Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
COVID-19 и особенности вовлечения сердечно-сосудистой системы - Журнал Терапевтический архив №9 Вопросы кардиологии 2021
COVID-19 и особенности вовлечения сердечно-сосудистой системы
Цыганова Е.В., Глухоедова Н.В., Жиленкова А.С., Федосеева Т.И., Ющук Е.Н., Сметнева Н.С. COVID-19 и особенности вовлечения сердечно-сосудистой системы. Терапевтический архив. 2021; 93 (9): 1091–1099. DOI: 10.26442/00403660.2021.09.201036
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Представлен обзор современных сведений о патогенезе COVID-19 и органоспецифических поражениях, развивающихся при этом заболевании. Подробно отражены данные о воспалении и его биохимических маркерах, об особенностях коагулопатии, поражении эндотелия и микротромбозах. Особое внимание уделяется роли рецепторов ангиотензинпревращающего фермента 2-го типа и трансмембранной сериновой протеазы 2-го типа в развитии органоспецифических поражений при COVID-19. Детально рассмотрен патогенез поражения сердечно-сосудистой системы с представлением данных зарубежной литературы об изменениях миокарда и авторских результатов трансторакального эхокардиографического исследования у больных, перенесших COVID-19.
Ключевые слова: COVID-19, изменения миокарда, трансторакальная эхокардиография, воспаление, коагуляция, тромбоз
Keywords: COVID-19, myocardial changes, transthoracic echocardiography, inflammation, coagulation, thrombosis
Ключевые слова: COVID-19, изменения миокарда, трансторакальная эхокардиография, воспаление, коагуляция, тромбоз
________________________________________________
Keywords: COVID-19, myocardial changes, transthoracic echocardiography, inflammation, coagulation, thrombosis
Полный текст
Список литературы
1. Guan W, Ni ZY, Yu Hu, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. DOI:10.1056/NEJMoa2002032
2. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. DOI:10.1016/s2213-2600(20)30116-8
3. Misra D, Agarwal V, Gasparyan AOZ. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055-62. DOI:10.1007/s10067-020-05073-9
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. DOI:10.1016/S0140-6736(20)30183-5
5. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI:10.1016/S0140-6736(20)30628-0
6. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci. 2020;117(20):10970-5. DOI:10.1073/pnas.2005615117
7. McGonagle D, O`Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45. DOI:10.1016/S2665-9913(20)30121-1
8. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. DOI:10.1111/jth.14768
9. McGonagle D, Sharif K, O'Regan A, et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19):1-7. DOI:10.1016/j.autrev.2020.102537
10. Behzad S, Aghaghazvini L, Radmard AR, Gholamrezanezhad A.
Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin Imaging. 2020;66:35-41. DOI:10.1016/j.clinimag.2020.05.013
11. Dong M, Zhang J, Ma X, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020;131. DOI:10.1016/j.biopha.2020.110678
12. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. DOI:10.1007/s11684-020-0754-0
13. Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Int Care Med. 2020;46(6):1114-6. DOI:10.1007/s00134-020-06026-1
14. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020:2020.01.30.927806. DOI:10.1101/2020.01.30.927806
15. Guo AX, Cui JJ, OuYang QY, et al. The clinical characteristics and mortal causes analysis of COVID-19 death patients. MedRxiv. 2020. DOI:10.1101/2020.04.12.20062380
16. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100. DOI:10.1093/cvr/cvaa078
17. Seow J, Pai R, Mishra A. ScRNA-seq reveals ACE2 and TMPRSS2 expression in TROP2+ Liver Progenitor Cells: Implications in COVID-19 associated Liver Dysfunction. BioRxiv. 2020. DOI:10.1101/2020.03.23.002832
18. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120-8. DOI:10.1056/NEJMoa2015432
19. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75. DOI:10.1161/01.ATV.0000051384.43104.FC
20. Campbell CM, Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis? Circulation. 2020;141(22):1739-41. DOI:10.1161/CIRCULATIONAHA.120.047419
21. Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb. 2020:1-6. DOI:10.1007/s11239-020-02297-z
22. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1). DOI:10.1186/s13054-020-03077-0
23. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Col Cardiol. 2020;75(18):2352-71. DOI:10.1016/j.jacc.2020.03.031
24. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020;141:1648-55. DOI:10.1161/CIRCULATIONAHA.120.046941
25. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. DOI:10.1093/eurheartj/ehaa190
26. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. DOI:10.1001/jamacardio.2020.1096
27. Wei X, Fang Y, Hu H. Glucocorticoid and immunoglobulin to treat viral fulminant myocarditis. Eur Heart J. 2020;41(22):2122. DOI:10.1093/eurheartj/ehaa357
28. Agricola E, Beneduce A, Esposito A, et al. Heart and Lung Multimodality Imaging in COVID-19. JACC Cardiovasc Imaging. 2020;13(8):1792-808. DOI:10.1016/j.jcmg.2020.05.017
29. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. DOI:10.1111/j.1365-2362.2009.02153.x
30. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861-2. DOI:10.1093/eurheartj/ehaa286
31. Doyen D, Moceri P, Ducreux D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020;395(10235):1516. DOI:10.1016/S0140-6736(20)30912-0
32. Hua A, O'Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020;41(22):2130. DOI:10.1093/eurheartj/ehaa253
33. Xu Z, Shi L, Wang Y, et al. Case Report Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. DOI:10.1016/S2213-2600(20)30076-X
34. Frangogiannis NG. The inflammatory response in myocardial injury, repair and remodeling. Nat Rev Cardiol. 2014;11(5):255-65. DOI:10.1038/nrcardio.2014.28
35. Agewall S, Beltrame JF, Reynolds HR, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38(3):143-53. DOI:10.1093/eurheartj/ehw149
36. Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J Card Surg. 2020;35(6):1302-5. DOI:10.1111/jocs.14538
37. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19) Editorial Supplemental content. JAMA Cardiol. 2020;5(11):1265-73. DOI:10.1001/jamacardio.2020.3557
38. Puntmann VO, Valbuena S, Hinojar R, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: Part I – Analytical validation and clinical qualification. J Cardiovas Magn Reson. 2018;20(1). DOI:10.1186/s12968-018-0484-5
2. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. DOI:10.1016/s2213-2600(20)30116-8
3. Misra D, Agarwal V, Gasparyan AOZ. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055-62. DOI:10.1007/s10067-020-05073-9
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. DOI:10.1016/S0140-6736(20)30183-5
5. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI:10.1016/S0140-6736(20)30628-0
6. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci. 2020;117(20):10970-5. DOI:10.1073/pnas.2005615117
7. McGonagle D, O`Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45. DOI:10.1016/S2665-9913(20)30121-1
8. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. DOI:10.1111/jth.14768
9. McGonagle D, Sharif K, O'Regan A, et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19):1-7. DOI:10.1016/j.autrev.2020.102537
10. Behzad S, Aghaghazvini L, Radmard AR, Gholamrezanezhad A.
Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin Imaging. 2020;66:35-41. DOI:10.1016/j.clinimag.2020.05.013
11. Dong M, Zhang J, Ma X, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020;131. DOI:10.1016/j.biopha.2020.110678
12. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. DOI:10.1007/s11684-020-0754-0
13. Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Int Care Med. 2020;46(6):1114-6. DOI:10.1007/s00134-020-06026-1
14. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020:2020.01.30.927806. DOI:10.1101/2020.01.30.927806
15. Guo AX, Cui JJ, OuYang QY, et al. The clinical characteristics and mortal causes analysis of COVID-19 death patients. MedRxiv. 2020. DOI:10.1101/2020.04.12.20062380
16. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100. DOI:10.1093/cvr/cvaa078
17. Seow J, Pai R, Mishra A. ScRNA-seq reveals ACE2 and TMPRSS2 expression in TROP2+ Liver Progenitor Cells: Implications in COVID-19 associated Liver Dysfunction. BioRxiv. 2020. DOI:10.1101/2020.03.23.002832
18. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120-8. DOI:10.1056/NEJMoa2015432
19. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75. DOI:10.1161/01.ATV.0000051384.43104.FC
20. Campbell CM, Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis? Circulation. 2020;141(22):1739-41. DOI:10.1161/CIRCULATIONAHA.120.047419
21. Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb. 2020:1-6. DOI:10.1007/s11239-020-02297-z
22. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1). DOI:10.1186/s13054-020-03077-0
23. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Col Cardiol. 2020;75(18):2352-71. DOI:10.1016/j.jacc.2020.03.031
24. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020;141:1648-55. DOI:10.1161/CIRCULATIONAHA.120.046941
25. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. DOI:10.1093/eurheartj/ehaa190
26. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. DOI:10.1001/jamacardio.2020.1096
27. Wei X, Fang Y, Hu H. Glucocorticoid and immunoglobulin to treat viral fulminant myocarditis. Eur Heart J. 2020;41(22):2122. DOI:10.1093/eurheartj/ehaa357
28. Agricola E, Beneduce A, Esposito A, et al. Heart and Lung Multimodality Imaging in COVID-19. JACC Cardiovasc Imaging. 2020;13(8):1792-808. DOI:10.1016/j.jcmg.2020.05.017
29. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. DOI:10.1111/j.1365-2362.2009.02153.x
30. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861-2. DOI:10.1093/eurheartj/ehaa286
31. Doyen D, Moceri P, Ducreux D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020;395(10235):1516. DOI:10.1016/S0140-6736(20)30912-0
32. Hua A, O'Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020;41(22):2130. DOI:10.1093/eurheartj/ehaa253
33. Xu Z, Shi L, Wang Y, et al. Case Report Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. DOI:10.1016/S2213-2600(20)30076-X
34. Frangogiannis NG. The inflammatory response in myocardial injury, repair and remodeling. Nat Rev Cardiol. 2014;11(5):255-65. DOI:10.1038/nrcardio.2014.28
35. Agewall S, Beltrame JF, Reynolds HR, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38(3):143-53. DOI:10.1093/eurheartj/ehw149
36. Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J Card Surg. 2020;35(6):1302-5. DOI:10.1111/jocs.14538
37. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19) Editorial Supplemental content. JAMA Cardiol. 2020;5(11):1265-73. DOI:10.1001/jamacardio.2020.3557
38. Puntmann VO, Valbuena S, Hinojar R, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: Part I – Analytical validation and clinical qualification. J Cardiovas Magn Reson. 2018;20(1). DOI:10.1186/s12968-018-0484-5
2. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. DOI:10.1016/s2213-2600(20)30116-8
3. Misra D, Agarwal V, Gasparyan AOZ. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055-62. DOI:10.1007/s10067-020-05073-9
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. DOI:10.1016/S0140-6736(20)30183-5
5. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI:10.1016/S0140-6736(20)30628-0
6. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci. 2020;117(20):10970-5. DOI:10.1073/pnas.2005615117
7. McGonagle D, O`Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45. DOI:10.1016/S2665-9913(20)30121-1
8. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. DOI:10.1111/jth.14768
9. McGonagle D, Sharif K, O'Regan A, et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19):1-7. DOI:10.1016/j.autrev.2020.102537
10. Behzad S, Aghaghazvini L, Radmard AR, Gholamrezanezhad A.
Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin Imaging. 2020;66:35-41. DOI:10.1016/j.clinimag.2020.05.013
11. Dong M, Zhang J, Ma X, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020;131. DOI:10.1016/j.biopha.2020.110678
12. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. DOI:10.1007/s11684-020-0754-0
13. Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Int Care Med. 2020;46(6):1114-6. DOI:10.1007/s00134-020-06026-1
14. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020:2020.01.30.927806. DOI:10.1101/2020.01.30.927806
15. Guo AX, Cui JJ, OuYang QY, et al. The clinical characteristics and mortal causes analysis of COVID-19 death patients. MedRxiv. 2020. DOI:10.1101/2020.04.12.20062380
16. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100. DOI:10.1093/cvr/cvaa078
17. Seow J, Pai R, Mishra A. ScRNA-seq reveals ACE2 and TMPRSS2 expression in TROP2+ Liver Progenitor Cells: Implications in COVID-19 associated Liver Dysfunction. BioRxiv. 2020. DOI:10.1101/2020.03.23.002832
18. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120-8. DOI:10.1056/NEJMoa2015432
19. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75. DOI:10.1161/01.ATV.0000051384.43104.FC
20. Campbell CM, Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis? Circulation. 2020;141(22):1739-41. DOI:10.1161/CIRCULATIONAHA.120.047419
21. Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb. 2020:1-6. DOI:10.1007/s11239-020-02297-z
22. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1). DOI:10.1186/s13054-020-03077-0
23. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Col Cardiol. 2020;75(18):2352-71. DOI:10.1016/j.jacc.2020.03.031
24. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020;141:1648-55. DOI:10.1161/CIRCULATIONAHA.120.046941
25. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. DOI:10.1093/eurheartj/ehaa190
26. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. DOI:10.1001/jamacardio.2020.1096
27. Wei X, Fang Y, Hu H. Glucocorticoid and immunoglobulin to treat viral fulminant myocarditis. Eur Heart J. 2020;41(22):2122. DOI:10.1093/eurheartj/ehaa357
28. Agricola E, Beneduce A, Esposito A, et al. Heart and Lung Multimodality Imaging in COVID-19. JACC Cardiovasc Imaging. 2020;13(8):1792-808. DOI:10.1016/j.jcmg.2020.05.017
29. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. DOI:10.1111/j.1365-2362.2009.02153.x
30. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861-2. DOI:10.1093/eurheartj/ehaa286
31. Doyen D, Moceri P, Ducreux D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020;395(10235):1516. DOI:10.1016/S0140-6736(20)30912-0
32. Hua A, O'Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020;41(22):2130. DOI:10.1093/eurheartj/ehaa253
33. Xu Z, Shi L, Wang Y, et al. Case Report Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. DOI:10.1016/S2213-2600(20)30076-X
34. Frangogiannis NG. The inflammatory response in myocardial injury, repair and remodeling. Nat Rev Cardiol. 2014;11(5):255-65. DOI:10.1038/nrcardio.2014.28
35. Agewall S, Beltrame JF, Reynolds HR, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38(3):143-53. DOI:10.1093/eurheartj/ehw149
36. Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J Card Surg. 2020;35(6):1302-5. DOI:10.1111/jocs.14538
37. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19) Editorial Supplemental content. JAMA Cardiol. 2020;5(11):1265-73. DOI:10.1001/jamacardio.2020.3557
38. Puntmann VO, Valbuena S, Hinojar R, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: Part I – Analytical validation and clinical qualification. J Cardiovas Magn Reson. 2018;20(1). DOI:10.1186/s12968-018-0484-5
________________________________________________
2. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. DOI:10.1016/s2213-2600(20)30116-8
3. Misra D, Agarwal V, Gasparyan AOZ. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055-62. DOI:10.1007/s10067-020-05073-9
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. DOI:10.1016/S0140-6736(20)30183-5
5. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI:10.1016/S0140-6736(20)30628-0
6. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci. 2020;117(20):10970-5. DOI:10.1073/pnas.2005615117
7. McGonagle D, O`Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45. DOI:10.1016/S2665-9913(20)30121-1
8. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. DOI:10.1111/jth.14768
9. McGonagle D, Sharif K, O'Regan A, et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19):1-7. DOI:10.1016/j.autrev.2020.102537
10. Behzad S, Aghaghazvini L, Radmard AR, Gholamrezanezhad A.
Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin Imaging. 2020;66:35-41. DOI:10.1016/j.clinimag.2020.05.013
11. Dong M, Zhang J, Ma X, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020;131. DOI:10.1016/j.biopha.2020.110678
12. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. DOI:10.1007/s11684-020-0754-0
13. Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Int Care Med. 2020;46(6):1114-6. DOI:10.1007/s00134-020-06026-1
14. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020:2020.01.30.927806. DOI:10.1101/2020.01.30.927806
15. Guo AX, Cui JJ, OuYang QY, et al. The clinical characteristics and mortal causes analysis of COVID-19 death patients. MedRxiv. 2020. DOI:10.1101/2020.04.12.20062380
16. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100. DOI:10.1093/cvr/cvaa078
17. Seow J, Pai R, Mishra A. ScRNA-seq reveals ACE2 and TMPRSS2 expression in TROP2+ Liver Progenitor Cells: Implications in COVID-19 associated Liver Dysfunction. BioRxiv. 2020. DOI:10.1101/2020.03.23.002832
18. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120-8. DOI:10.1056/NEJMoa2015432
19. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75. DOI:10.1161/01.ATV.0000051384.43104.FC
20. Campbell CM, Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis? Circulation. 2020;141(22):1739-41. DOI:10.1161/CIRCULATIONAHA.120.047419
21. Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb. 2020:1-6. DOI:10.1007/s11239-020-02297-z
22. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1). DOI:10.1186/s13054-020-03077-0
23. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Col Cardiol. 2020;75(18):2352-71. DOI:10.1016/j.jacc.2020.03.031
24. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020;141:1648-55. DOI:10.1161/CIRCULATIONAHA.120.046941
25. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. DOI:10.1093/eurheartj/ehaa190
26. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. DOI:10.1001/jamacardio.2020.1096
27. Wei X, Fang Y, Hu H. Glucocorticoid and immunoglobulin to treat viral fulminant myocarditis. Eur Heart J. 2020;41(22):2122. DOI:10.1093/eurheartj/ehaa357
28. Agricola E, Beneduce A, Esposito A, et al. Heart and Lung Multimodality Imaging in COVID-19. JACC Cardiovasc Imaging. 2020;13(8):1792-808. DOI:10.1016/j.jcmg.2020.05.017
29. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. DOI:10.1111/j.1365-2362.2009.02153.x
30. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861-2. DOI:10.1093/eurheartj/ehaa286
31. Doyen D, Moceri P, Ducreux D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020;395(10235):1516. DOI:10.1016/S0140-6736(20)30912-0
32. Hua A, O'Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020;41(22):2130. DOI:10.1093/eurheartj/ehaa253
33. Xu Z, Shi L, Wang Y, et al. Case Report Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. DOI:10.1016/S2213-2600(20)30076-X
34. Frangogiannis NG. The inflammatory response in myocardial injury, repair and remodeling. Nat Rev Cardiol. 2014;11(5):255-65. DOI:10.1038/nrcardio.2014.28
35. Agewall S, Beltrame JF, Reynolds HR, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38(3):143-53. DOI:10.1093/eurheartj/ehw149
36. Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J Card Surg. 2020;35(6):1302-5. DOI:10.1111/jocs.14538
37. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19) Editorial Supplemental content. JAMA Cardiol. 2020;5(11):1265-73. DOI:10.1001/jamacardio.2020.3557
38. Puntmann VO, Valbuena S, Hinojar R, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: Part I – Analytical validation and clinical qualification. J Cardiovas Magn Reson. 2018;20(1). DOI:10.1186/s12968-018-0484-5
Авторы
Е.В. Цыганова1, Н.В. Глухоедова1, А.С. Жиленкова1, Т.И. Федосеева2, Е.Н. Ющук*3, Н.С. Сметнева3,4
1 «Московский городской центр профилактики и борьбы со СПИД» Департамента здравоохранения г. Москвы, Москва, Россия;
2 ООО «Семейная поликлиника №1», Сергиев Посад, Россия;
3 ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России, Москва, Россия;
4 ЧУОО ВО «Медицинский университет “Реавиз”», Москва, Россия
*ndlena@mail.ru
1 Moscow City Center for the Prevention and Control of AIDS, Moscow, Russia;
2 Family Polyclinic №1, Sergiev Posad, Russia;
3 Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia;
4 Medical University “Reaviz“, Moscow, Russia
*ndlena@mail.ru
1 «Московский городской центр профилактики и борьбы со СПИД» Департамента здравоохранения г. Москвы, Москва, Россия;
2 ООО «Семейная поликлиника №1», Сергиев Посад, Россия;
3 ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России, Москва, Россия;
4 ЧУОО ВО «Медицинский университет “Реавиз”», Москва, Россия
*ndlena@mail.ru
________________________________________________
1 Moscow City Center for the Prevention and Control of AIDS, Moscow, Russia;
2 Family Polyclinic №1, Sergiev Posad, Russia;
3 Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia;
4 Medical University “Reaviz“, Moscow, Russia
*ndlena@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
