Цель исследования. Изучить адипокиново-цитокиновый профиль адипоцитов эпикардиальной (ЭЖТ) и подкожной жировой ткани (ПЖТ), сыворотки крови, во взаимосвязи с площадью висцеральной жировой ткани (ВЖТ), биохимическими и клиническими характеристиками больных ишемической болезнью сердца (ИБС). Материалы и методы. Обследовано 84 пациентов (70 мужчин и 14 женщин) с ИБС. По факту наличия висцерального ожирения (ВО) пациенты разделены на две группы. У пациентов с ВО проводился забор адипоцитов ЭЖТ и ПЖТ с последующим культивированием и оценкой адипокиновой и провоспалительной активности. Проводилось определение показателей углеводного и липидного обменов, адипокинового и провоспалительного статусов в сыворотке крови. Результаты и обсуждение. Установлено, что адипокиново-цитокиновые профили адипоцитов ЭЖТ и ПЖТ различаются между собой. Адипоциты ЭЖТ при ИБС на фоне ВО характеризуются увеличением содержания интерлейкина-1 (ИЛ-1), фактора некроза опухоли-α (ФНО-α), лептин-адипонектинового отношения и снижением содержания протективных факторов: адипонектина и антивоспалительного цитокина ИЛ-10. В то же время адипоциты ПЖТ характеризовались снижением концентрации растворимого рецептора к лептину и более выраженной лептинорезистентностью, а увеличение уровней провоспалительных цитокинов компенсировалось возрастанием концентрации ИЛ-10. Наличие ВО ассоциировалось с многососудистым поражением коронарного русла, мультифокальным атеросклерозом, инсулинорезистентностью, атерогенной дислипидемией, дисбалансом адипокинов и маркеров воспаления. Так, величина площади ВЖТ определяла более высокие значения концентрации лептина, ФНО-α в адипоцитах и сыворотке крови, показателей липидного и углеводного обмена и более низкое содержание растворимого рецептора к лептину. Заключение. Таким образом, при ИБС на фоне ВО состояние адипоцитов ЭЖТ характеризуется как «метаболическое воспаление» и может свидетельствовать о непосредственном вовлечении адипоцитов в патогенез ИБС за счет формирования адипокинового дисбаланса и активации провоспалительных реакций.
Aim. To study adipokine-cytokine profile of epicardial adipocytes (EAT) and subcutaneous adipose tissue (SAT) in conjunction with the area of visceral adipose tissue (VAT), biochemical and clinical characteristics of patients with coronary heart disease. Materials and methods. Examined 84 patients (70 men and 14 women) with coronary artery disease. In fact the presence of visceral obesity (VO) the patients were divided into two groups. Patients VO the sampling of adipocytes of EAT and SAT, with subsequent cultivation and evaluation of adipokine and provospalitelna activity. Carried out the determination of carbohydrate and lipid metabolism, adipokine and pro-inflammatory status in the blood serum. Results and discussion. It was found that adipokine-cytokine profile of adipocytes of EAT and SAT differ. Adipocytes art of the disease on the background characterized by an increase IL-1, TNF-α, leptin-adiponectin relationships and a decrease in the content of protective factors: adiponectin and anti-inflammatory cytokine IL-10. While the SAT adipocytes was characterized by a decrease in the concentration of soluble receptor for leptin and the more pronounced leptinresistance, and the increase in proinflammatory cytokines was offset by the increase in the concentration of IL-10. The presence associated with multi-vessel coronary bed lesion, multifocal atherosclerosis, insulin resistance, atherogenic dyslipidemia, an imbalance of adipokines and markers of inflammation. So the value of the square VAT determined higher concentrations of leptin, TNF-α in adipocytes and serum, lipid and carbohydrate metabolism and a lower content of soluble receptor for leptin. Conclusion. Thus, the disease on the background of the status of the adipocytes of EAT characterized as a "metabolic inflammation", and may indicate the direct involvement of adipocytes in the pathogenesis of coronary artery disease, due to the formation of adipokine imbalance and the activation of proinflammatory reactions.
1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095-2128. doi: 10.1016/S0140-6736(12)61728-0
2. Roth GA, Forouzanfar MH, Moran AE, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;372(14):1333-1341. doi: 10.1056/NEJMoa1406656
3. Lainscak M, Blue L, Clark AL, et al. Self-care management of heart failure: practical recommendations from the Patient Care Committee of the Heart Fail-ure Association of the European Society of Cardiology. Eur J Heart Failure. 2011;13(2):115-126. doi: 10.1093/eurjhf/hfq219
4. Veilleux A, Cote JA, Blouin K, et al. Glucocorticoid-induced androgen inactivation by aldo-keto reductase 1C2 promotes adipogenesis in human preadipocytes. Am J Physiol Endocrinol Metab. 2012;302:E941-941. doi: 10.1007/978-1-4614-0965-6_5
5. Silva AA, Carmo JM, Dubinion J, et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285(23):17271-17276. doi: 10.1074/jbc.R110.113175
6. Bergman RN, Kim SP, Catalano KJ, et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity (Silver Spring). 2006;14(Suppl 1):16S-19S. doi: 10.1038/oby.2006.277
7. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2:536-543. doi: 10.1038/ncpcardio0319
8. Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation. 2011;124.(24):e837-e841. doi: 10.1161/circulationaha.111.077602
9. Sjoestrom L. A computed tomography based multicompartment body composition technique and anthropometric predictions of lean body mass, total and subcutaneous adipose tissue. Int J Obes. 1991;15:19-30.
10. Carswell KA, Lee M, Fried SK. Culture of Isolated Human Adipocytes and Isolated Adipose Tissue. Methods Mol Biol. 2012;806:203-214. doi: 10.1007/978-1-61779-367-7_14
11. Suga H, Matsumoto D, Inoue K et al. Numerical Measurement of Viable and Nonviable Adipocytes and Other Cellular Components in Aspirated Fat Tissue. Plast Reconstr Surg. 2008;122(1):103-114. doi: 10.1097/PRS.0b013e31817742ed
12. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412-419. doi: 10.1007/BF00280883
13. Misra M, Miller KK, Almazan C, еt al. Hormonal and body composition predictors of soluble leptin receptor, leptin, and free leptin index in adolescent girls with anorexia nervosa and controls and relation to insulin sensitivity. J Clin Endocrinol Metab. 2004;89(7):3486-3495. doi: 10.1210/jc.2003-032251
14. Отт А.В., Чумакова Г.А., Веселовская Н.Г. Значение лептинорезистентности в развитии различных метаболических фенотипов ожирения. Российский кардиологический журнал. 2016;(4):4-18 [Ott AV, Chumakova GA, Veselovskaya NG. The importance of leptin resistance in the development of various metabolic obesity phenotypes. Rossiiskii Kardiologicheskii Zhurnal. 2016;(4):4-18 (In Russ)]. doi: 10.15829/1560-4071-2016-4-14-18
15. Mahabadi AA, Massaro JM, Rosito GA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: The Framingham Heart Study. Eur Heart J. 2009;30:850-856. doi: 10.1093/eurheartj/ehn573
16. Jeong JW, Jeong MH, Yun KH, et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J. 2007;71:536-539. doi: 10.1253/circj.71.536
17. Donoso MA, Muñoz-Calvo MT, Barrios V et al. Increased leptin/adiponectin ratio and free leptin index are markers of insulin resistance in obese girls during pubertal development. Hormone Res Paediatr. 2013;80(5):363-370. doi: 10.1159/000356046
18. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135-1143.
19. Chia S, Quadan M, Newton R, et al. Intra-arterial tumor necrosis factor-alpha impairs endothelial-dependent dilatation in humans. Arterioscler Thromb Vasc Biol. 2003;23:695-701.
20. Lima MM, Pareja JC, Alegre SM, et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers. Obesity (Silver Spring). 2013;21(3):E182-189. doi: 10.1002/oby.20030
________________________________________________
1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095-2128. doi: 10.1016/S0140-6736(12)61728-0
2. Roth GA, Forouzanfar MH, Moran AE, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;372(14):1333-1341. doi: 10.1056/NEJMoa1406656
3. Lainscak M, Blue L, Clark AL, et al. Self-care management of heart failure: practical recommendations from the Patient Care Committee of the Heart Fail-ure Association of the European Society of Cardiology. Eur J Heart Failure. 2011;13(2):115-126. doi: 10.1093/eurjhf/hfq219
4. Veilleux A, Cote JA, Blouin K, et al. Glucocorticoid-induced androgen inactivation by aldo-keto reductase 1C2 promotes adipogenesis in human preadipocytes. Am J Physiol Endocrinol Metab. 2012;302:E941-941. doi: 10.1007/978-1-4614-0965-6_5
5. Silva AA, Carmo JM, Dubinion J, et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285(23):17271-17276. doi: 10.1074/jbc.R110.113175
6. Bergman RN, Kim SP, Catalano KJ, et al. Why visceral fat is bad: mechanisms of the metabolic syndrome. Obesity (Silver Spring). 2006;14(Suppl 1):16S-19S. doi: 10.1038/oby.2006.277
7. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2:536-543. doi: 10.1038/ncpcardio0319
8. Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation. 2011;124.(24):e837-e841. doi: 10.1161/circulationaha.111.077602
9. Sjoestrom L. A computed tomography based multicompartment body composition technique and anthropometric predictions of lean body mass, total and subcutaneous adipose tissue. Int J Obes. 1991;15:19-30.
10. Carswell KA, Lee M, Fried SK. Culture of Isolated Human Adipocytes and Isolated Adipose Tissue. Methods Mol Biol. 2012;806:203-214. doi: 10.1007/978-1-61779-367-7_14
11. Suga H, Matsumoto D, Inoue K et al. Numerical Measurement of Viable and Nonviable Adipocytes and Other Cellular Components in Aspirated Fat Tissue. Plast Reconstr Surg. 2008;122(1):103-114. doi: 10.1097/PRS.0b013e31817742ed
12. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412-419. doi: 10.1007/BF00280883
13. Misra M, Miller KK, Almazan C, еt al. Hormonal and body composition predictors of soluble leptin receptor, leptin, and free leptin index in adolescent girls with anorexia nervosa and controls and relation to insulin sensitivity. J Clin Endocrinol Metab. 2004;89(7):3486-3495. doi: 10.1210/jc.2003-032251
14. [Ott AV, Chumakova GA, Veselovskaya NG. The importance of leptin resistance in the development of various metabolic obesity phenotypes. Rossiiskii Kardiologicheskii Zhurnal. 2016;(4):4-18 (In Russ)]. doi: 10.15829/1560-4071-2016-4-14-18
15. Mahabadi AA, Massaro JM, Rosito GA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: The Framingham Heart Study. Eur Heart J. 2009;30:850-856. doi: 10.1093/eurheartj/ehn573
16. Jeong JW, Jeong MH, Yun KH, et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J. 2007;71:536-539. doi: 10.1253/circj.71.536
17. Donoso MA, Muñoz-Calvo MT, Barrios V et al. Increased leptin/adiponectin ratio and free leptin index are markers of insulin resistance in obese girls during pubertal development. Hormone Res Paediatr. 2013;80(5):363-370. doi: 10.1159/000356046
18. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135-1143.
19. Chia S, Quadan M, Newton R, et al. Intra-arterial tumor necrosis factor-alpha impairs endothelial-dependent dilatation in humans. Arterioscler Thromb Vasc Biol. 2003;23:695-701.
20. Lima MM, Pareja JC, Alegre SM, et al. Visceral fat resection in humans: effect on insulin sensitivity, beta-cell function, adipokines, and inflammatory markers. Obesity (Silver Spring). 2013;21(3):E182-189. doi: 10.1002/oby.20030
1 ФГБНУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Россия;
2 ФГБОУ ВО «Кемеровский государственный медицинский университет» Минздрава России, Кемерово, Россия;
3 ФГБОУ ВО «Сибирский государственный медицинский университет» Минздрава России, Томск, Россия;
4 ГАУЗ КО «Кемеровская областная клиническая больница им. С.В. Беляева», областной диабетологический центр, Кемерово, Россия
1 Research Institute for Complex Issues of Cardiovascular Disease, Kemerovo, Russia;
2 Siberian State Medical University, Ministry of Health of Russia, Tomsk, Russia;
3 Kemerovo State Medical Academy, Ministry of Health of Russia, Kemerovo, Russia;
4 S.V. Belyaev Kemerovo Regional Clinical Hospital, Regional Diabetological Center, Kemerovo, Russia