Yamoldinov NR, Dudarev MV, Sarksyan DS, Maleev VV. Сardiac arrhythmias in people who have had a coronavirus infection COVID-19: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(11):991–995.
DOI: 10.26442/00403660.2023.11.202480
Нарушения ритма сердца у лиц, перенесших коронавирусную инфекцию COVID-19
Ямолдинов Н.Р., Дударев М.В., Сарксян Д.С., Малеев В.В. Нарушения ритма сердца у лиц, перенесших коронавирусную инфекцию COVID-19. Терапевтический архив. 2023;95(11):991–995.
DOI: 10.26442/00403660.2023.11.202480
Yamoldinov NR, Dudarev MV, Sarksyan DS, Maleev VV. Сardiac arrhythmias in people who have had a coronavirus infection COVID-19: A review. Terapevticheskii Arkhiv (Ter. Arkh.). 2023;95(11):991–995.
DOI: 10.26442/00403660.2023.11.202480
Нарушения ритма сердца (НРС) являются одними из наиболее распространенных осложнений коронавирусной инфекции. НРС могут развиваться у 6–17% госпитализированных больных, а у реконвалесцентов COVID-19 способны проявляться и через 12 мес по завершении острой фазы заболевания. Среди механизмов развития НРС выделяют прямое цитопатическое действие SARS-CoV-2 на миокард, синдром системной воспалительной реакции, нарушение электролитного баланса, гипоксию, прием антибактериальных, противомалярийных и противовирусных препаратов, экссудативный перикардит, вегетативную дисфункцию. Основные COVID-19-опосредованные НРС представлены синусовой тахикардией и брадикардией, фибрилляцией предсердий, желудочковой тахикардией, синдромом удлинения QT. Несмотря на значительный объем исследований, литературные данные относительно распространенности тех или иных разновидностей НРС (особенно у реконвалесцентов COVID-19), а также методов их коррекции несколько противоречивы и нуждаются в уточнении. Учитывая влияние аритмии на качество жизни и смертность, активное наблюдение за реконвалесцентами коронавирусной инфекции, выявление и разработка подходов к терапии НРС у лиц, перенесших COVID-19, представляются актуальными и перспективными направлениями в современной кардиологии.
Ключевые слова: COVID-19, постковидный синдром, нарушения ритма сердца
________________________________________________
Heart rhythm disorders are one of the most common complications of coronavirus infection. Heart rhythm disorders can develop in 6–17% of hospitalized patients, and in convalescents, COVID-19 can manifest itself up to 12 months after the completion of the acute phase of the disease. Among the mechanisms for the development of cardiac arrhythmias, there are a direct cytopathic effect of SARS-CoV-2 on the myocardium, systemic inflammatory response syndrome, electrolyte imbalance, hypoxia, the use of antibacterial, antimalarial and antiviral drugs, exudative pericarditis, autonomic dysfunction. The main COVID-19-mediated heart rhythm disorders are sinus tachycardia and bradycardia, atrial fibrillation, ventricular tachycardia, long QT syndrome. Despite a significant amount of research, the literature data on the prevalence of certain types of cardiac arrhythmias (especially in COVID-19 convalescents), as well as methods for their correction, are somewhat contradictory and need to be clarified. Taking into account the impact of arrhythmia on the quality of life and mortality, active monitoring of convalescents of coronavirus infection, identification and development of approaches to the treatment of heart rhythm disorders in patients who have had COVID-19, seem to be relevant and promising areas in modern cardiology.
1. Malaty M, Kayes T, Amarasekera AT, et al. Incidence and treatment of arrhythmias secondary to coronavirus infection in humans: A systematic review. Eur J Clin Investig. 2021;51(2):e13428. DOI:10.1111/eci.13428
2. Manolis AS, Manolis AA, Manolis TA, et al. COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc Med. 2020;30(8):451-60. DOI:10.1016/j.tcm.2020.08.002
3. Sala S, Peretto G, De Luca G, et al. Low prevalence of arrhythmias in clinically stable COVID-19 patients. PACE. 2020;43(8):891-3. DOI:10.1111/pace.13987
4. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. DOI:10.1001/jama.2020.1585
5. Huang L, Yao Q, Gu X, et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet (London, England). 2021;398(10302):747-58.
DOI:10.1016/S0140-6736(21)01755-4
6. Lippi G, Sanchis-Gomar F, Henry BM. COVID-19 and its long-term sequelae: what do we know in 2023? Pol Arch Intern Med. 2023;16402. DOI:10.20452/pamw.16402
7. Magnusson K, Kristoffersen DT, Dell'Isola A, et al. Post-COVID medical complaints following infection with SARS-CoV-2 Omicron vs Delta variants. Nat Commun. 2022;13(1):7363. DOI:10.1038/s41467-022-35240-2
8. Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet (London, England). 2022;399(10335):1618-24. DOI:10.1016/S0140-6736(22)00327-0
9. Lazaridis C, Vlachogiannis NI, Bakogiannis C, et al. Involvement of cardiovascular system as the critical point in coronavirus disease 2019 (COVID-19) prognosis and recovery. Hellenic J Cardiol. 2020;61(6):381-95. DOI:10.1016/j.hjc.2020.05.004
10. Ehrlich H, Elkbuli A. Cardiac arrhythmias in COVID-19 patients: A combination of viral comorbidities and pro-arrhythmic drug interactions. Am J Emerg Med. 2021;48:363-4. DOI:10.1016/j.ajem.2021.01.077
11. Gopinathannair R, Merchant FM, Lakkireddy DR, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020;59(2):329-36. DOI:10.1007/s10840-020-00789-9
12. Duckheim M, Schreieck J. COVID-19 and Cardiac Arrhythmias. Hamostaseologie. 2021;41(5):372-8. DOI:10.1055/a-1581-6881
13. Сукмарова З.Н., Саидова М.А., Овчинников Ю.В. Экссудативный перикардит в патогенезе нарушений ритма сердца при COVID-19: серия клинических случаев. Кардиоваскулярная терапия и профилактика. 2022;21(2):3021 [Sukmarova ZN, Saidova MA, Ovchinnicov YuV. Effusive pericarditis in the pathogenesis of cardiac arrhythmias in COVID-19: a case series. Kardiovaskuliarnaia terapiia i profilaktika. 2022;21(2):3021 (in Russian)]. DOI:10.15829/1728-8800-2022-3021
14. Aranyó J, Bazan V, Lladós G, et al. Inappropriate sinus tachycardia in post-COVID-19 syndrome. Sci Rep. 2022;12(1):298. DOI:10.1038/s41598-021-03831-6
15. Dani M, Dirksen A, Taraborrelli P, et al. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (London, England). 2021;21(1):e63-7. DOI:10.7861/clinmed.2020-0896
16. Hana D, Patel K, Roman S, et al. Clinical Cardiovascular Adverse Events Reported Post-COVID-19 Vaccination: Are They a Real Risk? Curr Probl Cardiol. 2022;47(3):101077. DOI:10.1016/j.cpcardiol.2021.101077
17. Vodička S, Zelko E. Differences in Treating Patients with Palpitations at the Primary Healthcare Level Using Telemedical Device Savvy before and during the COVID-19 Pandemic. Micromachines. 2022;13(8):1176. DOI:10.3390/mi13081176
18. Shiravi AA, Ardekani A, Sheikhbahaei E, Heshmat-Ghahdarijani K. Cardiovascular Complications of SARS-CoV-2 Vaccines: An Overview. Cardiol Ther. 2022;11(1):13-21. DOI:10.1007/s40119-021-00248-0
19. Capoferri G, Osthoff M, Egli A, et al. Relative bradycardia in patients with COVID-19. Clin Microbiol Infect Dis. 2021;27(2):295-6. DOI:10.1016/j.cmi.2020.08.013
20. Jung LY, Kim JM, Ryu S, Lee CS. Relative bradycardia in patients with COVID-19. In J Arrhythmia. 2022;23(1):22. DOI:10.1186/s42444-022-00073-z
21. Touafchia A, Bagheri H, Carrié D, et al. Serious bradycardia and remdesivir for coronavirus 2019 (COVID-19): a new safety concerns. Clin Microbiol Infect Dis. 2021;27(5):791.e5-8. DOI:10.1016/j.cmi.2021.02.013
22. Жарикова Е.В., Куклина Э.А., Загреков В.И., и др. Причины брадикардии при COVID-19: цитокиновый шторм или противовоспалительная терапия? Трудный пациент. 2021;19(7):35-9 [Zharikova EV, Kuklina EA, Zagrekov VI, et al. Causes of bradycardia in COVID-19: cytokine storm or anti-inflammatory therapy? Trudnyi pacient. 2021;19(7):35-9 (in Russian)]. DOI:10.224412/2074-10052021-7-35-39
23. Zuin M, Rigatelli G, Bilato C, et al. Pre-existing atrial fibrillation is associated with increased mortality in COVID-19 Patients. J Interv Card Electrophysiol. 2021;62(2):231-8. DOI:10.1007/s10840-021-00992-2
24. Chen MY, Xiao FP, Kuai L, et al. Outcomes of atrial fibrillation in patients with COVID-19 pneumonia: A systematic review and meta-analysis. Am J Emerg Med. 2021;50:661-9. DOI:10.1016/j.ajem.2021.09.050
25. Abrams MP, Wan EY, Waase MP, et al. Clinical and cardiac characteristics of COVID-19 mortalities in a diverse New York City Cohort. J Cardiovasc Electrophysiol.
2020;31(12):3086-96. DOI:10.1111/jce.14772
26. Nabati M, Parsaee H. Potential Cardiotoxic Effects of Remdesivir on Cardiovascular System: A Literature Review. Cardiovasc Toxicol. 2022;22(3):268-72.
DOI:10.1007/s12012-021-09703-9
27. Colon CM, Barrios JG, Chiles JW, et al. Atrial Arrhythmias in COVID-19 Patients. JACC. Clin Electrophysiol. 2020;6(9):1189-90. DOI:10.1016/j.jacep.2020.05.015
28. Bistrovic P, Manola S, Papic I, et al. Atrial fibrillation in COVID-19 patients receiving remdesivir, matched case-control analysis. Am J Emerg Med. 2022;59:182-3. DOI:10.1016/j.ajem.2022.04.051
29. Вахненко Ю.В., Доровских И.Е., Домке А.П. Кардиоваскулярная составляющая постковидного синдрома. Тихоокеанский медицинский журнал. 2022;(1):56-64 [Vakhnenko YV, Dorovskikh IE, Domke AP. Cardiovascular component of post-COVID-19-syndrome. Tihookeanskii medicinskii zhurnal. 2022;(1):56-64 (in Russian)].
DOI:10.34215/1609-1175-2022-1-56-64
30. Подзолков В.И., Брагина А.Е., Тарзиманова А.И., и др. Постковидный синдром и тахикардия: теоретические основы и опыт лечения. Рациональная фармакотерапия в кардиологии. 2021;17(2):256-62 [Podzolkov VI, Bragina AE, Tarzimanova AI, et al. Post-COVID Syndrome and Tachycardia: Theoretical Base and Treatment Experience. Racional'naia farmakoterapiia v kardiologii. 2021;17(2):256-62 (in Russian)]. DOI:10.20996/1819-6446-2021-04-08
31. Guzman-Esquivel J, Mendoza-Hernandez MA, Guzman-Solorzano HP, et al. Clinical Characteristics in the Acute Phase of COVID-19 That Predict Long COVID: Tachycardia, Myalgias, Severity, and Use of Antibiotics as Main Risk Factors, While Education and Blood Group B Are Protective. Healthcare (Basel, Switzerland). 2023;11(2):197. DOI:10.3390/healthcare11020197
32. Ståhlberg M, Reistam U, Fedorowski A, et al. Post-COVID-19 Tachycardia Syndrome: A Distinct Phenotype of Post-Acute COVID-19 Syndrome. Am J Med. 2021;134(12):1451-6. DOI:10.1016/j.amjmed.2021.07.004
33. Chadda KR, Blakey EE, Huang CL, Jeevaratnam K. Long COVID-19 and Postural Orthostatic Tachycardia Syndrome – Is Dysautonomia to Be Blamed? Front Cardiovasc Med. 2022;9:860198. DOI:10.3389/fcvm.2022.860198
34. Трисветова Е.Л. Синдром постуральной ортостатической тахикардии как проявление постковидного синдрома. Рациональная фармакотерапия в кардиологии. 2022;18(2):200-8 [Trisvetova EL. Postural Orthostatic Tachycardia Syndrome as a Manifestation of Post-COVID-19 Syndrome. Racional'naia farmakoterapiia v kardiologii. 2022;18(2):200-8 (in Russian)]. DOI:10.20996/1819-6446-2022-04-11
35. Tarantino N, Della Rocca DG, Zou F, et al. Prevalence, Outcomes, and Management of Ventricular Arrhythmias in COVID-19 Patients. Card Electrophysiol Clin. 2022;14(1):11-20. DOI:10.1016/j.ccep.2021.10.002
36. Melchior SE, Schoos MM, Gang U, et al. Recurring episodes of bundle branch reentry ventricular tachycardia due to aortitis preceded by SARS-CoV-2 infection: a case report. BMC Cardiovasc Disord. 2023;23(1):46. DOI:10.1186/s12872-023-03080-7
37. Singh B, Ryan H, Kredo T, et al. Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19. Cochrane Database Syst Rev. 2021;2(2):CD013587. DOI:10.1002/14651858.CD013587.pub2
38. Diaz-Arocutipa C, Brañez-Condorena A, Hernandez AV. QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: A systematic review and meta-analysis. Pharmacoepidemiol Drug Safety. 2021;30(6):694-706. DOI:10.1002/pds.5234
39. Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med. 2020;17(12):e1003501. DOI:10.1371/journal.pmed.1003501
40. Чистякова М.В., Зайцев Д.Н., Говорин А.В., и др. «Постковидный» синдром: морфо-функциональные изменения и нарушения ритма сердца. Российский кардиологический журнал. 2021;26(7):4485 [Chistyakova MV, Zaitsev DN, Govorin AV, et al. Post-COVID-19 syndrome: morpho-functional abnormalities of the heart and arrhythmias. Rossiiskii kardiologicheskii zhurnal. 2021;26(7):4485 (in Russian)]. DOI:10.15829/1560-4071-2021-4485
41. Banai A, Szekely Y, Lupu L, et al. QT Interval Prolongation Is a Novel Predictor of 1-Year Mortality in Patients With COVID-19 Infection. Front Cardiovasc Med. 2022;9:869089. DOI:10.3389/fcvm.2022.869089
________________________________________________
1. Malaty M, Kayes T, Amarasekera AT, et al. Incidence and treatment of arrhythmias secondary to coronavirus infection in humans: A systematic review. Eur J Clin Investig. 2021;51(2):e13428. DOI:10.1111/eci.13428
2. Manolis AS, Manolis AA, Manolis TA, et al. COVID-19 infection and cardiac arrhythmias. Trends Cardiovasc Med. 2020;30(8):451-60. DOI:10.1016/j.tcm.2020.08.002
3. Sala S, Peretto G, De Luca G, et al. Low prevalence of arrhythmias in clinically stable COVID-19 patients. PACE. 2020;43(8):891-3. DOI:10.1111/pace.13987
4. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. DOI:10.1001/jama.2020.1585
5. Huang L, Yao Q, Gu X, et al. 1-year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet (London, England). 2021;398(10302):747-58.
DOI:10.1016/S0140-6736(21)01755-4
6. Lippi G, Sanchis-Gomar F, Henry BM. COVID-19 and its long-term sequelae: what do we know in 2023? Pol Arch Intern Med. 2023;16402. DOI:10.20452/pamw.16402
7. Magnusson K, Kristoffersen DT, Dell'Isola A, et al. Post-COVID medical complaints following infection with SARS-CoV-2 Omicron vs Delta variants. Nat Commun. 2022;13(1):7363. DOI:10.1038/s41467-022-35240-2
8. Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet (London, England). 2022;399(10335):1618-24. DOI:10.1016/S0140-6736(22)00327-0
9. Lazaridis C, Vlachogiannis NI, Bakogiannis C, et al. Involvement of cardiovascular system as the critical point in coronavirus disease 2019 (COVID-19) prognosis and recovery. Hellenic J Cardiol. 2020;61(6):381-95. DOI:10.1016/j.hjc.2020.05.004
10. Ehrlich H, Elkbuli A. Cardiac arrhythmias in COVID-19 patients: A combination of viral comorbidities and pro-arrhythmic drug interactions. Am J Emerg Med. 2021;48:363-4. DOI:10.1016/j.ajem.2021.01.077
11. Gopinathannair R, Merchant FM, Lakkireddy DR, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020;59(2):329-36. DOI:10.1007/s10840-020-00789-9
12. Duckheim M, Schreieck J. COVID-19 and Cardiac Arrhythmias. Hamostaseologie. 2021;41(5):372-8. DOI:10.1055/a-1581-6881
13. Sukmarova ZN, Saidova MA, Ovchinnicov YuV. Effusive pericarditis in the pathogenesis of cardiac arrhythmias in COVID-19: a case series. Kardiovaskuliarnaia terapiia i profilaktika. 2022;21(2):3021 (in Russian). DOI:10.15829/1728-8800-2022-3021
14. Aranyó J, Bazan V, Lladós G, et al. Inappropriate sinus tachycardia in post-COVID-19 syndrome. Sci Rep. 2022;12(1):298. DOI:10.1038/s41598-021-03831-6
15. Dani M, Dirksen A, Taraborrelli P, et al. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (London, England). 2021;21(1):e63-7. DOI:10.7861/clinmed.2020-0896
16. Hana D, Patel K, Roman S, et al. Clinical Cardiovascular Adverse Events Reported Post-COVID-19 Vaccination: Are They a Real Risk? Curr Probl Cardiol. 2022;47(3):101077. DOI:10.1016/j.cpcardiol.2021.101077
17. Vodička S, Zelko E. Differences in Treating Patients with Palpitations at the Primary Healthcare Level Using Telemedical Device Savvy before and during the COVID-19 Pandemic. Micromachines. 2022;13(8):1176. DOI:10.3390/mi13081176
18. Shiravi AA, Ardekani A, Sheikhbahaei E, Heshmat-Ghahdarijani K. Cardiovascular Complications of SARS-CoV-2 Vaccines: An Overview. Cardiol Ther. 2022;11(1):13-21. DOI:10.1007/s40119-021-00248-0
19. Capoferri G, Osthoff M, Egli A, et al. Relative bradycardia in patients with COVID-19. Clin Microbiol Infect Dis. 2021;27(2):295-6. DOI:10.1016/j.cmi.2020.08.013
20. Jung LY, Kim JM, Ryu S, Lee CS. Relative bradycardia in patients with COVID-19. In J Arrhythmia. 2022;23(1):22. DOI:10.1186/s42444-022-00073-z
21. Touafchia A, Bagheri H, Carrié D, et al. Serious bradycardia and remdesivir for coronavirus 2019 (COVID-19): a new safety concerns. Clin Microbiol Infect Dis. 2021;27(5):791.e5-8. DOI:10.1016/j.cmi.2021.02.013
22. Zharikova EV, Kuklina EA, Zagrekov VI, et al. Causes of bradycardia in COVID-19: cytokine storm or anti-inflammatory therapy? Trudnyi pacient. 2021;19(7):35-9 (in Russian). DOI:10.224412/2074-10052021-7-35-39
23. Zuin M, Rigatelli G, Bilato C, et al. Pre-existing atrial fibrillation is associated with increased mortality in COVID-19 Patients. J Interv Card Electrophysiol. 2021;62(2):231-8. DOI:10.1007/s10840-021-00992-2
24. Chen MY, Xiao FP, Kuai L, et al. Outcomes of atrial fibrillation in patients with COVID-19 pneumonia: A systematic review and meta-analysis. Am J Emerg Med. 2021;50:661-9. DOI:10.1016/j.ajem.2021.09.050
25. Abrams MP, Wan EY, Waase MP, et al. Clinical and cardiac characteristics of COVID-19 mortalities in a diverse New York City Cohort. J Cardiovasc Electrophysiol.
2020;31(12):3086-96. DOI:10.1111/jce.14772
26. Nabati M, Parsaee H. Potential Cardiotoxic Effects of Remdesivir on Cardiovascular System: A Literature Review. Cardiovasc Toxicol. 2022;22(3):268-72.
DOI:10.1007/s12012-021-09703-9
27. Colon CM, Barrios JG, Chiles JW, et al. Atrial Arrhythmias in COVID-19 Patients. JACC. Clin Electrophysiol. 2020;6(9):1189-90. DOI:10.1016/j.jacep.2020.05.015
28. Bistrovic P, Manola S, Papic I, et al. Atrial fibrillation in COVID-19 patients receiving remdesivir, matched case-control analysis. Am J Emerg Med. 2022;59:182-3. DOI:10.1016/j.ajem.2022.04.051
29. Vakhnenko YV, Dorovskikh IE, Domke AP. Cardiovascular component of post-COVID-19-syndrome. Tihookeanskii medicinskii zhurnal. 2022;(1):56-64 (in Russian). DOI:10.34215/1609-1175-2022-1-56-64
30. Podzolkov VI, Bragina AE, Tarzimanova AI, et al. Post-COVID Syndrome and Tachycardia: Theoretical Base and Treatment Experience. Racional'naia farmakoterapiia v kardiologii. 2021;17(2):256-62 (in Russian). DOI:10.20996/1819-6446-2021-04-08
31. Guzman-Esquivel J, Mendoza-Hernandez MA, Guzman-Solorzano HP, et al. Clinical Characteristics in the Acute Phase of COVID-19 That Predict Long COVID: Tachycardia, Myalgias, Severity, and Use of Antibiotics as Main Risk Factors, While Education and Blood Group B Are Protective. Healthcare (Basel, Switzerland). 2023;11(2):197. DOI:10.3390/healthcare11020197
32. Ståhlberg M, Reistam U, Fedorowski A, et al. Post-COVID-19 Tachycardia Syndrome: A Distinct Phenotype of Post-Acute COVID-19 Syndrome. Am J Med. 2021;134(12):1451-6. DOI:10.1016/j.amjmed.2021.07.004
33. Chadda KR, Blakey EE, Huang CL, Jeevaratnam K. Long COVID-19 and Postural Orthostatic Tachycardia Syndrome – Is Dysautonomia to Be Blamed? Front Cardiovasc Med. 2022;9:860198. DOI:10.3389/fcvm.2022.860198
34. Trisvetova EL. Postural Orthostatic Tachycardia Syndrome as a Manifestation of Post-COVID-19 Syndrome. Racional'naia farmakoterapiia v kardiologii. 2022;18(2):200-8 (in Russian). DOI:10.20996/1819-6446-2022-04-11
35. Tarantino N, Della Rocca DG, Zou F, et al. Prevalence, Outcomes, and Management of Ventricular Arrhythmias in COVID-19 Patients. Card Electrophysiol Clin. 2022;14(1):11-20. DOI:10.1016/j.ccep.2021.10.002
36. Melchior SE, Schoos MM, Gang U, et al. Recurring episodes of bundle branch reentry ventricular tachycardia due to aortitis preceded by SARS-CoV-2 infection: a case report. BMC Cardiovasc Disord. 2023;23(1):46. DOI:10.1186/s12872-023-03080-7
37. Singh B, Ryan H, Kredo T, et al. Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19. Cochrane Database Syst Rev. 2021;2(2):CD013587. DOI:10.1002/14651858.CD013587.pub2
38. Diaz-Arocutipa C, Brañez-Condorena A, Hernandez AV. QTc prolongation in COVID-19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: A systematic review and meta-analysis. Pharmacoepidemiol Drug Safety. 2021;30(6):694-706. DOI:10.1002/pds.5234
39. Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med. 2020;17(12):e1003501. DOI:10.1371/journal.pmed.1003501
40. Chistyakova MV, Zaitsev DN, Govorin AV, et al. Post-COVID-19 syndrome: morpho-functional abnormalities of the heart and arrhythmias. Rossiiskii kardiologicheskii zhurnal. 2021;26(7):4485 (in Russian). DOI:10.15829/1560-4071-2021-4485
41. Banai A, Szekely Y, Lupu L, et al. QT Interval Prolongation Is a Novel Predictor of 1-Year Mortality in Patients With COVID-19 Infection. Front Cardiovasc Med. 2022;9:869089. DOI:10.3389/fcvm.2022.869089
1ФГБОУ ВО «Ижевская государственная медицинская академия» Минздрава России, Ижевск, Россия; 2ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора, Москва, Россия
*nail-yamoldinov@yandex.ru
________________________________________________
Nail R. Yamoldinov*1, Mikhail V. Dudarev1, Denis S. Sarksyan1, Viktor V. Maleev2
1Izhevsk State Medical Academy, Izhevsk, Russia; 2Сentral Research Institute of Epidemiology, Moscow, Russia
*nail-yamoldinov@yandex.ru