Изменения кишечной микробиоты как фактор риска развития дислипидемии, атеросклероза и роль пробиотиков в их профилактике
Изменения кишечной микробиоты как фактор риска развития дислипидемии, атеросклероза и роль пробиотиков в их профилактике
Ойноткинова О.Ш., Никонов Е.Л., Демидова Т.Ю. и др. Изменения кишечной микробиоты как фактор риска развития дислипидемии, атеросклероза и роль пробиотиков в их профилактике. Терапевтический архив. 2020; 92 (9): 94–101.
DOI: 10.26442/00403660.2020.09.000784
________________________________________________
Oynotkinova O.S., Nikonov E.L., Demidova T.Y., et al. Changes in the intestinal microbiota as a risk factor for dyslipidemia, atherosclerosis and the role of probiotics in their prevention. Therapeutic Archive. 2020; 92 (9): 94–101.
DOI: 10.26442/00403660.2020.09.000784
Изменения кишечной микробиоты как фактор риска развития дислипидемии, атеросклероза и роль пробиотиков в их профилактике
Ойноткинова О.Ш., Никонов Е.Л., Демидова Т.Ю. и др. Изменения кишечной микробиоты как фактор риска развития дислипидемии, атеросклероза и роль пробиотиков в их профилактике. Терапевтический архив. 2020; 92 (9): 94–101.
DOI: 10.26442/00403660.2020.09.000784
________________________________________________
Oynotkinova O.S., Nikonov E.L., Demidova T.Y., et al. Changes in the intestinal microbiota as a risk factor for dyslipidemia, atherosclerosis and the role of probiotics in their prevention. Therapeutic Archive. 2020; 92 (9): 94–101.
DOI: 10.26442/00403660.2020.09.000784
В обзоре представлен анализ исследований, посвященных роли кишечной микробиоты, микробиома в метаболизме липидов и развитии дислипидемии, атеросклероза и сердечно-сосудистых заболеваний. Показана роль кишечника как метаболического органа, имеющего многофакторную штаммовую эволюцию, участвующего в липидном метаболизме, холестериновом гомеостазе и энтерогепатической циркуляции. Рассматривается влияние микробного дисбаланса на развитие дислипидемии и атеросклероза. Особое внимание в обзоре уделено профилактической терапии гиполипидемическими пробиотиками. Показано, что применение пробиотиков с гиполипидемическими свойствами и состоящих из смеси таких штаммов, как Lactobacillus plantarum CECT7527, CET7528 и CECT7529, смеси штаммов Lactobacillus acidophilus La-5, Bifidobacterium lactis ВВ-12, Bifidobacterium animalis lactis ВВ-12, способствует снижению уровня холестерина липопротеидов низкой плотности, общего холестерина, триглицеридов, такие пробиотики безопасны и хорошо переносимы, могут применяться в качестве адъювантной немедикаментозной терапии в сочетании с гиполипидемическими препаратами при дислипидемии, мультифокальном атеросклерозе.
The review presents an analysis of studies on the role of the intestinal microbiota and microbiome in lipid metabolism and the development of dyslipidemia, atherosclerosis and cardiovascular diseases. The role of the intestine as a metabolic organ with a multifactorial strain evolution, involved in lipid metabolism, cholesterol homeostasis and enterohepatic circulation is shown. The influence of microbial imbalance on the development of dyslipidemia and atherosclerosis is considered. Special attention is paid to preventive therapy with hypolipidemic probiotics. It is shown that the use of probiotics with hypolipidemic properties and consisting of a mixture of such strains as Lactobacillus plantarum CECT7527, CET7528 and CECT7529, mixtures of Lactobacillus acidophilus La-5, Bifidobacterium lactis BB-12, Bifidobacterium animalis lactis BB-12 contribute to reducing the level of LDL-C, CCS, TG, are safe and well tolerated, can be used as an adjuvant non-drug therapy in combination with hypolipidemic drugs for dyslipidemia, multifocal atherosclerosis.
Keywords: gut microbiota, microbiome, metabolism, lipid metabolism, dyslipidemia, atherosclerosis, probiotic.
Список литературы
1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 Update: a report from the american heart association. Circulation. 2016;133:e38-e360. doi: 10.1161/cir.0000000000000350
2. Стратегические приоритеты Программы ВОЗ по сердечно-сосудистым заболеваниям. Обзор доклада ВОЗ, 2005 г. [Strategic priorities for the WHO Cardiovascular Disease Program. Revier of the 2005 WHO (In Russ.)].
3. The L. GBD 2017: A fragile world. Lancet (Lond. Engl.). 2018;392:1683. doi: 10.1016/S0140-6736(18)32858-7
4. Organization WH. Cardiovascular Disease. Availabe online: https://www.who.int/cardiovascular_diseases/about_cvd/en/ (accessed on 13 November 2019).
5. Francisco Abadia-Molina, et al. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related. Cardiovasc Dis Nut. 2020;12(3):605. doi: 0.3390/nu12030605
6. Lau K, Srivatsav V, Rizwan A, et al. Bridging the gap between gut microbial dysbiosis and cardiovascular diseases. Nutrients. 2017;9:E859. doi: 10.3390/nu9080859
7. Wang Z, Klipfell E, Bennett BJ, et al. Intestinal flora Phosphatidylcholine metabolism contributes to cardiovascular disease. Nature. 2011;472:57-63. doi: 10.1038/nature09922
8. Drosos I, Tavridou A, Kolios G. New aspects on the metabolic role of intestinal microbiota in the development of atherosclerosis. Metabolism. 2015;64:476-81. doi: 10.1016/j.metabol.2015.01.007
9. Gregory JC, BuffaJA, OrgE, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647-60. doi: 10.1074/jbc.M114.618249
10. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8:845. doi: 10.1038/s41467-017-00900-1
11. Kasahara K, Tanoue, T, Yamashita T, et al. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J Lipid Res. 2017;58:519-28. doi: 10.1194/jlr.M072165
12. Koopen AM, Groen AK, et al. Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk. Curr Opin Lipidol. 2016;27:615-22. doi: 10.1097/mol.0000000000000357
13. Anbazhagan AN, Priyamvada S, Priyadarshini M. Gut microbiota in vascular disease: therapeutic target? Curr Vasc Pharmacol. 2017;15:291-5. doi: 10.2174/15701611156661701050 95834
14. Santisteban MM, Qi Y, Zubcevic J, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2017;120:312-23. doi: 10.1161/circresaha.116.309006
15. Roy S, Trinchieri G. Microbiota: A key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17:271-85. doi: 10.1038/nrc.2017.13
16. Miele L, Giorgio V, Alberelli MA, et al. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr Cardiol Rep. 2015;17:120. doi: 10.1007/s11886-0150671-z
17. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576-85. doi: 10.1038/nm.3145
18. Kamo T, Akazawa H, Suda W, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12:e0174099. doi: 10.1371/journal.pone.0174099
19. Tang WH, KitaiT, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183-96. doi: 10.1161/circresaha.117.309715
20. Backhed F, Ley RE, Sonnenburg JL. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915-20. doi: 10.1126/science.1104816
21. D' Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta. 2015;451(Pt A):97-102. doi: 10.1016/j.cca.2015.01.003
22. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337-40. doi: 10.1016/j.cell.2016.01.013
23. Fuller M. Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis. Br J Nutr. 2012;108:238-46. doi: 10.1017/S0007114512002279
24. Cani PD, Delzenne NM. Involvement of the gut microbiota in the development of low grade in ammation associated with obesity: focus on this neglected partner. Acta Gastroenterol Belg. 2010;73:267-9. doi: 10.4161/gmic.19625
25. Carvalho BM, Guadagnini D, Tsukumo DM, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55:2823-34. doi: 10.1007/s00125-012-2648-4
26. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65-80. doi: 10.1053/j.gastro.2008.10.080
27. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65. doi: 10.1038/nature08821
28. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 13;486(7402):207-14. doi: 10.1038/nature11234
29. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174-80. doi: 10.1038/nature09944
30. Peterson DA, Frank DN, Pace NR, et al. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe. 2008 Jun 12;3(6):417-27. doi: 10.1016/j.chom.2008.05.001
31. Carneiro de Mur M. Nonalcoholic steatohepatitis. Clin Perspectiv Gastroenterol Hepatol. 2001;2:12-5.
32. Emoto T, Yamashita T, Kobayashi T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction y length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. 2017;32:39-46. doi: 10.1007/s00380-016-0841-y
33. Ойноткинова О.Ш., Никонов Е.Л., Гиоева И.З. Роль микробиоты кишечника в патогенезе дислипидемии и ассоциированных метаболических нарушений. Доказательная гастроэнтерология. 2017;6(2):29-34 [Oynotkinova OSh, Nikonov EL, GioivaI Z. The role of the gut microbiota in the pathogenesis of dyslipidemia and associated metabolic disorders. Evidence-Based Gastroenterology. 2017;6(2):29-34 (In Russ.)]. doi: 10.17116/dokgastro20176229-34
34. MacFarlane MR, Liang G, Engelking LJ, et al. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine. J Biol Chem. 2014 Jan 24;289(4):2148-56. doi: 10.1074/jbc.M113.524041
35. Brown JM, Hazen SL. Microbial modulation of cardiovascular diseases. Native Rev Microbiol. 2018;16:171-81. doi: 10.1038/nrmicro.2017.149
36. Bergeron N, Williams PT, Lamendella R, et al. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a metabolite of the intestinal microbiome associated with the risk of CVD. Br J Nutr. 2016;116:2020-9. doi: 10.1017/s0007114516004165
37. Li X, Shimizu Y, Kimura I. Gut microbial metabolite short-chain fatty acids and obesity. Biosci Microbiota Food Health. 2017;36(4):135-40. doi: 10.12938/bmfh.17-010. PMID: 29038768.
38. Battson ML, Lee DM, Weir TL, et al. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem. 2018;56:1-15. doi: 10.1016 / j.jnutbio.2017.12.010
39. Kiechl S, Egger G, Mayr M, et al. Chronic infections and the risk of carotid atherosclerosis: Prospective results from a large population study. Circulation. 2001;103:1064-70. doi: 10.1161/01.cir.103.8.1064
40. Harris K, Kassis A, Major G. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes. 2012:879151. doi: 10.1155/2012/879151
41. Neves AL, Coelho J, Couto L, et al. Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol. 2013;51:R51-R64. doi: 10.1530/JME-13-0079
42. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-74. doi: 10.1038/nature01323
43. Chacon MR, Lozano-Bartolome J, Portero-Otin M, et al. The gut mycobiome composition is linked to carotid atherosclerosis. Benef Microbes. 2017;9:1-14. doi: 10.3920/bm2017.002944
44. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499-511. doi: 10.1038/nri1391
45. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783-801. doi: 10.1016/j.cell.2006.02.015
46. Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9:535-42. doi: 10.1038/nri2587
47. Guzzo C, Ayer A, Basta S, et al. IL-27 enhances LPS-induced proinflammatory cytokine production via upregulation of TLR4 expression and signaling in human monocytes. J Immunol. 2012;188:864-73. doi: 10.4049/jimmunol.1101912
48. Bjorkbacka H, Kunjathoor VV, Moore KJ, et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med. 2004;10:416-21. doi: 10.1038/nm1008
49. Laman JD, Schoneveld AH, Moll FL, et al. Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am J Cardiol. 2002;90:119-23. doi: 10.1016/S0002-9149(02)02432-3
50. Karlsson FH, Fak F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gumetagenome. Nat Commun. 2012;3:1245. doi: 10.1038/ncomms2266
51. Philpott DJ, Sorbara MT, Robertson SJ, et al. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14:9-23. doi: 10.1038/nri3565
52. Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307:731-4. doi: 10.1126/science.1104911
53. Kanno S, Nishio H, Tanaka T, et al. Activation of an innate immune receptor, Nod1, accelerates atherogenesis in Apoe-/-mice. J Immunol. 2015;194:773-80. doi: 10.4049/jimmunol.1302841
54. Kamo T, Akazawa H, Suda W, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12(3):e0174099. doi: 10.1371/journal.pone.0174099
55. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183-96. doi: 10.1161/CIRCRESAHA.
117.309715
56. Lever M, George PM, Slow S, et al. Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: An observational study. PLoS ONE. 2014;9:e114969. doi: 10.1371/journal.pone.011496
57. Mafune A, Iwamoto T, Tsutsumi Y, et al. Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clin Exper Nephrol. 2016;20(5):731-9. doi: 10.1007/s10157-015-1207-у
58. Senthong V, Wang Z, Li XS, et al. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc. 2016;5(6):e002816. doi: 10.1161/JAHA.115.002816
59. Yu D, Shu XO, Rivera ES, et al. Urinary levels of trimethylamine-N-Oxide and incident coronary heart disease: a prospective investigation among urban Chinese adults. J Am Heart Assoc. 2019;8(1):e010606. doi: 10.1161/JAHA.118.010606
60. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circul Res. 2016;118(4):620-36. doi: 10.1161/CIRCRESAHA.115.306301
61. Liu Z, Li J, Liu H, et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease.
Atherosclerosis. 2019;284:121-8. doi: 10.1016/j.atherosclerosis.
2018.11.038
62. Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3(1):1245. doi: 10.1038/ncomms2266
63. Liu H, Yang C, Jing Y, et al. Ability of lactic acid bacteria isolated from mink to remove cholesterol: in vitro and in vivo studies. Can J Microbiol. 2013;59(8):563-9. doi: 10.1139/cjm-2013-0200
64. Li J, Lin S, Vanhoutte PM. Akkermansia muciniphilaprotects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in ApoE-/- mice. Circulation. 2016;133(24):2434-46. doi: 10.1161/ CIRCULATIONAHA.115.019645
65. Midtvedt T. Microbial bile acid transformation. Am J Clin Nutr. 1974;27:1341-7. doi: 10.1093/ajcn/27.11.1341
66. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physio Rev. 2009;89:147-91. doi: 10.1152/physrev.00010.2008
67. Ridlon JM, Harris SC, Bhowmik S, et al. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22-39. doi: 10.1080/19490976.2015.1127483
68. Hansson GK, Robertson AK, Soderberg-Naucler C. Inflammation and atherosclerosis. Ann Rev Pathol. 2006;1:297-329. doi: 10.1146/annurev.pathol.1.110304.100100
69. Wahlstrom A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41-50. doi: 10.1016/j.cmet.2016.05.005
70. Li T, Chiang JY. Bile acids as metabolic regulators. Curr Opin Gastroenterol. 2015;31:159-65. doi: 10.1097/mog.0000000000000156
71. Szeto FL, Reardon CA, Yoon D, et al. Vitamin D receptor signaling inhibits atherosclerosis in mice. Mol Endocrinol. 2012;26:1091-101. doi: 10.1210/me.2011-1329
72. Studer E, Zhou X, Zhao R, et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology. 2012;55:267-76. doi: 10.1002/hep.24681
73. Miura K, Ohnishi H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:7381-91. doi: 10.3748/wjg.v20.i23.7381
74. Fuentes MC, Lajo T, Carrión JM, Cuñé J. A randomized clinical trial evaluating a proprietary mixture of Lactobacillus plantarum strains for lowering cholesterol. Med J Nutrition Metab. 2016;9(2):125-35. doi: 10.3233/MNM-160065
75. Mukerji P, Roper JM, Stahl B, et al. Safety evaluation of AB-LIFE(®) (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem Toxicol [Internet]. 2016 Jun;92:117-28. doi: 10.1016/j.fct.2016.03.018
76. Roper JM, Stahl B, Smith AB, et al. Safety evaluation of AB-LIFE® (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem Toxicol. 2016 Jun;92:117-28. doi: 10.1016/j.fct.2016.03.018
77. Bosch M, Fuentes MC, Audivert S, et al. Lactobacillus plantarum CECT 7527, 7528 and 7529: Probiotic candidates to reduce cholesterol levels. J Sci Food Agric. 2014 Mar 15;94(4):803-9. doi: 10.1002/jsfa.6467
78. Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr. 2012 Nov;66(11):1234-41. doi: 10.1038/ejcn
79. Gilliland SE, Nelson CR, Maxwell C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol. 1985;49:377-81.
80. Liong MT, Shah NP. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci. 2005;88:55-66.
81. Pereira DIA, Gibson GR. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol. 2002 Sep;68(9):4689-93. doi: 10.1128/aem.68.9.4689-4693.2002
82. Agerholm-Larsen L, Bell ML, Grunwald GK, Astrup A. The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies. Eur J Clin Nutr. 2000. doi: 10.1038/ sj.ejcn.1601104
83. Junli Ma, Houkai Li. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front Pharmacol. 2018;9:1082. doi: 10.3389/fphar.2018.01082
________________________________________________
1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 Update: a report from the american heart association. Circulation. 2016;133:e38-e360. doi: 10.1161/cir.0000000000000350
2. Strategic priorities for the WHO Cardiovascular Disease Program. Revier of the 2005 WHO (In Russ.)
3. The L. GBD 2017: A fragile world. Lancet (Lond. Engl.). 2018;392:1683. doi: 10.1016/S0140-6736(18)32858-7
4. Organization WH. Cardiovascular Disease. Availabe online: https://www.who.int/cardiovascular_diseases/about_cvd/en/ (accessed on 13 November 2019).
5. Francisco Abadia-Molina, et al. The Gut Microbiota and Its Implication in the Development of Atherosclerosis and Related. Cardiovasc Dis Nut. 2020;12(3):605. doi: 0.3390/nu12030605
6. Lau K, Srivatsav V, Rizwan A, et al. Bridging the gap between gut microbial dysbiosis and cardiovascular diseases. Nutrients. 2017;9:E859. doi: 10.3390/nu9080859
7. Wang Z, Klipfell E, Bennett BJ, et al. Intestinal flora Phosphatidylcholine metabolism contributes to cardiovascular disease. Nature. 2011;472:57-63. doi: 10.1038/nature09922
8. Drosos I, Tavridou A, Kolios G. New aspects on the metabolic role of intestinal microbiota in the development of atherosclerosis. Metabolism. 2015;64:476-81. doi: 10.1016/j.metabol.2015.01.007
9. Gregory JC, BuffaJA, OrgE, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647-60. doi: 10.1074/jbc.M114.618249
10. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8:845. doi: 10.1038/s41467-017-00900-1
11. Kasahara K, Tanoue, T, Yamashita T, et al. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J Lipid Res. 2017;58:519-28. doi: 10.1194/jlr.M072165
12. Koopen AM, Groen AK, et al. Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk. Curr Opin Lipidol. 2016;27:615-22. doi: 10.1097/mol.0000000000000357
13. Anbazhagan AN, Priyamvada S, Priyadarshini M. Gut microbiota in vascular disease: therapeutic target? Curr Vasc Pharmacol. 2017;15:291-5. doi: 10.2174/15701611156661701050 95834
14. Santisteban MM, Qi Y, Zubcevic J, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2017;120:312-23. doi: 10.1161/circresaha.116.309006
15. Roy S, Trinchieri G. Microbiota: A key orchestrator of cancer therapy. Nat Rev Cancer. 2017;17:271-85. doi: 10.1038/nrc.2017.13
16. Miele L, Giorgio V, Alberelli MA, et al. Impact of gut microbiota on obesity, diabetes, and cardiovascular disease risk. Curr Cardiol Rep. 2015;17:120. doi: 10.1007/s11886-0150671-z
17. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576-85. doi: 10.1038/nm.3145
18. Kamo T, Akazawa H, Suda W, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12:e0174099. doi: 10.1371/journal.pone.0174099
19. Tang WH, KitaiT, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183-96. doi: 10.1161/circresaha.117.309715
20. Backhed F, Ley RE, Sonnenburg JL. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915-20. doi: 10.1126/science.1104816
21. D' Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta. 2015;451(Pt A):97-102. doi: 10.1016/j.cca.2015.01.003
22. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337-40. doi: 10.1016/j.cell.2016.01.013
23. Fuller M. Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis. Br J Nutr. 2012;108:238-46. doi: 10.1017/S0007114512002279
24. Cani PD, Delzenne NM. Involvement of the gut microbiota in the development of low grade in ammation associated with obesity: focus on this neglected partner. Acta Gastroenterol Belg. 2010;73:267-9. doi: 10.4161/gmic.19625
25. Carvalho BM, Guadagnini D, Tsukumo DM, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55:2823-34. doi: 10.1007/s00125-012-2648-4
26. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65-80. doi: 10.1053/j.gastro.2008.10.080
27. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59-65. doi: 10.1038/nature08821
28. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 13;486(7402):207-14. doi: 10.1038/nature11234
29. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174-80. doi: 10.1038/nature09944
30. Peterson DA, Frank DN, Pace NR, et al. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe. 2008 Jun 12;3(6):417-27. doi: 10.1016/j.chom.2008.05.001
31. Carneiro de Mur M. Nonalcoholic steatohepatitis. Clin Perspectiv Gastroenterol Hepatol. 2001;2:12-5.
32. Emoto T, Yamashita T, Kobayashi T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction y length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. 2017;32:39-46. doi: 10.1007/s00380-016-0841-y
33. Oynotkinova OSh, Nikonov EL, GioivaI Z. The role of the gut microbiota in the pathogenesis of dyslipidemia and associated metabolic disorders. Evidence-Based Gastroenterology. 2017;6(2):29-34 (In Russ.) doi: 10.17116/dokgastro20176229-34
34. MacFarlane MR, Liang G, Engelking LJ, et al. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine. J Biol Chem. 2014 Jan 24;289(4):2148-56. doi: 10.1074/jbc.M113.524041
35. Brown JM, Hazen SL. Microbial modulation of cardiovascular diseases. Native Rev Microbiol. 2018;16:171-81. doi: 10.1038/nrmicro.2017.149
36. Bergeron N, Williams PT, Lamendella R, et al. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a metabolite of the intestinal microbiome associated with the risk of CVD. Br J Nutr. 2016;116:2020-9. doi: 10.1017/s0007114516004165
37. Li X, Shimizu Y, Kimura I. Gut microbial metabolite short-chain fatty acids and obesity. Biosci Microbiota Food Health. 2017;36(4):135-40. doi: 10.12938/bmfh.17-010. PMID: 29038768.
38. Battson ML, Lee DM, Weir TL, et al. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem. 2018;56:1-15. doi: 10.1016 / j.jnutbio.2017.12.010
39. Kiechl S, Egger G, Mayr M, et al. Chronic infections and the risk of carotid atherosclerosis: Prospective results from a large population study. Circulation. 2001;103:1064-70. doi: 10.1161/01.cir.103.8.1064
40. Harris K, Kassis A, Major G. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes. 2012:879151. doi: 10.1155/2012/879151
41. Neves AL, Coelho J, Couto L, et al. Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol. 2013;51:R51-R64. doi: 10.1530/JME-13-0079
42. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-74. doi: 10.1038/nature01323
43. Chacon MR, Lozano-Bartolome J, Portero-Otin M, et al. The gut mycobiome composition is linked to carotid atherosclerosis. Benef Microbes. 2017;9:1-14. doi: 10.3920/bm2017.002944
44. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499-511. doi: 10.1038/nri1391
45. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783-801. doi: 10.1016/j.cell.2006.02.015
46. Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol. 2009;9:535-42. doi: 10.1038/nri2587
47. Guzzo C, Ayer A, Basta S, et al. IL-27 enhances LPS-induced proinflammatory cytokine production via upregulation of TLR4 expression and signaling in human monocytes. J Immunol. 2012;188:864-73. doi: 10.4049/jimmunol.1101912
48. Bjorkbacka H, Kunjathoor VV, Moore KJ, et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med. 2004;10:416-21. doi: 10.1038/nm1008
49. Laman JD, Schoneveld AH, Moll FL, et al. Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteries and its association with vulnerable plaques. Am J Cardiol. 2002;90:119-23. doi: 10.1016/S0002-9149(02)02432-3
50. Karlsson FH, Fak F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gumetagenome. Nat Commun. 2012;3:1245. doi: 10.1038/ncomms2266
51. Philpott DJ, Sorbara MT, Robertson SJ, et al. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14:9-23. doi: 10.1038/nri3565
52. Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307:731-4. doi: 10.1126/science.1104911
53. Kanno S, Nishio H, Tanaka T, et al. Activation of an innate immune receptor, Nod1, accelerates atherogenesis in Apoe-/-mice. J Immunol. 2015;194:773-80. doi: 10.4049/jimmunol.1302841
54. Kamo T, Akazawa H, Suda W, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12(3):e0174099. doi: 10.1371/journal.pone.0174099
55. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183-96. doi: 10.1161/CIRCRESAHA.
117.309715
56. Lever M, George PM, Slow S, et al. Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: An observational study. PLoS ONE. 2014;9:e114969. doi: 10.1371/journal.pone.011496
57. Mafune A, Iwamoto T, Tsutsumi Y, et al. Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. Clin Exper Nephrol. 2016;20(5):731-9. doi: 10.1007/s10157-015-1207-у
58. Senthong V, Wang Z, Li XS, et al. Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc. 2016;5(6):e002816. doi: 10.1161/JAHA.115.002816
59. Yu D, Shu XO, Rivera ES, et al. Urinary levels of trimethylamine-N-Oxide and incident coronary heart disease: a prospective investigation among urban Chinese adults. J Am Heart Assoc. 2019;8(1):e010606. doi: 10.1161/JAHA.118.010606
60. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circul Res. 2016;118(4):620-36. doi: 10.1161/CIRCRESAHA.115.306301
61. Liu Z, Li J, Liu H, et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease.
Atherosclerosis. 2019;284:121-8. doi: 10.1016/j.atherosclerosis.
2018.11.038
62. Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3(1):1245. doi: 10.1038/ncomms2266
63. Liu H, Yang C, Jing Y, et al. Ability of lactic acid bacteria isolated from mink to remove cholesterol: in vitro and in vivo studies. Can J Microbiol. 2013;59(8):563-9. doi: 10.1139/cjm-2013-0200
64. Li J, Lin S, Vanhoutte PM. Akkermansia muciniphilaprotects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in ApoE-/- mice. Circulation. 2016;133(24):2434-46. doi: 10.1161/ CIRCULATIONAHA.115.019645
65. Midtvedt T. Microbial bile acid transformation. Am J Clin Nutr. 1974;27:1341-7. doi: 10.1093/ajcn/27.11.1341
66. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physio Rev. 2009;89:147-91. doi: 10.1152/physrev.00010.2008
67. Ridlon JM, Harris SC, Bhowmik S, et al. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7:22-39. doi: 10.1080/19490976.2015.1127483
68. Hansson GK, Robertson AK, Soderberg-Naucler C. Inflammation and atherosclerosis. Ann Rev Pathol. 2006;1:297-329. doi: 10.1146/annurev.pathol.1.110304.100100
69. Wahlstrom A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41-50. doi: 10.1016/j.cmet.2016.05.005
70. Li T, Chiang JY. Bile acids as metabolic regulators. Curr Opin Gastroenterol. 2015;31:159-65. doi: 10.1097/mog.0000000000000156
71. Szeto FL, Reardon CA, Yoon D, et al. Vitamin D receptor signaling inhibits atherosclerosis in mice. Mol Endocrinol. 2012;26:1091-101. doi: 10.1210/me.2011-1329
72. Studer E, Zhou X, Zhao R, et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology. 2012;55:267-76. doi: 10.1002/hep.24681
73. Miura K, Ohnishi H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20:7381-91. doi: 10.3748/wjg.v20.i23.7381
74. Fuentes MC, Lajo T, Carrión JM, Cuñé J. A randomized clinical trial evaluating a proprietary mixture of Lactobacillus plantarum strains for lowering cholesterol. Med J Nutrition Metab. 2016;9(2):125-35. doi: 10.3233/MNM-160065
75. Mukerji P, Roper JM, Stahl B, et al. Safety evaluation of AB-LIFE(®) (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem Toxicol [Internet]. 2016 Jun;92:117-28. doi: 10.1016/j.fct.2016.03.018
76. Roper JM, Stahl B, Smith AB, et al. Safety evaluation of AB-LIFE® (Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem Toxicol. 2016 Jun;92:117-28. doi: 10.1016/j.fct.2016.03.018
77. Bosch M, Fuentes MC, Audivert S, et al. Lactobacillus plantarum CECT 7527, 7528 and 7529: Probiotic candidates to reduce cholesterol levels. J Sci Food Agric. 2014 Mar 15;94(4):803-9. doi: 10.1002/jsfa.6467
78. Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr. 2012 Nov;66(11):1234-41. doi: 10.1038/ejcn
79. Gilliland SE, Nelson CR, Maxwell C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl Environ Microbiol. 1985;49:377-81.
80. Liong MT, Shah NP. Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J Dairy Sci. 2005;88:55-66.
81. Pereira DIA, Gibson GR. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol. 2002 Sep;68(9):4689-93. doi: 10.1128/aem.68.9.4689-4693.2002
82. Agerholm-Larsen L, Bell ML, Grunwald GK, Astrup A. The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies. Eur J Clin Nutr. 2000. doi: 10.1038/ sj.ejcn.1601104
83. Junli Ma, Houkai Li. The Role of Gut Microbiota in Atherosclerosis and Hypertension. Front Pharmacol. 2018;9:1082. doi: 10.3389/fphar.2018.01082
1 ГБУ «Научно-исследовательский институт организации здравоохранения и медицинского менеджмента» Департамента здравоохранения г. Москвы, Москва, Россия;
2 ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия;
3 ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», Москва, Россия;
4 ФГБУ «Главный военный клинический госпиталь им. Н.Н. Бурденко» Минобороны России, Москва, Россия;
5 ФГБУ «Поликлиника №1» Управления делами Президента РФ, Москва, Россия
1 Research Institute of the Organization of Health Care and Medical Management, Moscow, Russia;
2 Pirogov Russian National Research Medical University, Moscow, Russia;
3 Lomonosov Moscow State University, Moscow, Russia;
4 Burdenko Main Military Clinical Hospital, Moscow, Russia;
5 Polyclinic No1, Moscow, Russia