang L, Sustic T, Oliveira R, et al. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma. Eur Urol. 2017;71(6):858-62. DOI:10.1016/j.eururo.2017.01.021
66. Hyman DM, Tran B, Paz-Ares L, et al. Combined PIK3CA and FGFR Inhibition With Alpelisib and Infigratinib in Patients With PIK3CA-Mutant Solid Tumors, With or Without FGFR Alterations. JCO Precis Oncol. 2019;3:1-13. DOI:10.1200/PO.19.00221
67. Borcoman E, De La Rochere P, Richer W, et al. Inhibition of PI3K pathway increases immune infiltrate in muscle-invasive bladder cancer. Oncoimmunology. 2019;8(5):e1581556. DOI:10.1080/2162402X.2019.1581556
68. Liu M, Zhang Y, Jian Y, et al. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis. 2024;15(1):90. DOI:10.1038/s41419-024-06454-7
69. Selivanova LS, Volganova KS, Abrosimov AIu. Telomerase reverse transcriptase (TERT) promoter mutations in the tumors of human endocrine organs: Biological and prognostic value. Archive of Pathology. 2016;78(1):62-9 (in Russian). DOI:10.17116/patol201678162-68
70. Rubtsova MP, Vasilkova DP, Malyavko AN, et al. Funktsii telomerazy: udlinenie telomer i ne tolko. Acta Naturae. 2012;4(2):44-61 (in Russian). EDN:PBFZAN
71. El Azzouzi M, El Ahanidi H, Hassan I, et al. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol. 2024;42(12):451.e19-29. DOI:10.1016/j.urolonc.2024.06.024
72. Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol. 2023;133:56-75. DOI:10.1016/j.humpath.2022.06.005
73. Gupta S, Vanderbilt CM, Lin YT, et al. A Pan-Cancer Study of Somatic TERT Promoter Mutations and Amplification in 30,773 Tumors Profiled by Clinical Genomic Sequencing. J Mol Diagn. 2021;23(2):253-63. DOI:10.1016/j.jmoldx.2020.11.003
74. Agarwal N, Rinaldetti S, Cheikh BB, et al. TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proc Natl Acad Sci USA. 2021;118(38):e2102423118. DOI:10.1073/pnas.2102423118
75. Huang DS, Wang Z, He XJ, et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer. 2015;51(8):969-76. DOI:10.1016/j.ejca.2015.03.010
76. Tran L, Xiao JF, Agarwal N, et al. Advances in bladder cancer biology and therapy. Nat Rev Cancer. 2021;21(2):104-21. DOI:10.1038/s41568-020-00313-1
77. Allory Y, Beukers W, Sagrera A, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: High frequency across stages, detection in urine, and lack of association with outcome. Eur Urol. 2014;65:360-6. DOI:10.1016/j.eururo.2013.08.052
78. Rachakonda PS, Hosen I, de Verdier PJ, et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA. 2013;110:17426-31. DOI:10.1073/pnas.1310522110
79. Batista R, Lima L, Vinagre J, et al. TERT Promoter Mutation as a Potential Predictive Biomarker in BCG-Treated Bladder Cancer Patients. Int J Mol Sci. 2020;21(3):947. DOI:10.3390/ijms21030947
80. Shuai H, Duan X, Zhou JJ, et al. Effect of the TERT mutation on the prognosis of patients with urothelial carcinoma: a systematic review and meta-analysis. BMC Urol. 2023;23(1):177. DOI:10.1186/s12894-023-01349-9
81. Wan S, Liu X, Hua W, et al. The role of telomerase reverse transcriptase (TERT) promoter mutations in prognosis in bladder cancer. Bioengineered. 2021;12(1):1495-504. DOI:10.1080/21655979.2021.1915725
82. Descotes F, Kara N, Decaussin-Petrucci M, et al. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br J Cancer. 2017;117:583-7. DOI:10.1038/bjc.2017.210
83. Kovacs A, Sükösd F, Kuthi L, et al. Novel method for detecting frequent TERT promoter hot spot mutations in bladder cancer samples. Clin Exp Med. 2024;24(1):192. DOI:10.1007/s10238-024-01464-3
84. Zvereva M, Pisarev E, Hosen I, et al. Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. Int J Mol Sci. 2020;21(17):6034. DOI:10.3390/ijms21176034
85. Agarwal N, Zhou Q, Arya D, et al. AST-487 Inhibits RET Kinase Driven TERT Expression in Bladder Cancer. Int J Mol Sci. 2022;23(18):10819. DOI:10.3390/ijms231810819
86. Saitoh H, Mori K, Kudoh S, et al. BCG effects on telomerase activity in bladder cancer cell lines. Int J Clin Oncol. 2002;7(3):165-70. DOI:10.1007/s101470200024
87. Kailashiya C, Sharma HB, Kailashiya J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine. 2017;35(43):5768-75. DOI:10.1016/j.vaccine.2017.09.011
2. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024 [Malignant tumors in Russia in 2023 (morbidity and mortality). Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2024 (in Russian)].
3. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404-23. DOI:10.3322/caac.21631
4. Liao Y, Tang H, Wang M, et al. The potential diagnosis role of TP53 mutation in advanced bladder cancer: A meta-analysis. J Clin Lab Anal. 2021;35(5). DOI:10.1002/jcla.23765
5. Dinney CP, McConkey DJ, Millikan RE, et al. Focus on bladder cancer. Cancer Cell. 2004;6(2):111-6. DOI:10.1016/j.ccr.2004.08.002
6. Ma J, Roumiguie M, Hayashi T, et al. Long-term Recurrence Rates of Low-risk Non-muscle-invasive Bladder Cancer-How Long Is Cystoscopic Surveillance Necessary? Eur Urol Focus. 2024;10(1):189-96. DOI:10.1016/j.euf.2023.06.012
7. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25-41. DOI:10.1038/nrc3817
8. Henry NL, MacVicar G, Hussain M. Management of patients with muscle-invasive and metastatic bladder cancer. Oncology (Williston Park). 2005;19(10):1333-42.
9. Мещеряков И.А., Крюков К.А., Митин Н.П., и др. Молекулярные подтипы уротелиальных карцином мочевого пузыря у пациентов молодого возраста. Journal of Siberian Medical Sciences. 2021;(3):82-104 [Meshcheryakov IA, Kryukov KA, Mitin NP, et al. Molecular subtypes of urothelial carcinomas of the bladder in young patients. Journal of Siberian Medical Sciences. 2021;(3):82-104 (in Russian)]. DOI:10.31549/2542-1174-2021-3-82-104
10. Lindgren D, Frigyesi A, Gudjonsson S, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 2010;70(9):3463-72. DOI:10.1158/0008-5472.CAN-09-4213
11. Sjödahl G, Lauss M, Lövgren K, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18(12):3377-86. DOI:10.1158/1078-0432.CCR-12-0077-T
12. Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA. 2014;111(8):3110-5. DOI:10.1073/pnas.1318376111
13. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315-22. DOI:10.1038/nature12965
14. Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 2018;174(4):1033. DOI:10.1016/j.cell.2018.07.036
15. Kamoun A, de Reyniès A, Allory Y, et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol. 2020;77(4):420-33. DOI:10.1016/j.eururo.2019.09.006
16. Nickerson ML, Dancik GM, Im KM, et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res. 2014;20(18):4935-48. DOI:10.1158/1078-0432.CCR-14-0330
17. Ross JS, Wang K, Al-Rohil RN, et al. Advanced Urothelial Carcinoma: Next-Generation Sequencing Reveals Diverse Genomic Alterations and Targets of Therapy. Mod Pathology. 2014;27:271-80. DOI:10.1038/modpathol.2013.135
18. Pietzak EJ, Bagrodia A, Cha EK, et al. Next-Generation Sequencing of Non-muscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur Urol. 2017;72:952-9. DOI:10.1016/j.eururo.2017.05.032
19. Ward DG, Gordon NS, Boucher RH, et al. Targeted Deep Sequencing of Urothelial Bladder Cancers and Associated Urinary DNA: A 23-Gene Panel with Utility for Non-Invasive Diagnosis and Risk Stratification. BJU Int. 2019;124(3):532-44. DOI:10.1111/bju.14808
20. Garczyk S, Ortiz-Brüchle N, Schneider U, et al. Next-Generation Sequencing Reveals Potential Predictive Biomarkers and Targets of Therapy for Urothelial Carcinoma in Situ of the Urinary Bladder. Am J Pathol. 2020;190:323-32. DOI:10.1016/j.ajpath.2019.10.004
21. Shao Y, Hu X, Yang Z, et al. Prognostic Factors of Non-Muscle Invasive Bladder Cancer: A Study Based on Next-Generation Sequencing. Cancer Cell Int. 2021;21(1):23. DOI:10.1186/s12935-020-01731-9
22. Carrasco R, Ingelmo-Torres M, Gomez A, et al. Prognostic implication of TERT promoter mutation and circulating tumor cells in muscle-invasive bladder cancer. World J Urol. 2022;40(8):2033-9. DOI:10.1007/s00345-022-04061-9
23. Гриднева Я.В., Хмелькова Д.Н., Волкова М.И., и др. Опыт исследования образцов уротелиальной карциномы с помощью панели секвенирования нового поколения на 523 гена. Современная онкология. 2024;26(4):489-94 [Gridneva YV, Khmelkova DN, Volkova MI, et al. Experience of Next-Generation Sequencing in urothelial carcinoma specimens with panel for 523 genes. Modern Oncology. 2024;26(4):489-94 (in Russian)]. DOI:10.26442/18151434.2024.4.203018
24. Myszka A, Ciesla M, Siekierzynska A, et al. Predictive Molecular Biomarkers of Bladder Cancer Identified by Next-Generation Sequencing-Preliminary Data. J Clin Med. 2024;13(24):7701. DOI:10.3390/jcm13247701
25. McConkey DJ, Choi W. Molecular Subtypes of Bladder Cancer. Curr Oncol Rep. 2018;20(10):77. DOI:10.1007/s11912-018-0727-5
26. Bakkar AA, Wallerand H, Radvanyi F, et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 2003;63(23):8108-12.
27. Neuzillet Y, Paoletti X, Ouerhani S, et al. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer. PLoS One. 2012;7(12):e48993. DOI:10.1371/journal.pone.0048993
28. Михайленко Д.С., Сергиенко С.А., Кузнецова Е.Б., и др. Мутации FGFR3, TERT, ТР53 и экспрессия гена FGFR3 как прогностические критерии при раке мочевого пузыря. Онкоурология. 2021;17(1):89-100 [Mikhaylenko DS, Sergienko SA, Kuznetsova EB, et al. FGFR3, TERT, ТР53 mutations and the FGFR3 gene expression in bladder cancer as prognostic markers. Cancer Urology. 2021;17(1):89-100 (in Russian)]. DOI:10.17650/1726-9776-2021-17-1-89-100
29. Hafner C, Di Martino E, Pitt E, et al. FGFR3 mutation affects cell growth, apoptosis and attachment in keratinocytes. Exp Cell Res. 2010;316(12):2008-16. DOI:10.1016/j.yexcr.2010.04.021
30. Benjamin DJ, Mar N, Rezazadeh Kalebasty A. Immunotherapy With Checkpoint Inhibitors in FGFR-Altered Urothelial Carcinoma. Clin Med Insights Oncol. 2022;16:11795549221126252. DOI:10.1177/11795549221126252
31. Dienstmann R, Rodon J, Prat A, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol. 2014;25(3):552-63. DOI:10.1093/annonc/mdt419
32. van Rhijn BW, van Tilborg AA, Lurkin I, et al. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur J Hum Genet. 2002;10(12):819-24. DOI:10.1038/sj.ejhg.5200883
33. Lott S, Wang M, Zhang S, et al. FGFR3 and TP53 mutation analysis in inverted urothelial papilloma: incidence and etiological considerations. Modern Pathology. 2009;22(5):627-32. DOI:10.1038/modpathol.2009.28
34. Bernard-Pierrot I, Brams A, Dunois-Larde C, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis. 2006;27(4):740-7. DOI:10.1093/carcin/bgi290
35. Олюшина Е.М., Завалишина Л.Э., Алексеенок Е.Ю., и др. Исследование мутационного статуса гена FGFR3 в уротелиальной карциноме мочевого пузыря. Архив патологии. 2023;85(2):5-12 [Oliushina EM, Zavalishina LE, Alekseenok EYu, et al. Investigation of the mutational status of the FGFR3 gene in urothelial bladder carcinoma. Archive of Pathology. 2023;85(2):5-12 (in Russian)]. DOI:10.17116/patol2023850215
36. van Oers JM, Adam C, Denzinger S, et al. Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer. 2006;119(5):1212-5. DOI:10.1002/ijc.21958
37. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213(1):91-8. DOI:10.1002/path.2207
38. Kwon W-A. FGFR Inhibitors in Urothelial Cancer: From Scientific Rationale to Clinical Development. J Korean Med Sci. 2024;39(43):e320. DOI:10.3346/jkms.2024.39.e320
39. Peng M, Chu X, Peng Y, et al. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (2020). 2023;4(6):e455. DOI:10.1002/mco2.455
40. Li R, Linscott J, Catto JWF, et al. FGFR Inhibition in Urothelial Carcinoma. European Urology. 2025;87(2):110-22. DOI:10.1016/j.eururo.2024.09.012
41. Ascione CM, Napolitano F, Esposito D, et al. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat Rev. 2023;115:102530. DOI:10.1016/j.ctrv.2023.102530
42. Catto JWF, Tran B, Roupret M, et al. Erdafitinib in BCG-treated high-risk non-muscle-invasive bladder cancer. Ann Oncol. 2024;35(1):98-106. DOI:10.1016/j.annonc.2023.09.3116
43. Benjamin DJ, Hsu R. Frontiers. Treatment approaches for FGFR-altered urothelial carcinoma: targeted therapies and immunotherapy. Front Immunol. 2023;14:1258388. DOI:10.3389/fimmu.2023.1258388
44. Julian Chavarriaga M. AUA 2024: First Safety and Efficacy Results of the TAR-210 Erdafitinib Intravesical Delivery System in Patients with Non-muscle-Invasive Bladder Cancer with Sel ect FGFR Alterations. American Urological Association (AUA) Annual Meeting, San Antonio, 2024.
45. Jing W, Wang G, Cui Z, et al. FGFR3 Destabilizes PD-L1 via NEDD4 to Control T-cell-Mediated Bladder Cancer Immune Surveillance. Cancer Res. 2022;82(1):114-29. DOI:10.1158/0008-5472.CAN-21-2362
46. Siefker-Radtke AO, Powles T, Moreno V, et al. Erdafitinib (ERDA) vs ERDA plus cetrelimab (ERDA+CET) for patients (pts) with metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): Final results fr om the phase 2 Norse study. J Clin Oncol. 2023;41(16_suppl). DOI:10.1200/JCO.2023.41.16_suppl.4504
47. Tully KH, Jütte H, Wirtz RM, et al. Prognostic Role of FGFR Alterations and FGFR mRNA Expression in Metastatic Urothelial Cancer Undergoing Checkpoint Inhibitor Therapy. Urology. 2021;157:93-101. DOI:10.1016/j.urology.2021.05.055
48. Sweis RF, Gajate P, Morales-Barrera R, et al. Rogaratinib Plus Atezolizumab in Cisplatin-Ineligible Patients With FGFR RNA-Overexpressing Urothelial Cancer. JAMA Oncology. 2024;10(11):1565-70. DOI:10.1001/jamaoncol.2024.3900
49. Liu H-P, Jia W, Kadeerhan G, et al. Individualized prognosis stratification in muscle invasive bladder cancer: A pairwise TP53-derived transcriptome signature. Transl Oncol. 2023;29:101629. DOI:10.1016/j.tranon.2023.101629
50. Rocca V, Blandino G, D’Antona L, et al. Li-Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers. 2022;14(15):3664. DOI:10.3390/cancers14153664
51. Tao Y, Li X, Zhang Y, et al. TP53-related signature for predicting prognosis and tumor microenvironment characteristics in bladder cancer: A multi-omics study. Front Genet. 2022;13:1057302. DOI:10.3389/fgene.2022.1057302
52. Wu X, Lv D, Cai C, et al. A TP53-Associated Immune Prognostic Signature for the Prediction of Overall Survival and Therapeutic Responses in Muscle-Invasive Bladder Cancer. Front Immunol. 2020;11:590618. DOI:10.3389/fimmu.2020.590618
53. Li H, Lu H, Cui W, et al. A TP53-based immune prognostic model for muscle-invasive bladder cancer. Aging (Albany NY). 2020;13(2):1929-46. DOI:10.18632/aging.202150
54. Lyu Q, Lin A, Cao M, et al. Alterations in TP53 Are a Potential Biomarker of Bladder Cancer Patients Who Benefit From Immune Checkpoint Inhibition. Cancer Control. 2020;27(1):1073274820976665. DOI:10.1177/1073274820976665
55. Ciccarese C, Massari F, Blanca A, et al. Tp53 and its potential therapeutic role as a target in bladder cancer. Expert Opin Ther Targets. 2017;21(4):401-14. DOI:10.1080/14728222.2017.1297798
56. Шкурлатовская К.М., Орлова А.С., Силина Е.В., и др. Молекулярно-генетические механизмы мастоцитоза. Патологическая физиология и экспериментальная терапия. 2019;63(3):127-33 [Shkurlatovskaia KM, Orlova AS, Silina EV, et al. Molecular and genetic mechanisms mastocytosis. Patologicheskaya Fiziologiya i Eksperimentalnaya terapiya (Pathological Physiology and Experimental Therapy). 2019;63(3):127-33 (in Russian)]. DOI:10.25557/0031-2991.2019.03.127-133
57. Wang Z, Shang J, Li Z, et al. PIK3CA Is Regulated by CUX1, Promotes Cell Growth and Metastasis in Bladder Cancer via Activating Epithelial-Mesenchymal Transition. Front Oncol. 2020;10:536072. DOI:10.3389/fonc.2020.536072
58. Platt FM, Hurst CD, Taylor CF, et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res. 2009;15(19):6008-17. DOI:10.1158/1078-0432.CCR-09-0898
59. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A. 2008;105(7):2652-7. DOI:10.1073/pnas.0712169105
60. Lopez-Knowles E, Hernandez S, Malats N, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006;66(15):7401-4. DOI:10.1158/0008-5472.CAN-06-1182
61. Ousati Ashtiani Z, Mehrsai AR, Pourmand MR, Pourmand GR. High Resolution Melting Analysis for Rapid Detection of PIK3CA Gene Mutations in Bladder Cancer: A Mutated Target for Cancer Therapy. Urol J. 2018;15(1):26-31. DOI:10.22037/uj.v0i0.3987
62. Duenas M, Martínez-Fernández M, García-Escudero R, et al. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors. Mol Carcinog. 2015;54(7):566-76. DOI:10.1002/mc.22125
63. Shuman L, Pham J, Wildermuth T, et al. Urothelium-Specific Expression of Mutationally Activated PIK3CA Initiates Early Lesions of Noninvasive Bladder Cancer. Am J Pathol. 2023;193(12):2133-43. DOI:10.1016/j.ajpath.2023.07.001
64. McPherson V, Reardon B, Bhayankara A, et al. A phase 2 trial of buparlisib in patients with platinum-resistant metastatic urothelial carcinoma. Cancer. 2020;126(20):4532-44. DOI:10.1002/cncr.33071
65. Wang L, Sustic T, Oliveira R, et al. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma. Eur Urol. 2017;71(6):858-62. DOI:10.1016/j.eururo.2017.01.021
66. Hyman DM, Tran B, Paz-Ares L, et al. Combined PIK3CA and FGFR Inhibition With Alpelisib and Infigratinib in Patients With PIK3CA-Mutant Solid Tumors, With or Without FGFR Alterations. JCO Precis Oncol. 2019;3:1-13. DOI:10.1200/PO.19.00221
67. Borcoman E, De La Rochere P, Richer W, et al. Inhibition of PI3K pathway increases immune infiltrate in muscle-invasive bladder cancer. Oncoimmunology. 2019;8(5):e1581556. DOI:10.1080/2162402X.2019.1581556
68. Liu M, Zhang Y, Jian Y, et al. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis. 2024;15(1):90. DOI:10.1038/s41419-024-06454-7
69. Селиванова Л.С., Волганова К.С., Абросимов А.Ю. Мутации промотора теломеразной обратной транскриптазы (TERT) в опухолях эндокринных органов человека: биологическое и прогностическое значение. Архив патологии. 2016;78(1):62-9 [Selivanova LS, Volganova KS, Abrosimov AIu. Telomerase reverse transcriptase (TERT) promoter mutations in the tumors of human endocrine organs: Biological and prognostic value. Archive of Pathology. 2016;78(1):62-9 (in Russian)]. DOI:10.17116/patol201678162-68
70. Рубцова М.П., Василькова Д.П., Малявко А.Н., и др. Функции теломеразы: удлинение теломер и не только. Acta Naturae. 2012;4(2):44-61 [Rubtsova MP, Vasilkova DP, Malyavko AN, et al. Funktsii telomerazy: udlinenie telomer i ne tolko. Acta Naturae. 2012;4(2):44-61 (in Russian)]. EDN:PBFZAN
71. El Azzouzi M, El Ahanidi H, Hassan I, et al. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol. 2024;42(12):451.e19-29. DOI:10.1016/j.urolonc.2024.06.024
72. Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol. 2023;133:56-75. DOI:10.1016/j.humpath.2022.06.005
73. Gupta S, Vanderbilt CM, Lin YT, et al. A Pan-Cancer Study of Somatic TERT Promoter Mutations and Amplification in 30,773 Tumors Profiled by Clinical Genomic Sequencing. J Mol Diagn. 2021;23(2):253-63. DOI:10.1016/j.jmoldx.2020.11.003
74. Agarwal N, Rinaldetti S, Cheikh BB, et al. TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proc Natl Acad Sci USA. 2021;118(38):e2102423118. DOI:10.1073/pnas.2102423118
75. Huang DS, Wang Z, He XJ, et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer. 2015;51(8):969-76. DOI:10.1016/j.ejca.2015.03.010
76. Tran L, Xiao JF, Agarwal N, et al. Advances in bladder cancer biology and therapy. Nat Rev Cancer. 2021;21(2):104-21. DOI:10.1038/s41568-020-00313-1
77. Allory Y, Beukers W, Sagrera A, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: High frequency across stages, detection in urine, and lack of association with outcome. Eur Urol. 2014;65:360-6. DOI:10.1016/j.eururo.2013.08.052
78. Rachakonda PS, Hosen I, de Verdier PJ, et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA. 2013;110:17426-31. DOI:10.1073/pnas.1310522110
79. Batista R, Lima L, Vinagre J, et al. TERT Promoter Mutation as a Potential Predictive Biomarker in BCG-Treated Bladder Cancer Patients. Int J Mol Sci. 2020;21(3):947. DOI:10.3390/ijms21030947
80. Shuai H, Duan X, Zhou JJ, et al. Effect of the TERT mutation on the prognosis of patients with urothelial carcinoma: a systematic review and meta-analysis. BMC Urol. 2023;23(1):177. DOI:10.1186/s12894-023-01349-9
81. Wan S, Liu X, Hua W, et al. The role of telomerase reverse transcriptase (TERT) promoter mutations in prognosis in bladder cancer. Bioengineered. 2021;12(1):1495-504. DOI:10.1080/21655979.2021.1915725
82. Descotes F, Kara N, Decaussin-Petrucci M, et al. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br J Cancer. 2017;117:583-7. DOI:10.1038/bjc.2017.210
83. Kovacs A, Sükösd F, Kuthi L, et al. Novel method for detecting frequent TERT promoter hot spot mutations in bladder cancer samples. Clin Exp Med. 2024;24(1):192. DOI:10.1007/s10238-024-01464-3
84. Zvereva M, Pisarev E, Hosen I, et al. Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. Int J Mol Sci. 2020;21(17):6034. DOI:10.3390/ijms21176034
85. Agarwal N, Zhou Q, Arya D, et al. AST-487 Inhibits RET Kinase Driven TERT Expression in Bladder Cancer. Int J Mol Sci. 2022;23(18):10819. DOI:10.3390/ijms231810819
86. Saitoh H, Mori K, Kudoh S, et al. BCG effects on telomerase activity in bladder cancer cell lines. Int J Clin Oncol. 2002;7(3):165-70. DOI:10.1007/s101470200024
87. Kailashiya C, Sharma HB, Kailashiya J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine. 2017;35(43):5768-75. DOI:10.1016/j.vaccine.2017.09.011
________________________________________________
2. Malignant tumors in Russia in 2023 (morbidity and mortality). Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2024 (in Russian).
3. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404-23. DOI:10.3322/caac.21631
4. Liao Y, Tang H, Wang M, et al. The potential diagnosis role of TP53 mutation in advanced bladder cancer: A meta-analysis. J Clin Lab Anal. 2021;35(5). DOI:10.1002/jcla.23765
5. Dinney CP, McConkey DJ, Millikan RE, et al. Focus on bladder cancer. Cancer Cell. 2004;6(2):111-6. DOI:10.1016/j.ccr.2004.08.002
6. Ma J, Roumiguie M, Hayashi T, et al. Long-term Recurrence Rates of Low-risk Non-muscle-invasive Bladder Cancer-How Long Is Cystoscopic Surveillance Necessary? Eur Urol Focus. 2024;10(1):189-96. DOI:10.1016/j.euf.2023.06.012
7. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015;15(1):25-41. DOI:10.1038/nrc3817
8. Henry NL, MacVicar G, Hussain M. Management of patients with muscle-invasive and metastatic bladder cancer. Oncology (Williston Park). 2005;19(10):1333-42.
9. Meshcheryakov IA, Kryukov KA, Mitin NP, et al. Molecular subtypes of urothelial carcinomas of the bladder in young patients. Journal of Siberian Medical Sciences. 2021;(3):82-104 (in Russian). DOI:10.31549/2542-1174-2021-3-82-104
10. Lindgren D, Frigyesi A, Gudjonsson S, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 2010;70(9):3463-72. DOI:10.1158/0008-5472.CAN-09-4213
11. Sjödahl G, Lauss M, Lövgren K, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18(12):3377-86. DOI:10.1158/1078-0432.CCR-12-0077-T
12. Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA. 2014;111(8):3110-5. DOI:10.1073/pnas.1318376111
13. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315-22. DOI:10.1038/nature12965
14. Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 2018;174(4):1033. DOI:10.1016/j.cell.2018.07.036
15. Kamoun A, de Reyniès A, Allory Y, et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol. 2020;77(4):420-33. DOI:10.1016/j.eururo.2019.09.006
16. Nickerson ML, Dancik GM, Im KM, et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res. 2014;20(18):4935-48. DOI:10.1158/1078-0432.CCR-14-0330
17. Ross JS, Wang K, Al-Rohil RN, et al. Advanced Urothelial Carcinoma: Next-Generation Sequencing Reveals Diverse Genomic Alterations and Targets of Therapy. Mod Pathology. 2014;27:271-80. DOI:10.1038/modpathol.2013.135
18. Pietzak EJ, Bagrodia A, Cha EK, et al. Next-Generation Sequencing of Non-muscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur Urol. 2017;72:952-9. DOI:10.1016/j.eururo.2017.05.032
19. Ward DG, Gordon NS, Boucher RH, et al. Targeted Deep Sequencing of Urothelial Bladder Cancers and Associated Urinary DNA: A 23-Gene Panel with Utility for Non-Invasive Diagnosis and Risk Stratification. BJU Int. 2019;124(3):532-44. DOI:10.1111/bju.14808
20. Garczyk S, Ortiz-Brüchle N, Schneider U, et al. Next-Generation Sequencing Reveals Potential Predictive Biomarkers and Targets of Therapy for Urothelial Carcinoma in Situ of the Urinary Bladder. Am J Pathol. 2020;190:323-32. DOI:10.1016/j.ajpath.2019.10.004
21. Shao Y, Hu X, Yang Z, et al. Prognostic Factors of Non-Muscle Invasive Bladder Cancer: A Study Based on Next-Generation Sequencing. Cancer Cell Int. 2021;21(1):23. DOI:10.1186/s12935-020-01731-9
22. Carrasco R, Ingelmo-Torres M, Gomez A, et al. Prognostic implication of TERT promoter mutation and circulating tumor cells in muscle-invasive bladder cancer. World J Urol. 2022;40(8):2033-9. DOI:10.1007/s00345-022-04061-9
23. Gridneva YV, Khmelkova DN, Volkova MI, et al. Experience of Next-Generation Sequencing in urothelial carcinoma specimens with panel for 523 genes. Modern Oncology. 2024;26(4):489-94 (in Russian). DOI:10.26442/18151434.2024.4.203018
24. Myszka A, Ciesla M, Siekierzynska A, et al. Predictive Molecular Biomarkers of Bladder Cancer Identified by Next-Generation Sequencing-Preliminary Data. J Clin Med. 2024;13(24):7701. DOI:10.3390/jcm13247701
25. McConkey DJ, Choi W. Molecular Subtypes of Bladder Cancer. Curr Oncol Rep. 2018;20(10):77. DOI:10.1007/s11912-018-0727-5
26. Bakkar AA, Wallerand H, Radvanyi F, et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 2003;63(23):8108-12.
27. Neuzillet Y, Paoletti X, Ouerhani S, et al. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer. PLoS One. 2012;7(12):e48993. DOI:10.1371/journal.pone.0048993
28. Mikhaylenko DS, Sergienko SA, Kuznetsova EB, et al. FGFR3, TERT, ТР53 mutations and the FGFR3 gene expression in bladder cancer as prognostic markers. Cancer Urology. 2021;17(1):89-100 (in Russian). DOI:10.17650/1726-9776-2021-17-1-89-100
29. Hafner C, Di Martino E, Pitt E, et al. FGFR3 mutation affects cell growth, apoptosis and attachment in keratinocytes. Exp Cell Res. 2010;316(12):2008-16. DOI:10.1016/j.yexcr.2010.04.021
30. Benjamin DJ, Mar N, Rezazadeh Kalebasty A. Immunotherapy With Checkpoint Inhibitors in FGFR-Altered Urothelial Carcinoma. Clin Med Insights Oncol. 2022;16:11795549221126252. DOI:10.1177/11795549221126252
31. Dienstmann R, Rodon J, Prat A, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol. 2014;25(3):552-63. DOI:10.1093/annonc/mdt419
32. van Rhijn BW, van Tilborg AA, Lurkin I, et al. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur J Hum Genet. 2002;10(12):819-24. DOI:10.1038/sj.ejhg.5200883
33. Lott S, Wang M, Zhang S, et al. FGFR3 and TP53 mutation analysis in inverted urothelial papilloma: incidence and etiological considerations. Modern Pathology. 2009;22(5):627-32. DOI:10.1038/modpathol.2009.28
34. Bernard-Pierrot I, Brams A, Dunois-Larde C, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis. 2006;27(4):740-7. DOI:10.1093/carcin/bgi290
35. Oliushina EM, Zavalishina LE, Alekseenok EYu, et al. Investigation of the mutational status of the FGFR3 gene in urothelial bladder carcinoma. Archive of Pathology. 2023;85(2):5-12 (in Russian). DOI:10.17116/patol2023850215
36. van Oers JM, Adam C, Denzinger S, et al. Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder. Int J Cancer. 2006;119(5):1212-5. DOI:10.1002/ijc.21958
37. Tomlinson DC, Baldo O, Harnden P, Knowles MA. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol. 2007;213(1):91-8. DOI:10.1002/path.2207
38. Kwon W-A. FGFR Inhibitors in Urothelial Cancer: From Scientific Rationale to Clinical Development. J Korean Med Sci. 2024;39(43):e320. DOI:10.3346/jkms.2024.39.e320
39. Peng M, Chu X, Peng Y, et al. Targeted therapies in bladder cancer: signaling pathways, applications, and challenges. MedComm (2020). 2023;4(6):e455. DOI:10.1002/mco2.455
40. Li R, Linscott J, Catto JWF, et al. FGFR Inhibition in Urothelial Carcinoma. European Urology. 2025;87(2):110-22. DOI:10.1016/j.eururo.2024.09.012
41. Ascione CM, Napolitano F, Esposito D, et al. Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treat Rev. 2023;115:102530. DOI:10.1016/j.ctrv.2023.102530
42. Catto JWF, Tran B, Roupret M, et al. Erdafitinib in BCG-treated high-risk non-muscle-invasive bladder cancer. Ann Oncol. 2024;35(1):98-106. DOI:10.1016/j.annonc.2023.09.3116
43. Benjamin DJ, Hsu R. Frontiers. Treatment approaches for FGFR-altered urothelial carcinoma: targeted therapies and immunotherapy. Front Immunol. 2023;14:1258388. DOI:10.3389/fimmu.2023.1258388
44. Julian Chavarriaga M. AUA 2024: First Safety and Efficacy Results of the TAR-210 Erdafitinib Intravesical Delivery System in Patients with Non-muscle-Invasive Bladder Cancer with Sel ect FGFR Alterations. American Urological Association (AUA) Annual Meeting, San Antonio, 2024.
45. Jing W, Wang G, Cui Z, et al. FGFR3 Destabilizes PD-L1 via NEDD4 to Control T-cell-Mediated Bladder Cancer Immune Surveillance. Cancer Res. 2022;82(1):114-29. DOI:10.1158/0008-5472.CAN-21-2362
46. Siefker-Radtke AO, Powles T, Moreno V, et al. Erdafitinib (ERDA) vs ERDA plus cetrelimab (ERDA+CET) for patients (pts) with metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): Final results fr om the phase 2 Norse study. J Clin Oncol. 2023;41(16_suppl). DOI:10.1200/JCO.2023.41.16_suppl.4504
47. Tully KH, Jütte H, Wirtz RM, et al. Prognostic Role of FGFR Alterations and FGFR mRNA Expression in Metastatic Urothelial Cancer Undergoing Checkpoint Inhibitor Therapy. Urology. 2021;157:93-101. DOI:10.1016/j.urology.2021.05.055
48. Sweis RF, Gajate P, Morales-Barrera R, et al. Rogaratinib Plus Atezolizumab in Cisplatin-Ineligible Patients With FGFR RNA-Overexpressing Urothelial Cancer. JAMA Oncology. 2024;10(11):1565-70. DOI:10.1001/jamaoncol.2024.3900
49. Liu H-P, Jia W, Kadeerhan G, et al. Individualized prognosis stratification in muscle invasive bladder cancer: A pairwise TP53-derived transcriptome signature. Transl Oncol. 2023;29:101629. DOI:10.1016/j.tranon.2023.101629
50. Rocca V, Blandino G, D’Antona L, et al. Li-Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers. 2022;14(15):3664. DOI:10.3390/cancers14153664
51. Tao Y, Li X, Zhang Y, et al. TP53-related signature for predicting prognosis and tumor microenvironment characteristics in bladder cancer: A multi-omics study. Front Genet. 2022;13:1057302. DOI:10.3389/fgene.2022.1057302
52. Wu X, Lv D, Cai C, et al. A TP53-Associated Immune Prognostic Signature for the Prediction of Overall Survival and Therapeutic Responses in Muscle-Invasive Bladder Cancer. Front Immunol. 2020;11:590618. DOI:10.3389/fimmu.2020.590618
53. Li H, Lu H, Cui W, et al. A TP53-based immune prognostic model for muscle-invasive bladder cancer. Aging (Albany NY). 2020;13(2):1929-46. DOI:10.18632/aging.202150
54. Lyu Q, Lin A, Cao M, et al. Alterations in TP53 Are a Potential Biomarker of Bladder Cancer Patients Who Benefit From Immune Checkpoint Inhibition. Cancer Control. 2020;27(1):1073274820976665. DOI:10.1177/1073274820976665
55. Ciccarese C, Massari F, Blanca A, et al. Tp53 and its potential therapeutic role as a target in bladder cancer. Expert Opin Ther Targets. 2017;21(4):401-14. DOI:10.1080/14728222.2017.1297798
56. Shkurlatovskaia KM, Orlova AS, Silina EV, et al. Molecular and genetic mechanisms mastocytosis. Patologicheskaya Fiziologiya i Eksperimentalnaya terapiya (Pathological Physiology and Experimental Therapy). 2019;63(3):127-33 (in Russian). DOI:10.25557/0031-2991.2019.03.127-133
57. Wang Z, Shang J, Li Z, et al. PIK3CA Is Regulated by CUX1, Promotes Cell Growth and Metastasis in Bladder Cancer via Activating Epithelial-Mesenchymal Transition. Front Oncol. 2020;10:536072. DOI:10.3389/fonc.2020.536072
58. Platt FM, Hurst CD, Taylor CF, et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res. 2009;15(19):6008-17. DOI:10.1158/1078-0432.CCR-09-0898
59. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A. 2008;105(7):2652-7. DOI:10.1073/pnas.0712169105
60. Lopez-Knowles E, Hernandez S, Malats N, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006;66(15):7401-4. DOI:10.1158/0008-5472.CAN-06-1182
61. Ousati Ashtiani Z, Mehrsai AR, Pourmand MR, Pourmand GR. High Resolution Melting Analysis for Rapid Detection of PIK3CA Gene Mutations in Bladder Cancer: A Mutated Target for Cancer Therapy. Urol J. 2018;15(1):26-31. DOI:10.22037/uj.v0i0.3987
62. Duenas M, Martínez-Fernández M, García-Escudero R, et al. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors. Mol Carcinog. 2015;54(7):566-76. DOI:10.1002/mc.22125
63. Shuman L, Pham J, Wildermuth T, et al. Urothelium-Specific Expression of Mutationally Activated PIK3CA Initiates Early Lesions of Noninvasive Bladder Cancer. Am J Pathol. 2023;193(12):2133-43. DOI:10.1016/j.ajpath.2023.07.001
64. McPherson V, Reardon B, Bhayankara A, et al. A phase 2 trial of buparlisib in patients with platinum-resistant metastatic urothelial carcinoma. Cancer. 2020;126(20):4532-44. DOI:10.1002/cncr.33071
65. Wang L, Sustic T, Oliveira R, et al. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma. Eur Urol. 2017;71(6):858-62. DOI:10.1016/j.eururo.2017.01.021
66. Hyman DM, Tran B, Paz-Ares L, et al. Combined PIK3CA and FGFR Inhibition With Alpelisib and Infigratinib in Patients With PIK3CA-Mutant Solid Tumors, With or Without FGFR Alterations. JCO Precis Oncol. 2019;3:1-13. DOI:10.1200/PO.19.00221
67. Borcoman E, De La Rochere P, Richer W, et al. Inhibition of PI3K pathway increases immune infiltrate in muscle-invasive bladder cancer. Oncoimmunology. 2019;8(5):e1581556. DOI:10.1080/2162402X.2019.1581556
68. Liu M, Zhang Y, Jian Y, et al. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis. 2024;15(1):90. DOI:10.1038/s41419-024-06454-7
69. Selivanova LS, Volganova KS, Abrosimov AIu. Telomerase reverse transcriptase (TERT) promoter mutations in the tumors of human endocrine organs: Biological and prognostic value. Archive of Pathology. 2016;78(1):62-9 (in Russian). DOI:10.17116/patol201678162-68
70. Rubtsova MP, Vasilkova DP, Malyavko AN, et al. Funktsii telomerazy: udlinenie telomer i ne tolko. Acta Naturae. 2012;4(2):44-61 (in Russian). EDN:PBFZAN
71. El Azzouzi M, El Ahanidi H, Hassan I, et al. Comprehensive behavioural assessment of TERT in bladder cancer. Urol Oncol. 2024;42(12):451.e19-29. DOI:10.1016/j.urolonc.2024.06.024
72. Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol. 2023;133:56-75. DOI:10.1016/j.humpath.2022.06.005
73. Gupta S, Vanderbilt CM, Lin YT, et al. A Pan-Cancer Study of Somatic TERT Promoter Mutations and Amplification in 30,773 Tumors Profiled by Clinical Genomic Sequencing. J Mol Diagn. 2021;23(2):253-63. DOI:10.1016/j.jmoldx.2020.11.003
74. Agarwal N, Rinaldetti S, Cheikh BB, et al. TRIM28 is a transcriptional activator of the mutant TERT promoter in human bladder cancer. Proc Natl Acad Sci USA. 2021;118(38):e2102423118. DOI:10.1073/pnas.2102423118
75. Huang DS, Wang Z, He XJ, et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer. 2015;51(8):969-76. DOI:10.1016/j.ejca.2015.03.010
76. Tran L, Xiao JF, Agarwal N, et al. Advances in bladder cancer biology and therapy. Nat Rev Cancer. 2021;21(2):104-21. DOI:10.1038/s41568-020-00313-1
77. Allory Y, Beukers W, Sagrera A, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: High frequency across stages, detection in urine, and lack of association with outcome. Eur Urol. 2014;65:360-6. DOI:10.1016/j.eururo.2013.08.052
78. Rachakonda PS, Hosen I, de Verdier PJ, et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA. 2013;110:17426-31. DOI:10.1073/pnas.1310522110
79. Batista R, Lima L, Vinagre J, et al. TERT Promoter Mutation as a Potential Predictive Biomarker in BCG-Treated Bladder Cancer Patients. Int J Mol Sci. 2020;21(3):947. DOI:10.3390/ijms21030947
80. Shuai H, Duan X, Zhou JJ, et al. Effect of the TERT mutation on the prognosis of patients with urothelial carcinoma: a systematic review and meta-analysis. BMC Urol. 2023;23(1):177. DOI:10.1186/s12894-023-01349-9
81. Wan S, Liu X, Hua W, et al. The role of telomerase reverse transcriptase (TERT) promoter mutations in prognosis in bladder cancer. Bioengineered. 2021;12(1):1495-504. DOI:10.1080/21655979.2021.1915725
82. Descotes F, Kara N, Decaussin-Petrucci M, et al. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br J Cancer. 2017;117:583-7. DOI:10.1038/bjc.2017.210
83. Kovacs A, Sükösd F, Kuthi L, et al. Novel method for detecting frequent TERT promoter hot spot mutations in bladder cancer samples. Clin Exp Med. 2024;24(1):192. DOI:10.1007/s10238-024-01464-3
84. Zvereva M, Pisarev E, Hosen I, et al. Activating Telomerase TERT Promoter Mutations and Their Application for the Detection of Bladder Cancer. Int J Mol Sci. 2020;21(17):6034. DOI:10.3390/ijms21176034
85. Agarwal N, Zhou Q, Arya D, et al. AST-487 Inhibits RET Kinase Driven TERT Expression in Bladder Cancer. Int J Mol Sci. 2022;23(18):10819. DOI:10.3390/ijms231810819
86. Saitoh H, Mori K, Kudoh S, et al. BCG effects on telomerase activity in bladder cancer cell lines. Int J Clin Oncol. 2002;7(3):165-70. DOI:10.1007/s101470200024
87. Kailashiya C, Sharma HB, Kailashiya J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine. 2017;35(43):5768-75. DOI:10.1016/j.vaccine.2017.09.011
Авторы
Л.Н. Любченко*1,2, К.М. Чернавина3, К.А. Казарян4, И.Н. Заборский5, О.Б. Карякин5
1ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия;
2Научно-исследовательский институт урологии и интервенционной радиологии им. Н.А. Лопаткина – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия;
3Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия;
4ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы», Москва, Россия;
5Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Обнинск, Россия
*clingen@mail.ru
1National Medical Research Radiological Centre, Moscow, Russia;
2Lopatkin Scientific Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Centre, Moscow, Russia;
3Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre, Moscow, Russia;
4Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia;
5Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Centre, Obninsk, Russia
*clingen@mail.ru
1ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия;
2Научно-исследовательский институт урологии и интервенционной радиологии им. Н.А. Лопаткина – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия;
3Московский научно-исследовательский онкологический институт им. П.А. Герцена – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Москва, Россия;
4ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы», Москва, Россия;
5Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Обнинск, Россия
*clingen@mail.ru
________________________________________________
1National Medical Research Radiological Centre, Moscow, Russia;
2Lopatkin Scientific Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Centre, Moscow, Russia;
3Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre, Moscow, Russia;
4Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia;
5Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Centre, Obninsk, Russia
*clingen@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
