Цель. Оценить функцию почечного трансплантата при сочетанной герпесвирусной инфекции. Материалы и методы. В исследование включены 32 пациента (мужчин – 21, женщин – 11) с хронической болезнью почек терминальной стадии (ХБПС5). Медиана возраста 43 года. Методом иммуноферментного анализа определяли противовирусные иммуноглобулины, методом полимеразной цепной реакции – концентрацию ДНК цитомегаловируса, вируса Эпштейна-Барр (ВЭБ) и вируса герпеса человека 6-го типа (ВГЧ-6) в периферической крови, моче у реципиента до и через 1, 2, 4, 6 мес, 1 год после трансплантации аллогенной почки (ТАП) и в биоптате трансплантата донора. Концентрация ДНК менее 500 коп/105 клеток или в 1 мл мочи считалась низкой, более 1000 коп – высокой. Результаты. В 1-й месяц после ТАП выявлена ДНК ЦМВ в 50% случаев, ДНК ВЭБ – в 40% и ДНК ВГЧ-6 – в 33%. У 12 реципиентов обнаружены одновременно маркеры двух или трех вирусов. Из них у 5 реципиентов – ДНК ЦМВ, ВЭБ и ВГЧ-6, у 4 – ДНК ЦМВ и ВЭБ, у 2 – ДНК ЦМВ и ВГЧ-6, у 1 – ВЭБ и ВГЧ-6. Повышение концентрации ДНК выявлялось прежде всего в моче, при этом в крови концентрация оставалась низкой или вообще не определялась. У 9 пациентов наблюдалось нарушение функции трансплантата при высокой концентрации ДНК одного или сразу двух/трех вирусов в моче. При низкой вирусной нагрузке как в моче, так и в крови не отмечалась дисфункция трансплантата, но у 8 из 12 реципиентов на фоне низкой концентрации одного вируса выявлялось повышение концентрации другого или присоединение бактериальной, грибковой инфекции. Заключение. Высокая концентрация ДНК в моче одного или нескольких герпесвирусов указывает на дисфункцию почечного трансплантата. Низкая вирусная нагрузка может служить фоном для присоединения другой вирусной и бактериальной инфекции.
Ключевые слова: трансплантация почки, цитомегаловирус, вирус Эпштейна–Барр, вирус герпеса человека 6-го типа
________________________________________________
Aim. To estimate graft function after kidney transplantation during active herpesviruses or superinfection Materials and methods. The study included 32 patients (men – 21, women – 11) with end-stage chronic kidney disease. The median age was 43 years. Cytomegalovirus (CMV), Epstein–Barr virus (EBV) and human herpes virus 6 (HHV-6) DNAs were screened by RT-PCR in the donor's transplant biopsy, and recipients’ peripheral blood and urine after kidney transplantation (KT) on 0, 1, 2, 4, 6, 12 months. Antiviral antibodies (IgM and IgG) were also screened by Enzyme-linked immunoassay analysis (ELISA) along with PCR. The 500 or less copies of viral DNA per 105 nuclear cells or 1 ml of urine was considered as low, more than 1000 copies – high. Results. On the first month after KT CMV DNA was detected in 50% of pts., EBV DNA – in 40% and HHV-6 DNA – in 33%. During first year after KT two or three viruses simultaneously were found in 12 recipients: CMV, EBV, and HHV-6 were detected in 5 recipients; CMV and EBV – in 4 patients; CMV and HHV-6 – in 2 pts; EBV and HHV-6 – in 1 pt. Graft dysfunction was observed in 9 patients with a high concentration of viral DNA of one, two or three viruses simultaneously. An upraise of the concentration of virus DNA (CMV, EBV and HHV – 6) was detected primarily in the urine, while in the blood its concentration was less than 500 cop or undetectable. Renal dysfunction was not observed on the background of low concentrations of viral DNA in urine and blood. However, with an increase of DNA concentration, an impaired graft function in 8 of 12 patients appeared. Low viral DNA level proved to be a background for another virus activation or bacterial/fungal superinfection. Conclusion. Graft dysfunction occurs at high viral DNA levels detection during mono-or superinfection. Low viral load can serve as a background for another virus activation and/or bacterial/fungal superinfection.
Keywords: kidney transplantation, cytomegalovirus, Epstein–Barr virus, human herpes virus type 6
1. Le Page AK, Mackie FE, McTaggart SJ, Kennedy SE. Cytomegalovirus & Epstein–Barr virus serostatus as a predictor of the long-term outcome of kidney transplantation. Nephrology (Carlton). 2013;18(12):813-9. DOI:10.1111/nep.12149
2. Babel N, Volk HD, Reinke P. BK polyomavirus infection and nephropathy: the virus – immune system interplay. Nat Rev Nephrol. 2011;7(7):399-406. DOI:10.1038/nrneph.2011.59
3. Egli A, Binggeli S, Bodaghi S. Cytomegalovirus and polyomavirus BK posttransplant. Nephrol Dial Transplant. 2008;23(1):426. DOI:10.1093/ndt/gfm648
4. Petrara MR, Giunco S, Serraino D, et al. Post-transplant lymphoproliferative disorders: from epidemiology to pathogenesis-driven treatment. Cancer Lett. 2015;369(1):37-44. DOI:10.1016/j.canlet.2015.08.007
5. Инфекции в трансплантологии. Под ред. С.В. Готье. М.–Тверь, 2010 [Infections in transplantation. Edited by SV Gautier. Moscow–Tver, 2010 (in Russian)].
6. Горяйнов В.А., Каабак М.М., Бабенко Н.Н., и др. Влияние цитомегаловируса на результаты трансплантации почек. Клин. медицина. 2015;93(11):42-5 [Goryainov VA, Kaabak MM, Babenko NN, et al. Effect of cytomegalovirus on the outcome of renal transplantation. Clinical medicine. 2015;93(11):42-5 (in Russian)].
7. Nguyen JM, Daguin P, Hourmant M, et al. Mycophenolate mofetil does not modify the incidence of cytomegalovirus (CMV) disease after kidney transplantation but prevents CMV-induced chronic graft dysfunction. J Am Soc Nephrol. 2001;12(8):1758-63. DOI:10.1681/ASN.V1281758
8. Guirado L, Rabella N, Díaz JM, et al. Prophylactic and pre-emptive therapy for cytomegalovirus infection in kidney transplant patients using oral valganciclovir. Nefrología. 2008;28(3):293-300.
9. Fehr T, Cippà PE, Mueller NJ. Cytomegalovirus post kidney transplantation: prophylaxis versus pre-emptive therapy? Transpl Int. 2015;28(12):1351-6. DOI:10.1111/tri.12629
10. Le J, Durand CM, Agha I, Brennan DC. Epstein–Barr virus and renal transplantation. Transplant Rev (Orlando). 2017;31(1):55-60. DOI:10.1016/j.trre.2016.12.001
11. Ng SB, Khoury JD. Epstein–Barr virus in lymphoproliferative processes: an update for the diagnostic pathologist. Adv Anat Pathol. 2009;16(1):40-55. DOI:10.1097/PAP.0b013e3181916029
12. Blazquez-Navarro A, Dang-Heine C, Wittenbrink N, et al. BKV, CMV, and EBV interactions and their effect on graft function one year post-renal transplantation: results from a large multi-centre Study. EBioMedicine. 2018;34:113-21. DOI:10.1016/j.ebiom
13. Meyer T, Scholz D, Warnecke G, et al. Importance of simultaneous active cytomegalovirus and Epstein–Barr virus infection in renal transplantation. Clin Diagn Virol. 1996;6(2-3):79-91. DOI:10.1016/0928-0197(96)00230-9
14. Mañez R, Breinig MC, Linden P, et al. Posttransplant lymphoproliferative disease in primary Epstein–Barr virus infection after liver transplantation: the role of cytomegalovirus disease. J Infect Dis. 1997;176(6):1462-7. DOI:10.1086/514142
15. Paulsen G, Cumagun P, Mixon E, et al. Cytomegalovirus and Epstein–Barr virus infections among pediatric kidney transplant recipients at a center using universal Valganciclovir Prophylaxis. Pediatr Transplant. 2019;23(3):e13382. DOI:10.1111/petr.13382
________________________________________________
1. Le Page AK, Mackie FE, McTaggart SJ, Kennedy SE. Cytomegalovirus & Epstein–Barr virus serostatus as a predictor of the long-term outcome of kidney transplantation. Nephrology (Carlton). 2013;18(12):813-9. DOI:10.1111/nep.12149
2. Babel N, Volk HD, Reinke P. BK polyomavirus infection and nephropathy: the virus – immune system interplay. Nat Rev Nephrol. 2011;7(7):399-406. DOI:10.1038/nrneph.2011.59
3. Egli A, Binggeli S, Bodaghi S. Cytomegalovirus and polyomavirus BK posttransplant. Nephrol Dial Transplant. 2008;23(1):426. DOI:10.1093/ndt/gfm648
4. Petrara MR, Giunco S, Serraino D, et al. Post-transplant lymphoproliferative disorders: from epidemiology to pathogenesis-driven treatment. Cancer Lett. 2015;369(1):37-44. DOI:10.1016/j.canlet.2015.08.007
5. Infections in transplantation. Edited by SV Gautier. Moscow–Tver, 2010 (in Russian).
6. Goryainov VA, Kaabak MM, Babenko NN, et al. Effect of cytomegalovirus on the outcome of renal transplantation. Clinical medicine. 2015;93(11):42-5 (in Russian).
7. Nguyen JM, Daguin P, Hourmant M, et al. Mycophenolate mofetil does not modify the incidence of cytomegalovirus (CMV) disease after kidney transplantation but prevents CMV-induced chronic graft dysfunction. J Am Soc Nephrol. 2001;12(8):1758-63. DOI:10.1681/ASN.V1281758
8. Guirado L, Rabella N, Díaz JM, et al. Prophylactic and pre-emptive therapy for cytomegalovirus infection in kidney transplant patients using oral valganciclovir. Nefrología. 2008;28(3):293-300.
9. Fehr T, Cippà PE, Mueller NJ. Cytomegalovirus post kidney transplantation: prophylaxis versus pre-emptive therapy? Transpl Int. 2015;28(12):1351-6. DOI:10.1111/tri.12629
10. Le J, Durand CM, Agha I, Brennan DC. Epstein–Barr virus and renal transplantation. Transplant Rev (Orlando). 2017;31(1):55-60. DOI:10.1016/j.trre.2016.12.001
11. Ng SB, Khoury JD. Epstein–Barr virus in lymphoproliferative processes: an update for the diagnostic pathologist. Adv Anat Pathol. 2009;16(1):40-55. DOI:10.1097/PAP.0b013e3181916029
12. Blazquez-Navarro A, Dang-Heine C, Wittenbrink N, et al. BKV, CMV, and EBV interactions and their effect on graft function one year post-renal transplantation: results from a large multi-centre Study. EBioMedicine. 2018;34:113-21. DOI:10.1016/j.ebiom
13. Meyer T, Scholz D, Warnecke G, et al. Importance of simultaneous active cytomegalovirus and Epstein–Barr virus infection in renal transplantation. Clin Diagn Virol. 1996;6(2-3):79-91. DOI:10.1016/0928-0197(96)00230-9
14. Mañez R, Breinig MC, Linden P, et al. Posttransplant lymphoproliferative disease in primary Epstein–Barr virus infection after liver transplantation: the role of cytomegalovirus disease. J Infect Dis. 1997;176(6):1462-7. DOI:10.1086/514142
15. Paulsen G, Cumagun P, Mixon E, et al. Cytomegalovirus and Epstein–Barr virus infections among pediatric kidney transplant recipients at a center using universal Valganciclovir Prophylaxis. Pediatr Transplant. 2019;23(3):e13382. DOI:10.1111/petr.13382