Концепция контроля хронической обструктивной болезни легких как инструмент принятия решения и оптимизации базисной терапии в реальной клинической практике
Концепция контроля хронической обструктивной болезни легких как инструмент принятия решения и оптимизации базисной терапии в реальной клинической практике
Авдеев С.Н., Айсанов З.Р., Белевский А.С. и др. Концепция контроля хронической обструктивной болезни легких как инструмент принятия решения и оптимизации базисной терапии в реальной клинической практике. Терапевтический архив. 2020; 92 (1): 89–95. DOI: 10.26442/00403660.2020.01.000489
________________________________________________
Avdeev S.N., Aisanov Z.R., Belevsky A.S., et al. The concept of chronic obstructive pulmonary disease clinical control as a decision-making tool in real clinical practice for optimizing of basic pharmacotherapy. Therapeutic Archive. 2020; 92 (1): 89–95. DOI: 10.26442/00403660.2020.01.000489
Концепция контроля хронической обструктивной болезни легких как инструмент принятия решения и оптимизации базисной терапии в реальной клинической практике
Авдеев С.Н., Айсанов З.Р., Белевский А.С. и др. Концепция контроля хронической обструктивной болезни легких как инструмент принятия решения и оптимизации базисной терапии в реальной клинической практике. Терапевтический архив. 2020; 92 (1): 89–95. DOI: 10.26442/00403660.2020.01.000489
________________________________________________
Avdeev S.N., Aisanov Z.R., Belevsky A.S., et al. The concept of chronic obstructive pulmonary disease clinical control as a decision-making tool in real clinical practice for optimizing of basic pharmacotherapy. Therapeutic Archive. 2020; 92 (1): 89–95. DOI: 10.26442/00403660.2020.01.000489
Основными целями терапии хронической обструктивной болезни легких (ХОБЛ) является достижение клинической стабильности с наименьшим количеством симптомов и низким риском обострений. Предложенная концепция контроля ХОБЛ по аналогии с бронхиальной астмой пока недостаточно хорошо охарактеризована. Контроль ХОБЛ определяется как «долгосрочное поддержание клинической ситуации с низким воздействием симптомов на жизнь пациента и отсутствием обострений». Ситуация клинического контроля при ХОБЛ рассматривается как желательная и потенциально достижимая для большинства пациентов с ХОБЛ. Возможности фармакологической терапии ХОБЛ постоянно расширяются. Концепция контроля может быть полезна для принятия решения о лечении ХОБЛ для динамической корректировки объема терапии.
The main goals of COPD therapy are to achieve clinical stability with minimal clinical manifestations and low risk of relapse. The proposed COPD control concept by analogy with asthma has not been quite well characterized yet. COPD control is defined as "the long-term maintenance of a clinical situation with a low impact of symptoms on the patient’s life and absence of exacerbations." The situation of clinical control in COPD is considered desirable and potentially achievable for most patients with COPD. Pharmacotherapeutic options for COPD are constantly expanding. The control concept may be useful when the decision on treatment of COPD is made for dynamic adjustment of the therapy volume.
1. McDonald VM, Higgins I, Wood LG, et al. Multidimensional assessment and tailored interventions for COPD: respiratory utopia or common sense? Thorax. 2013;68:691-4. doi: 10.1136/thoraxjnl-2012-202646
2. Soler-Cataluna JJ, Alczar-Navarrete B, Miravitlles M. The concept of control of COPD in clinical practice. Int J Chron Obstruct Pulmon Dis. 2014;9:1397-405. doi: 10.2147/COPD.S71370
3. Soler-Cataluna J, Marzo M, Catalon P, Miralles C, Miravitlles M. Validation of clinical control in COPD as a new tool for optimizing treatment. Int J COPD. 2018:13:3719-31. doi: 10.2147/COPD.S178149
4. Aisanov Z, Avdeev S, Arkhipov V, et al. Russian guidelines for the management of COPD: algorithm of pharmacologic treatment. Int J COPD. 2018;13:183-7. doi: 10.2147/COPD.S153770
5. Miravitles M, Sliwinski P, Rhee CK, et al. Evaluation of criteria for clinical control in a prospective, international, multicenter study of patients with COPD. Respir Med. 2018;136:8-14. doi: 10.1016/ j.rmed.2018.01.019
6. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2019. Available at: http://www.goldcopd.org/
7. Rogliani P, Calzetta L, Braido F, et al. LABA/LAMA fixed-dose combinations in patients with COPD: a systematic review. Int J COPD. 2018;13:3115-30. doi: 10.2147/COPD.S170606
8. Watz H, Troosters T, Beeh KM, et al. ACTIVATE: the effect of aclidinium/formoterol on hyperinflation, exercise capacity, and physical activity in patients with COPD. Int J COPD. 2017 Aug 24;12:2545-58. doi: 10.2147/COPD.S143488
9. Hohlfeld JM, et al. Effect of lung deflation with indacaterol plus glycopyrronium on ventricular filling in patients with hyperinflation and COPD (CLAIM): a double-blind, randomised, crossover, placebo-controlled, single-centre trial. Lancet Respir Med. 2018 May;6(5):368-78. doi: 10.1016/S2213-2600(18)30054-7
10. Calverley P, Anzueto A, Carter K, et al. Tiotropium and olodaterol in the prevention of chronic obstructive pulmonary disease exacerbations DYNAGITO): a double-blind, randomised, parallel-group, active-controlled trial. Lancet Respir Med. 2018;6(5):337-44. doi: 10.1016/S2213-2600(18)30102-4
11. Wedzicha J, Decramer M, Ficker J, et al. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir Med. 2013;1:199-209. doi: 10.1016/S2213-2600(13)70115-2
12. Wedzicha JA, et al. Indacaterol–Glycopyrronium versus Salmeterol–Fluticasone for COPD. N Engl J Med. 2016:374(9):2222-34. doi: 10.1056/NEJMoa1516385
13. Anzueto AC, Vogelmeier K, Kostikas K, et al. The effect of indacaterol/glycopyrronium versus tiotropium or salmeterol/fluticasone on the prevention of clinically important deterioration in COPD. Int J COPD. 2017 May 4;12:1325-37. doi: 10.2147/COPD.S133307
14. Namba Y, Togo S, Tulafu M. Combination of glycopyrronium and indacaterol inhibits carbachol-induced ERK5 signal in fibrotic processes. Respir Research. 2017;18(1):46. doi: 10.1186/s12931-017-0529-6
15. Miravitlles M, Baek S, Vithlani V, et al. Optimal Bronchodilation for COPD Patients: Are All Long-Acting β₂-Agonist/Long-Acting Muscarinic Antagonists the Same? Tuberc Respir Dis. 2018;81:198-215. doi: 10.4046/trd.2018.0040
16. Ferguson G, Rabe K, Martinez F, et al. Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Respir Med. 2018;6:747-58. doi: 10.1016/S2213-2600(18)30327-8
17. Papi A, Vestbo J, Fabbri L, et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial. Lancet. 2018;391(10125):1076-84. doi: 10.1016/S0140-6736(18)30206-X
18. Singh D, Agusti A, Anzueto A, et al. Global Initiative for Chronic Obstructive Lung Disease Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: the GOLD science committee report 2019. Eur Respir J. 2019;53: (5).pii:1900164. doi: 10.1183/13993003.00164-2019
19. Yun J, Lamb A, Chase R, et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018;46:2037-47. doi: 10.1016/j.jaci.2018.04.010
20. Avdeev S, Aisanov Z, Arkhipov V, et al. Withdrawal of inhaled corticosteroids in COPD patients: rationale and algorithms. Int J COPD. 2019;14:1267-80. doi: 10.2147/COPD.S207775
21. Contoli M, Pauletti A, Rossi MR, et al. Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur Respir J. 2017;50(4): 1700451. doi: 10.1183/13993003.00451-2017
22. Horita N, Goto A, Shibata Y, et al. Long-acting muscarinic antagonist (LAMA) plus long-acting beta-agonist (LABA) versus LABA plus inhaled corticosteroid (ICS) for stable сhronic оbstructive рulmonary disease (COPD). Cochrane Database Syst Rev. 2017;(2). doi: 10.1002/ 14651858.CD012066 Pub 2
23. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Arch Broncoрneumol. 2017;53(3):128-49. doi: 10.1164/rccm.201701-0218PP
24. Lipson D, Barnhart B, Brealey N, et al. Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N Engl J Med. 2018;378:1671-80. doi: 10.1056/NEJMoa1713901
25. Suissa S, Ariel A. Triple therapy trials in COPD: a precision medicine opportunity. ERJ. 2018;52:1801848. doi: 10.1183/13993003.01848-2018
26. Vogelmeier C, Gaga M, Aalamian-Mattheis M, et al. Efficacy and safety of direct switch to indacaterol/glycopyrronium in patients with moderate COPD: the CRYSTAL open-label randomised trial. Respir Res. 2017;18:140. doi: 10.11 86/s12931-017-0622-x
27. Worth H, Buhl R, Criée CP, et al. GOLD 2017 treatment pathways in 'real life': An analysis of the DACCORD observational study. Respir Med. 2017 Oct;131: 77-84. doi: 10.1016/j.rmed.2017.08.008
28. Chapman KR, Hurst JR, Frent SM, et al. Long-Term Triple Therapy De-escalation to Indacaterol/Glycopyrronium in Patients with Chronic Obstructive Pulmonary Disease (SUNSET): A Randomized, Double-Blind, Triple-Dummy Clinical Trial. Am J Respir Crit Care Med. 2018;198(3):329-39. doi: 10.1164/rccm.201803-0405OC
________________________________________________
1. McDonald VM, Higgins I, Wood LG, et al. Multidimensional assessment and tailored interventions for COPD: respiratory utopia or common sense? Thorax. 2013;68:691-4. doi: 10.1136/thoraxjnl-2012-202646
2. Soler-Cataluna JJ, Alczar-Navarrete B, Miravitlles M. The concept of control of COPD in clinical practice. Int J Chron Obstruct Pulmon Dis. 2014;9:1397-405. doi: 10.2147/COPD.S71370
3. Soler-Cataluna J, Marzo M, Catalon P, Miralles C, Miravitlles M. Validation of clinical control in COPD as a new tool for optimizing treatment. Int J COPD. 2018:13:3719-31. doi: 10.2147/COPD.S178149
4. Aisanov Z, Avdeev S, Arkhipov V, et al. Russian guidelines for the management of COPD: algorithm of pharmacologic treatment. Int J COPD. 2018;13:183-7. doi: 10.2147/COPD.S153770
5. Miravitles M, Sliwinski P, Rhee CK, et al. Evaluation of criteria for clinical control in a prospective, international, multicenter study of patients with COPD. Respir Med. 2018;136:8-14. doi: 10.1016/ j.rmed.2018.01.019
6. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2019. Available at: http://www.goldcopd.org/
7. Rogliani P, Calzetta L, Braido F, et al. LABA/LAMA fixed-dose combinations in patients with COPD: a systematic review. Int J COPD. 2018;13:3115-30. doi: 10.2147/COPD.S170606
8. Watz H, Troosters T, Beeh KM, et al. ACTIVATE: the effect of aclidinium/formoterol on hyperinflation, exercise capacity, and physical activity in patients with COPD. Int J COPD. 2017 Aug 24;12:2545-58. doi: 10.2147/COPD.S143488
9. Hohlfeld JM, et al. Effect of lung deflation with indacaterol plus glycopyrronium on ventricular filling in patients with hyperinflation and COPD (CLAIM): a double-blind, randomised, crossover, placebo-controlled, single-centre trial. Lancet Respir Med. 2018 May;6(5):368-78. doi: 10.1016/S2213-2600(18)30054-7
10. Calverley P, Anzueto A, Carter K, et al. Tiotropium and olodaterol in the prevention of chronic obstructive pulmonary disease exacerbations DYNAGITO): a double-blind, randomised, parallel-group, active-controlled trial. Lancet Respir Med. 2018;6(5):337-44. doi: 10.1016/S2213-2600(18)30102-4
11. Wedzicha J, Decramer M, Ficker J, et al. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study. Lancet Respir Med. 2013;1:199-209. doi: 10.1016/S2213-2600(13)70115-2
12. Wedzicha JA, et al. Indacaterol–Glycopyrronium versus Salmeterol–Fluticasone for COPD. N Engl J Med. 2016:374(9):2222-34. doi: 10.1056/NEJMoa1516385
13. Anzueto AC, Vogelmeier K, Kostikas K, et al. The effect of indacaterol/glycopyrronium versus tiotropium or salmeterol/fluticasone on the prevention of clinically important deterioration in COPD. Int J COPD. 2017 May 4;12:1325-37. doi: 10.2147/COPD.S133307
14. Namba Y, Togo S, Tulafu M. Combination of glycopyrronium and indacaterol inhibits carbachol-induced ERK5 signal in fibrotic processes. Respir Research. 2017;18(1):46. doi: 10.1186/s12931-017-0529-6
15. Miravitlles M, Baek S, Vithlani V, et al. Optimal Bronchodilation for COPD Patients: Are All Long-Acting β₂-Agonist/Long-Acting Muscarinic Antagonists the Same? Tuberc Respir Dis. 2018;81:198-215. doi: 10.4046/trd.2018.0040
16. Ferguson G, Rabe K, Martinez F, et al. Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Respir Med. 2018;6:747-58. doi: 10.1016/S2213-2600(18)30327-8
17. Papi A, Vestbo J, Fabbri L, et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial. Lancet. 2018;391(10125):1076-84. doi: 10.1016/S0140-6736(18)30206-X
18. Singh D, Agusti A, Anzueto A, et al. Global Initiative for Chronic Obstructive Lung Disease Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: the GOLD science committee report 2019. Eur Respir J. 2019;53: (5).pii:1900164. doi: 10.1183/13993003.00164-2019
19. Yun J, Lamb A, Chase R, et al. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2018;46:2037-47. doi: 10.1016/j.jaci.2018.04.010
20. Avdeev S, Aisanov Z, Arkhipov V, et al. Withdrawal of inhaled corticosteroids in COPD patients: rationale and algorithms. Int J COPD. 2019;14:1267-80. doi: 10.2147/COPD.S207775
21. Contoli M, Pauletti A, Rossi MR, et al. Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur Respir J. 2017;50(4): 1700451. doi: 10.1183/13993003.00451-2017
22. Horita N, Goto A, Shibata Y, et al. Long-acting muscarinic antagonist (LAMA) plus long-acting beta-agonist (LABA) versus LABA plus inhaled corticosteroid (ICS) for stable сhronic оbstructive рulmonary disease (COPD). Cochrane Database Syst Rev. 2017;(2). doi: 10.1002/ 14651858.CD012066 Pub 2
23. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Arch Broncoрneumol. 2017;53(3):128-49. doi: 10.1164/rccm.201701-0218PP
24. Lipson D, Barnhart B, Brealey N, et al. Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N Engl J Med. 2018;378:1671-80. doi: 10.1056/NEJMoa1713901
25. Suissa S, Ariel A. Triple therapy trials in COPD: a precision medicine opportunity. ERJ. 2018;52:1801848. doi: 10.1183/13993003.01848-2018
26. Vogelmeier C, Gaga M, Aalamian-Mattheis M, et al. Efficacy and safety of direct switch to indacaterol/glycopyrronium in patients with moderate COPD: the CRYSTAL open-label randomised trial. Respir Res. 2017;18:140. doi: 10.11 86/s12931-017-0622-x
27. Worth H, Buhl R, Criée CP, et al. GOLD 2017 treatment pathways in 'real life': An analysis of the DACCORD observational study. Respir Med. 2017 Oct;131: 77-84. doi: 10.1016/j.rmed.2017.08.008
28. Chapman KR, Hurst JR, Frent SM, et al. Long-Term Triple Therapy De-escalation to Indacaterol/Glycopyrronium in Patients with Chronic Obstructive Pulmonary Disease (SUNSET): A Randomized, Double-Blind, Triple-Dummy Clinical Trial. Am J Respir Crit Care Med. 2018;198(3):329-39. doi: 10.1164/rccm.201803-0405OC
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» (РНИМУ им. Н.И. Пирогова) Минздрава России, Москва, Россия;
3 Институт респираторных исследований Insaf, Висбаден, Германия;
4 ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия;
5 ФГАОУ ВО «Российский университет дружбы народов» Министерства науки и высшего образования России, Москва, Россия;
6 ФГБОУ ВО «Южно-Уральский государственный медицинский университет» Минздрава России, Челябинск, Россия;
7 Университет Янины, Янина, Греция;
8 ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России, Екатеринбург, Россия;
9 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования», Москва, Россия;
10 НИИ пульмонологии ФДПО ГБОУ ВПО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» (ПСПбГМУ им. акад. И.П. Павлова) Минздрава России, Санкт-Петербург, Россия;
11 ФГБНУ «Центральный научно-исследовательский институт туберкулеза» (ФГБНУ «ЦНИИТ»), Москва, Россия
1 I.M. Sechenov First Moscow State Medical University (Sechenovskiy University), Moscow, Russia;
2 N.I. Pirogov Russian State National Research Medical University, Moscow, Russia;
3 Insaf Respiratory Research Institute, Wiesbaden, Germany;
4 Kazan State Medical University, Kazan, Russia;
5 Peoples' Friendship University of Russia, Moscow, Russia;
6 South Ural State Medical University, Chelyabinsk, Russia;
7 University of Ioannina School of Medicine, Ioannina, Greece;
8 Ural State Medical University, Ekaterinburg, Russia;
9 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
10 The 1 St. Petersburg Pavlov state medical university, Scientific research institute of pulmonology, Saint-Petersburg, Russia;
11 Federal Central Research Institute of Tuberculosis, Moscow, Russia