Представлен обзор современных сведений о патогенезе COVID-19 и органоспецифических поражениях, развивающихся при этом заболевании. Подробно отражены данные о воспалении и его биохимических маркерах, об особенностях коагулопатии, поражении эндотелия и микротромбозах. Особое внимание уделяется роли рецепторов ангиотензинпревращающего фермента 2-го типа и трансмембранной сериновой протеазы 2-го типа в развитии органоспецифических поражений при COVID-19. Детально рассмотрен патогенез поражения сердечно-сосудистой системы с представлением данных зарубежной литературы об изменениях миокарда и авторских результатов трансторакального эхокардиографического исследования у больных, перенесших COVID-19.
Ключевые слова: COVID-19, изменения миокарда, трансторакальная эхокардиография, воспаление, коагуляция, тромбоз
________________________________________________
The article provides an overview of current information on the pathogenesis of COVID-19 and organ-specific lesions developing in this disease. The data on inflammation and its biochemical markers, on the features of coagulopathy, endothelial damage and microthrombosis are presented in detail. Particular attention is paid to the role of receptors for angiotensin converting enzyme type 2 and transmembrane serine protease type 2 in the development of organ-specific lesions in COVID-19. The pathogenesis of damage to the cardiovascular system is considered in detail with the presentation of data from foreign literature on changes in the myocardium and the author's results of transthoracic echocardiographic examination in patients who have undergone COVID-19.
1. Guan W, Ni ZY, Yu Hu, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. DOI:10.1056/NEJMoa2002032
2. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. DOI:10.1016/s2213-2600(20)30116-8
3. Misra D, Agarwal V, Gasparyan AOZ. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055-62. DOI:10.1007/s10067-020-05073-9
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. DOI:10.1016/S0140-6736(20)30183-5
5. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI:10.1016/S0140-6736(20)30628-0
6. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci. 2020;117(20):10970-5. DOI:10.1073/pnas.2005615117
7. McGonagle D, O`Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45. DOI:10.1016/S2665-9913(20)30121-1
8. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. DOI:10.1111/jth.14768
9. McGonagle D, Sharif K, O'Regan A, et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19):1-7. DOI:10.1016/j.autrev.2020.102537
10. Behzad S, Aghaghazvini L, Radmard AR, Gholamrezanezhad A.
Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin Imaging. 2020;66:35-41. DOI:10.1016/j.clinimag.2020.05.013
11. Dong M, Zhang J, Ma X, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020;131. DOI:10.1016/j.biopha.2020.110678
12. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. DOI:10.1007/s11684-020-0754-0
13. Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Int Care Med. 2020;46(6):1114-6. DOI:10.1007/s00134-020-06026-1
14. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020:2020.01.30.927806. DOI:10.1101/2020.01.30.927806
15. Guo AX, Cui JJ, OuYang QY, et al. The clinical characteristics and mortal causes analysis of COVID-19 death patients. MedRxiv. 2020. DOI:10.1101/2020.04.12.20062380
16. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100. DOI:10.1093/cvr/cvaa078
17. Seow J, Pai R, Mishra A. ScRNA-seq reveals ACE2 and TMPRSS2 expression in TROP2+ Liver Progenitor Cells: Implications in COVID-19 associated Liver Dysfunction. BioRxiv. 2020. DOI:10.1101/2020.03.23.002832
18. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120-8. DOI:10.1056/NEJMoa2015432
19. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75. DOI:10.1161/01.ATV.0000051384.43104.FC
20. Campbell CM, Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis? Circulation. 2020;141(22):1739-41. DOI:10.1161/CIRCULATIONAHA.120.047419
21. Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb. 2020:1-6. DOI:10.1007/s11239-020-02297-z
22. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1). DOI:10.1186/s13054-020-03077-0
23. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Col Cardiol. 2020;75(18):2352-71. DOI:10.1016/j.jacc.2020.03.031
24. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020;141:1648-55. DOI:10.1161/CIRCULATIONAHA.120.046941
25. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. DOI:10.1093/eurheartj/ehaa190
26. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. DOI:10.1001/jamacardio.2020.1096
27. Wei X, Fang Y, Hu H. Glucocorticoid and immunoglobulin to treat viral fulminant myocarditis. Eur Heart J. 2020;41(22):2122. DOI:10.1093/eurheartj/ehaa357
28. Agricola E, Beneduce A, Esposito A, et al. Heart and Lung Multimodality Imaging in COVID-19. JACC Cardiovasc Imaging. 2020;13(8):1792-808. DOI:10.1016/j.jcmg.2020.05.017
29. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. DOI:10.1111/j.1365-2362.2009.02153.x
30. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861-2. DOI:10.1093/eurheartj/ehaa286
31. Doyen D, Moceri P, Ducreux D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020;395(10235):1516. DOI:10.1016/S0140-6736(20)30912-0
32. Hua A, O'Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020;41(22):2130. DOI:10.1093/eurheartj/ehaa253
33. Xu Z, Shi L, Wang Y, et al. Case Report Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. DOI:10.1016/S2213-2600(20)30076-X
34. Frangogiannis NG. The inflammatory response in myocardial injury, repair and remodeling. Nat Rev Cardiol. 2014;11(5):255-65. DOI:10.1038/nrcardio.2014.28
35. Agewall S, Beltrame JF, Reynolds HR, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38(3):143-53. DOI:10.1093/eurheartj/ehw149
36. Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J Card Surg. 2020;35(6):1302-5. DOI:10.1111/jocs.14538
37. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19) Editorial Supplemental content. JAMA Cardiol. 2020;5(11):1265-73. DOI:10.1001/jamacardio.2020.3557
38. Puntmann VO, Valbuena S, Hinojar R, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: Part I – Analytical validation and clinical qualification. J Cardiovas Magn Reson. 2018;20(1). DOI:10.1186/s12968-018-0484-5
________________________________________________
1. Guan W, Ni ZY, Yu Hu, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. DOI:10.1056/NEJMoa2002032
2. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4):e21. DOI:10.1016/s2213-2600(20)30116-8
3. Misra D, Agarwal V, Gasparyan AOZ. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055-62. DOI:10.1007/s10067-020-05073-9
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. DOI:10.1016/S0140-6736(20)30183-5
5. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. DOI:10.1016/S0140-6736(20)30628-0
6. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci. 2020;117(20):10970-5. DOI:10.1073/pnas.2005615117
7. McGonagle D, O`Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437-45. DOI:10.1016/S2665-9913(20)30121-1
8. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. DOI:10.1111/jth.14768
9. McGonagle D, Sharif K, O'Regan A, et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19):1-7. DOI:10.1016/j.autrev.2020.102537
10. Behzad S, Aghaghazvini L, Radmard AR, Gholamrezanezhad A.
Extrapulmonary manifestations of COVID-19: Radiologic and clinical overview. Clin Imaging. 2020;66:35-41. DOI:10.1016/j.clinimag.2020.05.013
11. Dong M, Zhang J, Ma X, et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020;131. DOI:10.1016/j.biopha.2020.110678
12. Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-92. DOI:10.1007/s11684-020-0754-0
13. Pan XW, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Int Care Med. 2020;46(6):1114-6. DOI:10.1007/s00134-020-06026-1
14. Zhang H, Kang Z, Gong H, et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. BioRxiv. 2020:2020.01.30.927806. DOI:10.1101/2020.01.30.927806
15. Guo AX, Cui JJ, OuYang QY, et al. The clinical characteristics and mortal causes analysis of COVID-19 death patients. MedRxiv. 2020. DOI:10.1101/2020.04.12.20062380
16. Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097-100. DOI:10.1093/cvr/cvaa078
17. Seow J, Pai R, Mishra A. ScRNA-seq reveals ACE2 and TMPRSS2 expression in TROP2+ Liver Progenitor Cells: Implications in COVID-19 associated Liver Dysfunction. BioRxiv. 2020. DOI:10.1101/2020.03.23.002832
18. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383:120-8. DOI:10.1056/NEJMoa2015432
19. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75. DOI:10.1161/01.ATV.0000051384.43104.FC
20. Campbell CM, Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis? Circulation. 2020;141(22):1739-41. DOI:10.1161/CIRCULATIONAHA.120.047419
21. Wang X, Sahu KK, Cerny J. Coagulopathy, endothelial dysfunction, thrombotic microangiopathy and complement activation: potential role of complement system inhibition in COVID-19. J Thromb. 2020:1-6. DOI:10.1007/s11239-020-02297-z
22. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1). DOI:10.1186/s13054-020-03077-0
23. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Col Cardiol. 2020;75(18):2352-71. DOI:10.1016/j.jacc.2020.03.031
24. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020;141:1648-55. DOI:10.1161/CIRCULATIONAHA.120.046941
25. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2021;42(2):206. DOI:10.1093/eurheartj/ehaa190
26. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819-24. DOI:10.1001/jamacardio.2020.1096
27. Wei X, Fang Y, Hu H. Glucocorticoid and immunoglobulin to treat viral fulminant myocarditis. Eur Heart J. 2020;41(22):2122. DOI:10.1093/eurheartj/ehaa357
28. Agricola E, Beneduce A, Esposito A, et al. Heart and Lung Multimodality Imaging in COVID-19. JACC Cardiovasc Imaging. 2020;13(8):1792-808. DOI:10.1016/j.jcmg.2020.05.017
29. Oudit GY, Kassiri Z, Jiang C, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618-25. DOI:10.1111/j.1365-2362.2009.02153.x
30. Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J. 2020;41(19):1861-2. DOI:10.1093/eurheartj/ehaa286
31. Doyen D, Moceri P, Ducreux D, Dellamonica J. Myocarditis in a patient with COVID-19: a cause of raised troponin and ECG changes. Lancet. 2020;395(10235):1516. DOI:10.1016/S0140-6736(20)30912-0
32. Hua A, O'Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020;41(22):2130. DOI:10.1093/eurheartj/ehaa253
33. Xu Z, Shi L, Wang Y, et al. Case Report Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2. DOI:10.1016/S2213-2600(20)30076-X
34. Frangogiannis NG. The inflammatory response in myocardial injury, repair and remodeling. Nat Rev Cardiol. 2014;11(5):255-65. DOI:10.1038/nrcardio.2014.28
35. Agewall S, Beltrame JF, Reynolds HR, et al. ESC working group position paper on myocardial infarction with non-obstructive coronary arteries. Eur Heart J. 2017;38(3):143-53. DOI:10.1093/eurheartj/ehw149
36. Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J Card Surg. 2020;35(6):1302-5. DOI:10.1111/jocs.14538
37. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19) Editorial Supplemental content. JAMA Cardiol. 2020;5(11):1265-73. DOI:10.1001/jamacardio.2020.3557
38. Puntmann VO, Valbuena S, Hinojar R, et al. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: Part I – Analytical validation and clinical qualification. J Cardiovas Magn Reson. 2018;20(1). DOI:10.1186/s12968-018-0484-5
1 «Московский городской центр профилактики и борьбы со СПИД» Департамента здравоохранения г. Москвы, Москва, Россия;
2 ООО «Семейная поликлиника №1», Сергиев Посад, Россия;
3 ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России, Москва, Россия;
4 ЧУОО ВО «Медицинский университет “Реавиз”», Москва, Россия
*ndlena@mail.ru
________________________________________________
Elena V. Tsyganova1, Nataliia V. Glukhoedova1, Aleksandra S. Zhilenkova1, Tatiana I. Fedoseeva2, Elena N. Iushchuk*3, Natalia S. Smetneva3,4
1 Moscow City Center for the Prevention and Control of AIDS, Moscow, Russia;
2 Family Polyclinic №1, Sergiev Posad, Russia;
3 Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia;
4 Medical University “Reaviz“, Moscow, Russia
*ndlena@mail.ru