Неспецифическая профилактика COVID-19 в период вакцинации против новой коронавирусной инфекции: результаты многоцентрового двойного слепого плацебо-контролируемого рандомизированного клинического исследования
Неспецифическая профилактика COVID-19 в период вакцинации против новой коронавирусной инфекции: результаты многоцентрового двойного слепого плацебо-контролируемого рандомизированного клинического исследования
Авдеева М.Г., Белоусова О.Н., Орлова Е.А., Хамитов Р.Ф., Шварц Ю.Г., Кравченко И.Э. Неспецифическая профилактика COVID-19 в период вакцинации против новой коронавирусной инфекции: результаты многоцентрового двойного слепого плацебо-контролируемого рандомизированного клинического исследования. Терапевтический архив. 2022;94(11):1268–1277. DOI: 10.26442/00403660.2022.11.201980
Avdeeva MG, Belousova ON, Orlova EA, Khamitov RF, Shvarts YuG, Kravchenko IE. Non-specific prevention of COVID-19 during vaccination against a new coronavirus infection: results of a multicenter, double-blind, placebo-controlled, randomized clinical trial. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(11):1268–1277.
DOI: 10.26442/00403660.2022.11.201980
Неспецифическая профилактика COVID-19 в период вакцинации против новой коронавирусной инфекции: результаты многоцентрового двойного слепого плацебо-контролируемого рандомизированного клинического исследования
Авдеева М.Г., Белоусова О.Н., Орлова Е.А., Хамитов Р.Ф., Шварц Ю.Г., Кравченко И.Э. Неспецифическая профилактика COVID-19 в период вакцинации против новой коронавирусной инфекции: результаты многоцентрового двойного слепого плацебо-контролируемого рандомизированного клинического исследования. Терапевтический архив. 2022;94(11):1268–1277. DOI: 10.26442/00403660.2022.11.201980
Avdeeva MG, Belousova ON, Orlova EA, Khamitov RF, Shvarts YuG, Kravchenko IE. Non-specific prevention of COVID-19 during vaccination against a new coronavirus infection: results of a multicenter, double-blind, placebo-controlled, randomized clinical trial. Terapevticheskii Arkhiv (Ter. Arkh.). 2022;94(11):1268–1277.
DOI: 10.26442/00403660.2022.11.201980
Обоснование. Проведено многоцентровое двойное слепое плацебо-контролируемое рандомизированное клиническое исследование III фазы эффективности и безопасности препарата Эргоферон® для неспецифической профилактики COVID-19 у лиц, вакцинирующихся против новой коронавирусной инфекции (разрешение Минздрава России №559 от 22.09.2021; ClinicalTrials.gov Identifier: NCT05069649). Цель. Оценка эффективности и безопасности применения препарата Эргоферон® для неспецифической профилактики COVID-19 у вакцинирующихся против новой коронавирусной инфекции. Материалы и методы. С октября 2021 по апрель 2022 г. включено 1057 пациентов от 18 до 92 лет, которые получали компонент I вакцины «Гам-КОВИД-Вак». После скрининга 1050 пациентов рандомизированы в 2 группы: 526 человек получали Эргоферон® по профилактической схеме – 1 таблетка на прием 2 раза в день в течение 3 нед; 524 пациента – плацебо по схеме препарата Эргоферон®. Общая продолжительность участия в исследовании 5 нед + 3 дня. Первичная конечная точка – число лабораторно подтвержденных (полимеразной цепной реакцией с обратной транскрипцией) случаев SARS-CoV-2 инфекции за время участия в исследовании. Дополнительный критерий эффективности – доля госпитализированных с COVID-19. Оценка безопасности включала учет наличия и характера нежелательных явлений (НЯ), их степени тяжести, связи с приемом препарата, исход. Статистическая обработка данных проводилась с помощью SAS 9.4 c использованием точного критерия Фишера, χ2, критериев Кохрана–Мантеля–Хензеля (CMH), Вилкоксона и других параметров. Результаты. В ITT (Intention-to-treat) и [РР] (Per Protocol) анализ эффективности вошли данные 1050 [970] пациентов: 526 [489] человек группы препарата Эргоферон® и 524 [481] человек группы Плацебо. Число лабораторно подтвержденных случаев SARS-CoV-2 инфекции на фоне профилактического приема препарата Эргоферон® было в 3 раза меньше по сравнению с плацебо – 7 (1,43%) vs 22 (4,57%), соответственно (р=0,0046; [р=0,0041]). Профилактический прием препарата Эргоферон® в течение 3 нед более чем в 3 раза снижает риск заболевания SARS-CoV-2 инфекцией у вакцинирующихся в течение 5 нед (вакцинальный и поствакцинальный период; p=0,0046 [p=0,0041]). Из числа заболевших COVID-19 в группе препарата Эргоферон® после введения компонентов I и II вакцины (1,33%) ни один пациент не был госпитализирован. По данным Post hoc анализа, профилактический прием препарата Эргоферон® снижает в 4 раза риск заболеть COVID-19 в течение 3 нед между введением компонентов I и II вакцины «Гам-КОВИД-Вак» (р=0,0066 [р=0,006]). Количество НЯ и число пациентов с НЯ сопоставимо с группой Плацебо. Не выявлено ни одного НЯ с достоверной связью с приемом препарата. Отмечены высокий уровень приверженности пациентов терапии и хорошая переносимость. Заключение. Препарат Эргоферон® является эффективным и безопасным лекарственным средством профилактики COVID-19 у лиц, вакцинирующихся против новой коронавирусной инфекции.
Background. A multicenter, double-blind, placebo-controlled, randomized clinical trial (RCT) of the phase III efficacy and safety of Ergoferon® for the non-specific prevention of COVID-19 during vaccination against a new coronavirus infection was conducted (permission of the Ministry of Health of the Russian Federation №559 dated 22.09.2021; ClinicalTrials.gov Identifier: NCT05069649). Aim. To evaluate the efficacy and safety of the use of Ergoferon for the non-specific prevention of COVID-19 during vaccination against a new coronavirus infection. Materials and methods. From October 2021 to April 2022, 1,057 patients aged 18 to 92 years who received component I of the “Gam-COVID-Vac” vaccine were included. After screening, 1,050 patients were randomized into 2 groups: 526 people received Ergoferon according to the prophylactic scheme – 1 tablet per administration 2 times a day for 3 weeks, the drug is not allowed during the meal and should be kept in the mouth without swallowing, until completely dissolved; 524 patients received a placebo according to the Ergoferon® scheme. The total duration of participation in the study was 5 weeks + 3 days. The primary endpoint is the number of RT-PCR – confirmed cases of SARS-CoV-2 infection, regardless of the presence of symptoms during participation in the study. An additional criterion of effectiveness is the proportion of those hospitalized with COVID-19. The safety assessment included consideration of the presence and nature of adverse events (AEs), their severity, relationship with the drug intake, and outcome. Statistical data processing was carried out using SAS 9.4 with the calculation of the exact Fisher test, χ2 test, Cochrane–Mantel–Hensel test, Wilcoxon test and other parameters. Results. The ITT (Intention-to-treat) and PP [Per Protocol] efficacy analysis included data from 1,050 [970] patients: 526 [489] people – Ergoferon® group and 524 [481] people – Placebo group. The primary endpoint – the number of laboratory-confirmed cases of SARS-CoV-2 infections was 3 times less compared to placebo – 7 (1.43%) vs 22 (4.57%), respectively (p=0.0046; [p=0.0041]). Taking Ergoferon® reduces the risk of SARS-CoV-2 infection by more than 3 times in vaccinated patients during 5 weeks of the vaccination and post-vaccination periods (p=0.0046 [p=0.0041]). Of the COVID-19 patients in the Ergoferon® group (1.33%) nobody was hospitalized. According to the Post hoc analysis, Ergoferon® reduces the risk of COVID-19 disease by 4 times in the period between the components I and II of the “Gam-COVID-Vac” vaccine (p=0.0066 [p=0.006]). The frequency of AEs in both groups did not differ. There were no registered AEs associated with the drug with a reliable degree. There was a high level of patient compliance and good tolerability. Conclusion. Ergoferon is an effective and safe drug for the prevention of COVID-19 in people vaccinated against a new coronavirus infection.
1. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации. Версия 16 (18.08.2022). Режим доступа: http://www.consultant.ru/document/cons_doc_LAW_347896/ Ссылка активна на 15.10.2022 [Ministry of Health of the Russian Federation. Temporary guidelines “Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)”, version 16 (18.08.2022). Available at: https://static–0.minzdrav.gov.ru/system/attachments/attaches/000/058/075/original/%D0%92%D0%9C%D0%A0.... Accessed: 15.10.2022 (in Russian)].
2. Медуницын Н.В. Проблемы коррекции иммунитета при вакцинации. Иммунология. 2017;38(3):148-54 [Medunitsyn NV. The problem of correction of immunity in vaccination center of expertise of medical application. Immunologiya. 2017;38(3):148-54 (in Russian)]. DOI:10.18821/0206-4952-2017-38-3-148-154
3. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671-81. DOI:10.1016/S0140-6736(21)00234-8
4. Külper-Schiek W, Piechotta V, Pilic A, et al. Facing the Omicron variant-how well do vaccines protect against mild and severe COVID-19? Third interim analysis of a living systematic review. Front Immunol. 2022;13:940562. DOI:10.3389/fimmu.2022.940562
5. Brüssow H. COVID-19: vaccination problems. Environ Microbiol. 2021;23(6):2878-90. DOI:10.1111/1462-2920.15549
6. Weekly epidemiological update on COVID-19 – 26 October 2022. Edition 115. Available at: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---26-october-2022. Accessed: 03.11.2022.
7. Han X, Xu P, Ye Q. Analysis of COVID-19 vaccines: Types, thoughts, and application. J Clin Lab Anal. 2021;35(9):e23937. DOI:10.1002/jcla.23937
8. Epstein O. The Spatial Homeostasis Hypothesis. Symmetry. 2018;10:103. DOI:10.3390/sym10040103
9. Tarasov SA, Gorbunov EA, Don ES, et al. Insights into the Mechanism of Action of Highly Diluted Biologics. J Immunol. 2020;205(5):1345-54. DOI:10.4049/jimmunol.2000098
10. Woods KN. New insights into the microscopic interactions associated with the physical mechanism of action of highly diluted biologics. Sci Rep. 2021;11(1):13774. DOI:10.1038/s41598-021-93326-1
11. Penkov N, Penkova N. Analysis of Emission Infrared Spectra of Protein Solutions in Low Concentrations. Front Phys. 2020;8:624779. DOI:10.3389/fphy.2020.624779
12. Lobyshev VI. Evolution of High-Frequency Conductivity of Pure Water Samples Subjected to Mechanical Action: Effect of a Hypomagnetic Filed. Physics of Wave Phenomena. 2021;29:98-101. DOI:10.3103/S1541308X21020084
13. Gudkov SV, Penkov NV, Baimler IV, et al. Effect of Mechanical Shaking on the Physicochemical Properties of Aqueous Solutions. Int J Mol Sci. 2020;21(21):8033. DOI:10.3390/ijms21218033
14. Емельянова А.Г., Тарасов С.А., Морозов С.Г. Противовоспалительное действие релиз-активных антител к интерферону-гамма, CD4-рецептору и гистамину при респираторно-синцитиальной вирусной инфекции. Патогенез. 2019;17(1):85-9 [Emelianova AG, Tarasov SA, Morozov SG. Anti-inflammatory activity of released-active antibodies to interferon-gamma, CD4-receptor, and histamine against respiratory-syncytial viral infection]. Patogenez. 2019;17(1):85-9 (in Russian)].
15. Emel'yanova AG, Grechenko VV, Petrova NV, et al. Effects of Release-Active Antibodies to CD4 Receptor on the Level of lck-Kinase in Cultured Mononuclear Cells from Human Peripheral Blood. Bull Exp Biol Med. 2017;162(3):323-6. DOI:10.1007/s10517-017-3606-4
16. Емельянова А.Г. Иммунотропные эффекты комплексного препарата на основе антител к ИФН-гамма, CD4-рецептору и гистамину при респираторных инфекциях, вызываемых РНК-содержащими вирусами: aвтореф. дис. ... канд. биол. наук. Томск, 2021 [Emel’anova AG. Immunotropnye effekty kompleksnogo preparata na osnove antitel k IFN-gamma, CD4-retseptoru i gistaminu pri respiratornykh infektsiiakh, vyzyvaemykh RNK-soderzhashchimi virusami: autoref. dis. ... cand. biol. nauk. Tomsk, 2021 (in Russian)].
17. Горелов А.В., Геппе Н.А., Блохин Б.М., и др. Влияние иммуномодулирующей терапии на течение острых респираторных инфекций вирусной этиологии: метаанализ клинических исследований эффективности и безопасности препарата Эргоферон® в лечении гриппа и других острых респираторных вирусных инфекций. Вопросы практической педиатрии. 2021;16(4):83-97 [Gorelov АV, Geppe NА, Blokhin BM, et al. Impact of immunomodulation therapy on the course of acute viral respiratory infections: a meta-analysis of clinical trials assessing the efficacy and safety of Ergoferon in the treatment of influenza and other acute respiratory viral infections. Clinical Practice in Pediatrics. 2021;16(4):83-97 (in Russian)]. DOI:10.20953/1817-7646-2021-4-83-97
18. База данных клинических исследований национальной медицинской библиотеки США. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT05069649?term=Ergoferon&draw=2&rank=2. Ссылка активна на 15.10.2022 [Database of clinical trials of National library of medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT05069649?term=Ergoferon&draw=2&rank=2. Accessed: 15.10.2020].
19. Bonifacius A, Tischer-Zimmermann S, Dragon AC, et al. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity. 2021;54(2):340-54.e6. DOI:10.1016/j.immuni.2021.01.008
20. Burton AR, Maini MK. Human antiviral B cell responses: Emerging lessons from hepatitis B and COVID-19. Immunol Rev. 2021;299(1):108-17. DOI:10.1111/imr.12953
21. Калюжин О.В., Андронова Т.М., Караулов А.В. БЦЖ, мурамилпептиды, тренированный иммунитет (часть II): низкомолекулярная альтернатива многокомпонентным бактериальным иммуностимуляторам для профилактики респираторных инфекций в условиях пандемии COVID-19. Терапевтический архив. 2021;93(1):108-13 [Kalyuzhin OV, Andronova TM, Karaulov AV. BCG, muramylpeptides, trained immunity (part II): a low molecular weight alternative to multicomponent bacterial immunostimulants for prevention of respiratory infections during a pandemic. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(1):108-13 (in Russian)]. DOI:10.26442/00403660.2021.01.200554
________________________________________________
1. Ministry of Health of the Russian Federation. Temporary guidelines “Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)”, version 16 (18.08.2022). Available at: https://static–0.minzdrav.gov.ru/system/attachments/attaches/000/058/075/original/%D0%92%D0%9C%D0%A0.... Accessed: 15.10.2022 (in Russian).
2. Medunitsyn NV. The problem of correction of immunity in vaccination center of expertise of medical application. Immunologiya. 2017;38(3):148-54 (in Russian).
DOI:10.18821/0206-4952-2017-38-3-148-154
3. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671-81. DOI:10.1016/S0140-6736(21)00234-8
4. Külper-Schiek W, Piechotta V, Pilic A, et al. Facing the Omicron variant-how well do vaccines protect against mild and severe COVID-19? Third interim analysis of a living systematic review. Front Immunol. 2022;13:940562. DOI:10.3389/fimmu.2022.940562
5. Brüssow H. COVID-19: vaccination problems. Environ Microbiol. 2021;23(6):2878-90. DOI:10.1111/1462-2920.15549
6. Weekly epidemiological update on COVID-19 – 26 October 2022. Edition 115. Available at: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---26-october-2022. Accessed: 03.11.2022.
7. Han X, Xu P, Ye Q. Analysis of COVID-19 vaccines: Types, thoughts, and application. J Clin Lab Anal. 2021;35(9):e23937. DOI:10.1002/jcla.23937
8. Epstein O. The Spatial Homeostasis Hypothesis. Symmetry. 2018;10:103. DOI:10.3390/sym10040103
9. Tarasov SA, Gorbunov EA, Don ES, et al. Insights into the Mechanism of Action of Highly Diluted Biologics. J Immunol. 2020;205(5):1345-54. DOI:10.4049/jimmunol.2000098
10. Woods KN. New insights into the microscopic interactions associated with the physical mechanism of action of highly diluted biologics. Sci Rep. 2021;11(1):13774. DOI:10.1038/s41598-021-93326-1
11. Penkov N, Penkova N. Analysis of Emission Infrared Spectra of Protein Solutions in Low Concentrations. Front Phys. 2020;8:624779. DOI:10.3389/fphy.2020.624779
12. Lobyshev VI. Evolution of High-Frequency Conductivity of Pure Water Samples Subjected to Mechanical Action: Effect of a Hypomagnetic Filed. Physics of Wave Phenomena. 2021;29:98-101. DOI:10.3103/S1541308X21020084
13. Gudkov SV, Penkov NV, Baimler IV, et al. Effect of Mechanical Shaking on the Physicochemical Properties of Aqueous Solutions. Int J Mol Sci. 2020;21(21):8033. DOI:10.3390/ijms21218033
14. Emelianova AG, Tarasov SA, Morozov SG. Anti-inflammatory activity of released-active antibodies to interferon-gamma, CD4-receptor, and histamine against respiratory-syncytial viral infection]. Patogenez. 2019;17(1):85-9 (in Russian).
15. Emel'yanova AG, Grechenko VV, Petrova NV, et al. Effects of Release-Active Antibodies to CD4 Receptor on the Level of lck-Kinase in Cultured Mononuclear Cells from Human Peripheral Blood. Bull Exp Biol Med. 2017;162(3):323-6. DOI:10.1007/s10517-017-3606-4
16. Emel’anova AG. Immunotropnye effekty kompleksnogo preparata na osnove antitel k IFN-gamma, CD4-retseptoru i gistaminu pri respiratornykh infektsiiakh, vyzyvaemykh RNK-soderzhashchimi virusami: autoref. dis. ... cand. biol. nauk. Tomsk, 2021 (in Russian).
17. Gorelov АV, Geppe NА, Blokhin BM, et al. Impact of immunomodulation therapy on the course of acute viral respiratory infections: a meta-analysis of clinical trials assessing the efficacy and safety of Ergoferon in the treatment of influenza and other acute respiratory viral infections. Clinical Practice in Pediatrics. 2021;16(4):83-97 (in Russian). DOI:10.20953/1817-7646-2021-4-83-97
18. Database of clinical trials of National library of medicine. Available at: https://clinicaltrials.gov/ct2/show/NCT05069649?term=Ergoferon&draw=2&rank=2. Accessed: 15.10.2020.
19. Bonifacius A, Tischer-Zimmermann S, Dragon AC, et al. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity. 2021;54(2):340-54.e6. DOI:10.1016/j.immuni.2021.01.008
20. Burton AR, Maini MK. Human antiviral B cell responses: Emerging lessons from hepatitis B and COVID-19. Immunol Rev. 2021;299(1):108-17. DOI:10.1111/imr.12953
21. Kalyuzhin OV, Andronova TM, Karaulov AV. BCG, muramylpeptides, trained immunity (part II): a low molecular weight alternative to multicomponent bacterial immunostimulants for prevention of respiratory infections during a pandemic. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(1):108-13 (in Russian). DOI:10.26442/00403660.2021.01.200554
1 ФГБОУ ВО «Кубанский государственный медицинский университет» Минздрава России, Краснодар, Россия;
2 ФГАОУ ВО «Белгородский государственный национальный исследовательский университет», Белгород, Россия;
3 Пензенский институт усовершенствования врачей – филиал ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Пенза, Россия;
4 ФГБОУ ВО «Казанский государственный медицинский университет» Минздрава России, Казань, Россия;
5 ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского» Минздрава России, Саратов, Россия
*avdeevam@mail.ru
________________________________________________
Marina G. Avdeeva*1, Oksana N. Belousova2, Ekaterina A. Orlova3, Rustem F. Khamitov4, Yury G. Shvarts5, Irina E. Kravchenko4
1 Kuban State Medical University, Krasnodar, Russia;
2 Belgorod State National Research University, Belgorod, Russia;
3 Penza State Institute for Postgraduate Medical Education – branch of the Russian Medical Academy of Continuous Professional Education, Penza, Russia;
4 Kazan State Medical University, Kazan, Russia;
5 Razumovsky Saratov State Medical University, Saratov, Russia
*avdeevam@mail.ru