Цель. Определить частоту и факторы риска развития острого почечного повреждения (ОПП) у пациентов с COVID-19 в российской когорте больных. Материалы и методы. В исследование включены 315 пациентов с новой коронавирусной инфекцией COVID-19, которые находились на стационарном лечении в период с октября 2020 по февраль 2021 г. Диагноз установлен на основании положительного результата полимеразной цепной реакции мазка из рото- и носоглотки на SARS-CoV-2 и/или типичной рентгенологической картины по данным компьютерной томографии органов грудной клетки. Результаты. ОПП осложнило течение основного заболевания у 92 (29,21%) из 315 пациентов. Независимыми факторами риска развития ОПП стали женский пол, наличие хронической болезни почек и максимальный уровень С-реактивного белка за время госпитализации. В общей группе пациентов умер 41 (13%) человек, в группе ОПП – 32 (34,8%) пациента. Отношение рисков смерти (hazard ratio) для пациентов с ОПП по сравнению с лицами с отсутствием ОПП составило 4,065 (95% доверительный интервал 2,154–7,671), p<0,001. Факторами риска наступления смерти среди пациентов с ОПП в многофакторной регрессии Кокса оказались потребность в оксигенотерапии, максимальный уровень креатинина и глюкозы сыворотки крови. Заключение. ОПП в 29% случаев осложнило течение коронавирусной инфекции COVID-19. Независимыми факторами риска развития ОПП у больных COVID-19 являются наличие хронической болезни почек, декомпенсация сердечной недостаточности и максимальный подъем концентрации С-реактивного белка в ходе госпитализации.
Aim. To determine the incidence and risk factors of acute kidney injury (AKI) in Russian cohort of patients with COVID-19. Materials and methods. We included 315 patients, who were hospitalized with COVID-19 from October 2020 till February 2021. The diagnosis was established on the basis of the positive SARS-CoV-2 swab test and/or typical radiologic findings on CT scans. Results. AKI complicated the clinical course in 92 (29.21%) cases. The independent risk factors of AKI were female sex, underline chronic kidney disease and the highest level of C-reactive protein during hospitalization. In the general group of patients were 41 (13%) lethal cases, in the group with AKI – 32 (34.8%). Compared with those without AKI, patients with AKI had 4.065 (95% confidence interval 2.154 to 7.671) times the odds of death. Respiratory support, the highest serum creatinine and glucose levels appeared to be the risk factors of death among patients with AKI in the multivariable Cox regression. Conclusion. The clinical course of COVID-19 was complicated by AKI in 29% cases. The independent risk factors of AKI in patients with COVID-19 are underline chronic kidney disease, circulatory disorder and the highest level of C-reactive protein during hospitalization.
1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-54. DOI:10.1038/s41579-020-00459-7
2. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4. DOI:10.1038/nature02145
3. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. DOI:10.1016/S0140-6736(20)30251-8
4. Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98(1):209-18. DOI:10.1016/j.kint.2020.05.006
5. Diao B, Wang C, Wang R, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat Commun. 2021;12(1):2506.
DOI:10.1038/s41467-021-22781-1
6. Li Z, Wu M, Guo J, et al. Caution on kidney dysfunctions of 2019-nCoV patients. medRxiv. 2020. DOI:10.1101/2020.02.08.20021212
7. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061‑9. DOI:10.1001/jama.2020.1585
8. Lin L, Wang X, Ren J, et al. Risk factors and prognosis for COVID-19-induced acute kidney injury: a meta-analysis. BMJ Open. 2020;10(11):e042573.
DOI:10.1136/bmjopen-2020-042573
9. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int, Suppl. 2012;2(1):1-138. Available at: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf. Accessed: 10.06.2022.
10. Mohamed MMB, Lukitsch I, Torres-Ortiz AE, et al. Acute kidney injury associated with coronavirus disease 2019 in urban New Orleans. Kidney360. 2020;1(7):614-22. DOI:10.34067/KID.0002652020
11. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052-9. DOI:10.1001/jama.2020.6775. Erratum in: JAMA. 2020;323(20):2098.
12. Sullivan MK, Lees JS, Drake TM, et al. Acute kidney injury in patients hospitalised with COVID-19 from the ISARIC WHO CCP-UK Study: a prospective, multicentre cohort study. Nephrol Dial Transplant. 2022;37(2):271‑84. DOI:10.1093/ndt/gfab303
13. Fang Z, Gao C, Cai Y, et al. A validation study of UCSD-Mayo risk score in predicting hospital-acquired acute kidney injury in COVID-19 patients. Ren Fail. 2021;43(1):1115-23. DOI:10.1080/0886022X.2021.1948429
14. Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219-27.
DOI:10.1016/j.kint.2020.04.003
15. Sharma P, Uppal NN, Wanchoo R, et al. COVID-19-associated kidney injury: A case series of kidney biopsy findings. J Am Soc Nephrol. 2020;31(9):1948-58.
DOI:10.1681/ASN.2020050699
16. Li XQ, Liu H, Meng Y, et al. Critical roles of cytokine storm and secondary bacterial infection in acute kidney injury development in COVID-19: A multi-center retrospective cohort study. J Med Virol. 2021;93(12):6641-52. DOI:10.1002/jmv.27234
17. Zhou Y, Lu K, Pfefferle S. A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms. J Virol. 2010;84(17):8753-64. DOI:10.1128/JVI.00554-10
18. Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection. Front Cardiovasc Med. 2019;6:85. DOI:10.3389/fcvm.2019.00085
19. van den Akker JP, Egal M, Groeneveld AB. Invasive mechanical ventilation as a risk factor for acute kidney injury in the critically ill: a systematic review and meta‐analysis. Crit Care. 2013;17(3):R98. DOI:10.1186/cc12743
20. Tram N, Chiodini B, Montesinos I, et al. Rhabdomyolysis and acute kidney injury as leading COVID-19 presentation in an adolescent. Pediatr Infect Dis J. 2020;39(10):e314‑5. DOI:10.1097/INF.0000000000002853
________________________________________________
1. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141-54. DOI:10.1038/s41579-020-00459-7
2. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4. DOI:10.1038/nature02145
3. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. DOI:10.1016/S0140-6736(20)30251-8
4. Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98(1):209-18. DOI:10.1016/j.kint.2020.05.006
5. Diao B, Wang C, Wang R, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat Commun. 2021;12(1):2506.
DOI:10.1038/s41467-021-22781-1
6. Li Z, Wu M, Guo J, et al. Caution on kidney dysfunctions of 2019-nCoV patients. medRxiv. 2020. DOI:10.1101/2020.02.08.20021212
7. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061‑9. DOI:10.1001/jama.2020.1585
8. Lin L, Wang X, Ren J, et al. Risk factors and prognosis for COVID-19-induced acute kidney injury: a meta-analysis. BMJ Open. 2020;10(11):e042573.
DOI:10.1136/bmjopen-2020-042573
9. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int, Suppl. 2012;2(1):1-138. Available at: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf. Accessed: 10.06.2022.
10. Mohamed MMB, Lukitsch I, Torres-Ortiz AE, et al. Acute kidney injury associated with coronavirus disease 2019 in urban New Orleans. Kidney360. 2020;1(7):614-22. DOI:10.34067/KID.0002652020
11. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052-9. DOI:10.1001/jama.2020.6775. Erratum in: JAMA. 2020;323(20):2098.
12. Sullivan MK, Lees JS, Drake TM, et al. Acute kidney injury in patients hospitalised with COVID-19 from the ISARIC WHO CCP-UK Study: a prospective, multicentre cohort study. Nephrol Dial Transplant. 2022;37(2):271‑84. DOI:10.1093/ndt/gfab303
13. Fang Z, Gao C, Cai Y, et al. A validation study of UCSD-Mayo risk score in predicting hospital-acquired acute kidney injury in COVID-19 patients. Ren Fail. 2021;43(1):1115-23. DOI:10.1080/0886022X.2021.1948429
14. Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219-27.
DOI:10.1016/j.kint.2020.04.003
15. Sharma P, Uppal NN, Wanchoo R, et al. COVID-19-associated kidney injury: A case series of kidney biopsy findings. J Am Soc Nephrol. 2020;31(9):1948-58.
DOI:10.1681/ASN.2020050699
16. Li XQ, Liu H, Meng Y, et al. Critical roles of cytokine storm and secondary bacterial infection in acute kidney injury development in COVID-19: A multi-center retrospective cohort study. J Med Virol. 2021;93(12):6641-52. DOI:10.1002/jmv.27234
17. Zhou Y, Lu K, Pfefferle S. A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms. J Virol. 2010;84(17):8753-64. DOI:10.1128/JVI.00554-10
18. Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection. Front Cardiovasc Med. 2019;6:85. DOI:10.3389/fcvm.2019.00085
19. van den Akker JP, Egal M, Groeneveld AB. Invasive mechanical ventilation as a risk factor for acute kidney injury in the critically ill: a systematic review and meta‐analysis. Crit Care. 2013;17(3):R98. DOI:10.1186/cc12743
20. Tram N, Chiodini B, Montesinos I, et al. Rhabdomyolysis and acute kidney injury as leading COVID-19 presentation in an adolescent. Pediatr Infect Dis J. 2020;39(10):e314‑5. DOI:10.1097/INF.0000000000002853
1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2 ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», Москва, Россия
*anastasia.schepalina@yandex.ru
________________________________________________
Anastasia A. Shchepalina*1, Natalia V. Chebotareva1, Aram A. Kitbalian1,2, Pavel P. Potapov1,2, Anna A. Nartova1, Larisa A. Akulkina1, Mikhail Yu. Brovko1, Viсtoria I. Sholomova1, Sergey V. Moiseev1,2
1 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2 Lomonosov Moscow State University, Moscow, Russia
*anastasia.schepalina@yandex.ru