Цель исследования – оценить соответствие данных электрокардиографических (ЭКГ) и эхокардиографического методов диагностики гипертрофии миокарда левого желудочка (ГЛЖ) с итогами посмертных измерений массы миокарда левого желудочка (ММЛЖ). Материалы и методы. Проанализированы данные прижизненных антропометрических [возраст, рост, масса тела, индекс массы тела (ИМТ)], инструментальных [ЭКГ в 12 отведениях, ЭхоКГ], а также посмертных (прямое измерение ММЛЖ при аутопсии) исследований у 15 пациентов общетерапевтического стационара. При анализе ЭКГ рассматривались как традиционные ЭКГ-критерии ГЛЖ, так и собственные авторские критерии, разработанные на основе двух моделей (регрессионной и дискриминантной), включающие вольтажные, половые и возрастные показатели. Эхокардиографически рассчитывались показатели ММЛЖ (по формуле ASE) и индекс массы миокарда левого желудочка (ИММЛЖ). Посмертное измерение ММЛЖ проводилось по стандартной методике. Учитывая отсутствие единого конвенционального патоморфологического критерия ГЛЖ, рассмотрены три разных варианта патологоанатомических критериев ГЛЖ: критерий K. Bove и соавт. (КВ); критерий А.М. Лифшица, так называемый желудочковый индекс (ЖИ), и критерий Р. Casale – индекс массы миокарда левого желудочка при аутопсии (ИММЛЖа). Результаты и обсуждение. Отмечено, что традиционные ЭКГ-критерии ГЛЖ обнаруживают высокую специфичность (71–100%) при любом варианте патологоанатомической оценки, но при этом характеризуются крайне низкой чувствительностью (0–37,5%). Их общая диагностическая точность выше при использовании патологоанатомических критериев K. Bove и А.М. Лившица (40–66,7%) и ниже – при использовании критерия P. Casale (13,3–40%). Авторские ЭКГ-критерии обладают меньшей специфичностью (50–100%) при большей чувствительности (54–75%), при этом их диагностическая точность остается высокой и мало зависит от метода патологоанатомической оценки ГЛЖ (60–66,7%). Заключение. Традиционно используемые ЭКГ-критерии ГЛЖ ожидаемо показали низкую чувствительность при всех вариантах патологоанатомических референтных оценок. Между тем, авторские ЭКГ-критерии, совмещающие в себе наиболее чувствительные к ГЛЖ электрокардиографические характеристики с половыми и возрастными показателями обследованных пациентов, превосходят традиционные ЭКГ-критерии в чувствительности и диагностической точности.
Ключевые слова: гипертрофия левого желудочка, чувствительность, специфичность, диагностическая точность, электрокардиография, эхокардиография, аутопсия, площадь поверхности тела.
________________________________________________
The aim of the study is to assess the compliance of the results of electrocardiographic (ECG) and echocardiographic diagnostic methods of hypertrophy of left ventricular myocardium (LVH) with the postmortem finding of measurement of left ventricular myocardium mass (LVM). Materials and methods. We examined the data of intravital study of anthropometric measurements [age, height, weight, body mass index (BMI)], instrumental results [12-lead ECG, EchoCG], as well as the postmortem finding (direct measurement of LVM at autopsy) in 15 patients of general therapy department. While analyzing ECG we studied as conventional ECG criteria for the detection of LVH as well as the author's own criteria based on two models (regression and discriminant analyses), including voltage, sex and age criteria. Echocardiographic diagnostic method used to calculate LVM (according to ASE formula) and left ventricular mass index (LVMI). Postmortem finding of LVM was carried out according to the standard measurement method. According to the absence of the single conventional postmortem finding of measurement of LVH, we considered three different variants of the postmortem finding of LVH: the criterion of K. Bove et al. (CB); the criterion of A.M. Lifshitz, also called ventricular index (VI) and the criterion of P. Casale – the left ventricular mass index at autopsy (LVMI). Results and discussion. Conventional ECG criteria for the detection of LVH showed high specificity (71–100%) using any method of the postmortem finding of measurement, but were characterized by extremely low sensitivity (0–37.5%). Their overall diagnostic accuracy was higher on using K. Bove or A.M. Lifshitz criteria (40–66.7%) and low – on using the criterion of P. Casale (13.3–40%). The author's ECG criteria were less specificity (50–100%) and had higher sensitivity (54–75%), and their diagnostic accuracy remained higher and showed small dependence on the method of the postmortem finding of measurement of LVH (60–66.7%). Conclusion. Usually the ECG criteria to diagnose left ventricular hypertrophy were expectedly showed low sensitivity using any method of the postmortem finding of measurement. Meanwhile, the author's own ECG criteria associated with the most sensitive electrocardiographic characteristics to LVH and sex and age-specific indexes of the examined patients exceeded the conventional ECG criteria in sensitivity and diagnostic accuracy.
Keywords: hypertrophy of left ventricular myocardium, sensitivity, specificity, diagnostic accuracy, electrocardiography, echocardiography, autopsy, total body surface area.
Список литературы
1. Kalbfleisch JD, Prentice RL. Competing risks: the statistical analysis of failure time data. New York: John Wiley & Sons, 1980:163-88.
2. Oikarinen L, Karvonen M. Electrocardiographic assessment of left ventricular hypertrophy with time-voltage QRS and QRST-wave areas. J Hum Hypertens. 2004;18(1):33-40. doi:10.1038/sj.jhh.1001631
3. Koren MJ, Savage DD, Casale PN. Changes in left ventricular mass predict risk in essential hypertension. Circulation. 1990;82(11):29.
4. Devereux RB, Agabiti-Rosei E, Dahlof B. Regression of left ventricular hypertrophy as a surrogate end-point for morbid events in hypertension treatment trials. J Hypertens Suppl. 1996;14(2):S95-S101.
5. Levy D, Garrison RJ, Savage DD. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561-6. doi: 10.1056/NEJM199005313222203
6. Gubner R, Ungerleider HE. Electrocardiographic criteria of left ventricular hypertrophy. Arch Intern Med. 1943;72:196-206.
7. Korner PI, Jennings GL. Assessment of prevalence of left ventricular hypertrophy in hypertension. J Hypertens. 1998;16:715-23.
8. Casale PN, Devereux RB, Alonso DR. Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings. Circulation. 1987;75(3):565-72. doi.org/10.1161/01. CIR.75.3.565
9. Molloy TJ, Okin PM, Devereux RB. Electrocardiographic detection of left ventricular hypertrophy by the simple QRS voltage-duration product. J Am Coll Cardiol. 1992;20:1180-6. doi.org/10.1016/0735-1097(92)90376-X
10. Sundstrom J, Lind L, Arnlov J. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation. 2001;103(19):2346-51. doi.org/10.1161/01.CIR.103.19.2346
11. Солнцев В.Н., Богомолов С.Н., Куликов А.Н. Возможности повышения чувствительности традиционных электрокардиографических критериев гипертрофии миокарда левого желудочка при использовании характеристической кривой. Вестник Российской Военно-медицинской академии. 2016;56(4):51-7 [Solntsev VN, Bogomolov SN, Kulikov AN. The possibility of increasing the sensitivity of traditional ECG criteria of left ventricle hypertrophy by the use of ROC-analysis. Vestnik of Russian Military medical Academy. 2016;56(4):51-7 (In Russ)].
12. Troy BL, Pombo J, Rackley CE. Measurement of left ventricular wall thickness and mass by echocardiography. Circulation. 1972;45:602-11. doi.org/10.1161/01.CIR.45.3.602
13. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man: Anatomic validation of the method. Circulation. 1977;55:613-8. doi.org/10.1161/01.CIR.55.4.613
14. Devereux RB, Alonso DR, Lutas EM. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;47: 450-8. doi.org/10.1016/0002-9149(86)90771-X
15. Schiller NB, Shah PM, Crawford M. Recommendations for quantitation of the left ventricle by two-dimentional echocardiography. J Am Soc Echocardiogr. 1989;2:358-67. PMID: 2698218
16. Hurst's the heart. Eds. V. Fuster, R.W. Alexander, R.A. O'Rourke, et al. 10th ed. 2001;1:1488 p.
17. Armstrong AC, Gidding S, Gjesdal O, Wu C, et al. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging. 2012;5:837-48. doi: 10.1016/j. jcmg.2012.06.003
18. Park SH, Shub C, Nobrega TP. Two-dimensional echocardiographic calculation of left ventricular mass as recommended by the American Society of Echocardiography: correlation with autopsy and M-mode echocardiography. J Am Soc Echocardiogr. 1996;9:119-28. PMID: 8849607
19. McGavigan AD, Dunn FG, Goodfield NE. Secondary harmonic imaging overestimates left ventricular mass compared to fundamental echocardiography. Eur J Echocardiogr. 2003;4:178-81.
20. De Las Fuentes L, Spence KE, Davila-Roman VG, Waggoner AD. Are normative values for LV geometry and mass based on fundamental imaging valid with use of harmonic imaging? J Am Soc Echocardiogr. 2010;23:1317-22. doi: 10.1016/j.echo.2010.08.014
21. DuBois DA, DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Int Med. 1916;17:863-71.
22. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317(17):1098. doi: 10.1056/NEJM198710223171717
23. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39. doi: 10.1016/j.echo.2014.10.003
24. Mor-Avi V, Sugeng L, Weinert L. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation. 2004;110(13):1814-8. doi.org/10.1161/01.CIR.0000142670.65971.5F
25. Celebi AS, Yalcin H, Yalcin F. Current cardiac imaging techniques for detection of left ventricular mass. Cardiovasc Ultrasound. 2010;8:19. doi: 10.1186/1476-7120-8-19
26. Саидова М.А., Стукалова О.В., Синицын В.Е. Трехмерная эхокардиография в оценке массы миокарда левого желудочка: сопоставление с результатами одно-, двухмерной эхокардиографии и магнитно-резонансной томографии. Терапевтический архив. 2005;77(4):11-4 [Saidova MA, Stukalova OV, Sinitsin VE. Three-dimentional echocardiography in assessment of left ventricular myocardial mass: comparison of the results of one-dimentional, two-dimentional echocardiography and mr tomography. Ter Arch. 2005;77(4):11-4 (In Russ)].
27. Hancock EW, Deal BJ, Mirvis DM, Okin P. AHA/ACCF/HRS Recommendations for the Standartization and Interpretation of the Electrocardiogram: Electrocardiogram Changes Associated With Cardiac Chamber Hypertrophy A Scientific Statement From the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009;53(11):992-1002. doi: 10.1016/j.jacc.2008.12.015
28. Лившиц А.М. Классификация и критерии гипертрофии сердца по данным раздельного взвешивания его частей. Архив патологии. 1981;43(6):24-30 [Livshits AM. Classification and criteria of hypertrophy of the heart according to the separate weighing of its parts. Archives of pathology. 1981;43(6):24-30 (In Russ.)].
29. Bove KE, Rowlands DT, Scott RC. Observations on the assessment of cardiac hypertrophy utilizing a chamber partition technique. Circulation. 1966;33:558-68. doi.org/10.1161/01. CIR.33.4.558
30. Murtagh B, Hammill SC, Gertz MA, et al. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol. 2005;95:535-7. doi.org/10.1016/j.amjcard. 2004.10.028
31. Rapezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120:1203-12. doi: 10.1161/CIRCULATIONAHA. 108. 843334
32. Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies. Statistician. 1983;32:307-17.
33. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476): 307-10.
________________________________________________
1. Kalbfleisch JD, Prentice RL. Competing risks: the statistical analysis of failure time data. New York: John Wiley & Sons, 1980:163-88.
2. Oikarinen L, Karvonen M. Electrocardiographic assessment of left ventricular hypertrophy with time-voltage QRS and QRST-wave areas. J Hum Hypertens. 2004;18(1):33-40. doi:10.1038/sj.jhh.1001631
3. Koren MJ, Savage DD, Casale PN. Changes in left ventricular mass predict risk in essential hypertension. Circulation. 1990;82(11):29.
4. Devereux RB, Agabiti-Rosei E, Dahlof B. Regression of left ventricular hypertrophy as a surrogate end-point for morbid events in hypertension treatment trials. J Hypertens Suppl. 1996;14(2):S95-S101.
5. Levy D, Garrison RJ, Savage DD. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561-6. doi: 10.1056/NEJM199005313222203
6. Gubner R, Ungerleider HE. Electrocardiographic criteria of left ventricular hypertrophy. Arch Intern Med. 1943;72:196-206.
7. Korner PI, Jennings GL. Assessment of prevalence of left ventricular hypertrophy in hypertension. J Hypertens. 1998;16:715-23.
8. Casale PN, Devereux RB, Alonso DR. Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings. Circulation. 1987;75(3):565-72. doi.org/10.1161/01. CIR.75.3.565
9. Molloy TJ, Okin PM, Devereux RB. Electrocardiographic detection of left ventricular hypertrophy by the simple QRS voltage-duration product. J Am Coll Cardiol. 1992;20:1180-6. doi.org/10.1016/0735-1097(92)90376-X
10. Sundstrom J, Lind L, Arnlov J. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation. 2001;103(19):2346-51. doi.org/10.1161/01.CIR.103.19.2346
11. [Solntsev VN, Bogomolov SN, Kulikov AN. The possibility of increasing the sensitivity of traditional ECG criteria of left ventricle hypertrophy by the use of ROC-analysis. Vestnik of Russian Military medical Academy. 2016;56(4):51-7 (In Russ)].
12. Troy BL, Pombo J, Rackley CE. Measurement of left ventricular wall thickness and mass by echocardiography. Circulation. 1972;45:602-11. doi.org/10.1161/01.CIR.45.3.602
13. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man: Anatomic validation of the method. Circulation. 1977;55:613-8. doi.org/10.1161/01.CIR.55.4.613
14. Devereux RB, Alonso DR, Lutas EM. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;47: 450-8. doi.org/10.1016/0002-9149(86)90771-X
15. Schiller NB, Shah PM, Crawford M. Recommendations for quantitation of the left ventricle by two-dimentional echocardiography. J Am Soc Echocardiogr. 1989;2:358-67. PMID: 2698218
16. Hurst's the heart. Eds. V. Fuster, R.W. Alexander, R.A. O'Rourke, et al. 10th ed. 2001;1:1488 p.
17. Armstrong AC, Gidding S, Gjesdal O, Wu C, et al. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging. 2012;5:837-48. doi: 10.1016/j. jcmg.2012.06.003
18. Park SH, Shub C, Nobrega TP. Two-dimensional echocardiographic calculation of left ventricular mass as recommended by the American Society of Echocardiography: correlation with autopsy and M-mode echocardiography. J Am Soc Echocardiogr. 1996;9:119-28. PMID: 8849607
19. McGavigan AD, Dunn FG, Goodfield NE. Secondary harmonic imaging overestimates left ventricular mass compared to fundamental echocardiography. Eur J Echocardiogr. 2003;4:178-81.
20. De Las Fuentes L, Spence KE, Davila-Roman VG, Waggoner AD. Are normative values for LV geometry and mass based on fundamental imaging valid with use of harmonic imaging? J Am Soc Echocardiogr. 2010;23:1317-22. doi: 10.1016/j.echo.2010.08.014
21. DuBois DA, DuBois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Int Med. 1916;17:863-71.
22. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317(17):1098. doi: 10.1056/NEJM198710223171717
23. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39. doi: 10.1016/j.echo.2014.10.003
24. Mor-Avi V, Sugeng L, Weinert L. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation. 2004;110(13):1814-8. doi.org/10.1161/01.CIR.0000142670.65971.5F
25. Celebi AS, Yalcin H, Yalcin F. Current cardiac imaging techniques for detection of left ventricular mass. Cardiovasc Ultrasound. 2010;8:19. doi: 10.1186/1476-7120-8-19
26. [Saidova MA, Stukalova OV, Sinitsin VE. Three-dimentional echocardiography in assessment of left ventricular myocardial mass: comparison of the results of one-dimentional, two-dimentional echocardiography and mr tomography. Ter Arch. 2005;77(4):11-4 (In Russ)].
27. Hancock EW, Deal BJ, Mirvis DM, Okin P. AHA/ACCF/HRS Recommendations for the Standartization and Interpretation of the Electrocardiogram: Electrocardiogram Changes Associated With Cardiac Chamber Hypertrophy A Scientific Statement From the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009;53(11):992-1002. doi: 10.1016/j.jacc.2008.12.015
28. [Livshits AM. Classification and criteria of hypertrophy of the heart according to the separate weighing of its parts. Archives of pathology. 1981;43(6):24-30 (In Russ.)].
29. Bove KE, Rowlands DT, Scott RC. Observations on the assessment of cardiac hypertrophy utilizing a chamber partition technique. Circulation. 1966;33:558-68. doi.org/10.1161/01. CIR.33.4.558
30. Murtagh B, Hammill SC, Gertz MA, et al. Electrocardiographic findings in primary systemic amyloidosis and biopsy-proven cardiac involvement. Am J Cardiol. 2005;95:535-7. doi.org/10.1016/j.amjcard. 2004.10.028
31. Rapezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120:1203-12. doi: 10.1161/CIRCULATIONAHA. 108. 843334
32. Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies. Statistician. 1983;32:307-17.
33. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476): 307-10.
1 ФГБВОУ ВО «Военно-медицинская академия им. С.М. Кирова» МО РФ, Санкт-Петербург, Россия;
2 ФГБОУ ВО «ПСПбГМУ им. акад. И.П. Павлова» Минздрава России, Санкт-Петербург, Россия;
3 ФГБУ «НМИЦ им. В.А. Алмазова», Минздрава России, Санкт-Петербург, Россия
1 Military Medical Academy, St. Petersburg, Russia;
2 Pavlov Medical University, St. Petersburg, Russia;
3 Almazov Federal Medical Research Centre, St. Petersburg, Russia