Akaeva MI, Kozlovskaya NL, Bobrova LA, Vorobyeva OA, Stoliarevich ES, Shatalov PA, Smirnova TV, Anan'eva AO. Clinical characteristics and genetic profile of complement system in renal thrombotic microangiopathy in patients with severe forms of arterial hypertension. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(6):571–579.
DOI: 10.26442/00403660.2024.06.202724
Клиническая характеристика и генетический профиль системы комплемента при почечной ТМА у пациентов с тяжелыми формами артериальной гипертонии
Акаева М.И., Козловская Н.Л., Боброва Л.А., Воробьева О.А., Столяревич Е.С., Шаталов П.А., Смирнова Т.В., Ананьева А.О. Клиническая характеристика и генетический профиль системы комплемента при почечной ТМА у пациентов с тяжелыми формами артериальной гипертонии. Терапевтический архив.
2024;96(6):571–579. DOI: 10.26442/00403660.2024.06.202724
Akaeva MI, Kozlovskaya NL, Bobrova LA, Vorobyeva OA, Stoliarevich ES, Shatalov PA, Smirnova TV, Anan'eva AO. Clinical characteristics and genetic profile of complement system in renal thrombotic microangiopathy in patients with severe forms of arterial hypertension. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(6):571–579.
DOI: 10.26442/00403660.2024.06.202724
Обоснование. Круг заболеваний, характеризующихся развитием почечной тромботической микроангиопатии (ТМА), включает в себя злокачественную артериальную гипертонию (ЗАГ). ТМА при ЗАГ традиционно рассматривается как вариант вторичной ТМА, симптоматическая терапия которой сводится лишь к стабилизации уровня артериального давления, что нередко не позволяет избежать быстрого развития у пациентов терминальной стадии почечной недостаточности. Однако есть основания предполагать, что в ряде случаев в основе эндотелиального повреждения при ЗАГ лежит дисрегуляция системы комплемента (СК), что открывает перспективы для применения комплемент-блокирующей терапии. Цель. Изучить клинические проявления и генетический профиль СК у пациентов с морфологически подтвержденной почечной ТМА, сочетающейся с тяжелыми формами АГ. Материалы и методы. В исследование включены 28 пациентов с морфологически верифицированной почечной ТМА и тяжелыми формами АГ. Больных, имевших признаки микроангиопатической гемолитической анемии и тромбоцитопении, не включали ввиду возможного соответствия критериям атипичного гемолитико-уремического синдрома. Общеклинические данные и распространенность редких генетических дефектов (ГД) СК оценивали путем проведения молекулярно-генетического анализа (поиска мутаций в клинически значимой части генома человека – экзоме) методом высокопроизводительного секвенирования (NGS). Результаты. ГД СК выявлены у 1/4 больных. В 5 случаях обнаружены редкие генетические варианты, классифицированные как «вероятно патогенные», включавшие дефекты генов CFI, C3, CD46, CFHR4, CFHR5. У 2 пациентов выявлены хромосомные делеции, содержащие гены релейт-факторов CFH (CFHR1, CFHR3). Заключение. У 25% больных с почечной ТМА, генез которой первоначально расценен как вторичный и атрибутирован к ЗАГ, при частичном или полном отсутствии гематологических проявлений микроангиопатической патологии обнаружены редкие варианты генов СК, ассоциированные с атипичным гемолитико-уремическим синдромом. Генетическое исследование СК в сочетании с морфологическим исследованием почечного биоптата являются, по-видимому, ключевыми инструментами для верификации ТМА, ассоциированной с ЗАГ, особенно в отсутствие микроангиопатической гемолитической анемии и тромбоцитопении, уточнения ее природы и применения потенциально эффективной комплемент-блокирующей терапии у пациентов с ГД СК.
Ключевые слова: тромботическая микроангиопатия, злокачественная артериальная гипертония, атипичный гемолитико-уремический синдром, система комплемента, гены системы комплемента
________________________________________________
Background. The spectrum of diseases characterized by the development of renal thrombotic microangiopathy (TMA) encompasses the malignant hypertension (MHT). TMA in MHT has conventionally been regarded as a variation of secondary TMA, the treatment of which is restricted to the stabilization of blood pressure levels, a measure that frequently fails to prevent the rapid progression to end-stage renal disease in patients. Nevertheless, there exists a rationale to suggest that, in certain instances, endothelial damage in MHT might be rooted in the dysregulation of the complement system (CS), thereby presenting potential opportunities for the implementation of complement-blocking therapy. Aim. To study clinical manifestations and genetic profile of CS in patients with morphologically confirmed renal TMA combined with severe AH. Materials and methods. 28 patients with morphologically verified renal TMA and severe AH were enrolled to the study. Patients with signs of microangiopathic hemolysis and thrombocytopenia were not included in the study due to possible compliance with the criteria for atypical hemolytic uremic syndrome (aHUS). The prevalence of rare genetic defects (GD) of the CS was assessed by molecular genetic analysis (search for mutations in the clinically significant part of the human genome – exome) by next-generation sequencing technology (NGS). Results. GD of CS were detected in a quarter of patients. Rare genetic variants classified as “likely pathogenic” including defects in CFI, C3, CD46, CFHR4, CFHR5 genes were detected in five cases. Two patients were found to have chromosomal deletions containing CFH-related proteins genes (CFHR1, CFHR3). Conclusion. Rare variants of CS genes linked to aHUS were found in 25% of patients with renal TMA, the genesis of which was originally thought to be secondary and attributed to MHT, with partial or complete absence of hematological manifestations of microangiopathic pathology. The key to confirming TMA associated with MHT, particularly in the absence of microangiopathic hemolysis and thrombocytopenia, elucidating its nature, and potentially effective complement-blocking therapy in patients with GD of CS, appears to be a genetic study of CS combined with a morphological study of a renal biopsy.
1. Saba ES, Cambron JC, Go R, et al. Clinical Associations, Treatment, and Outcomes of Renal-Limited Thrombotic Microangiopathy. Blood. 2018;132(Suppl. 1):4978.
DOI:10.1182/blood-2018-99-117723
2. Genest DS, Patriquin CJ, Licht C, et al. Renal Thrombotic Microangiopathy: A Review. Am J Kidney Dis. 2023;81(5):591-605. DOI:10.1053/j.ajkd.2022.10.014
3. De Serres SA, Isenring P. Renal thrombotic microangiopathy revisited: when a lesion is not a clinical finding. Saudi J Kidney Dis Transpl. 2010;21(3):411-6.
4. Tsai HM. Atypical Hemolytic Uremic Syndrome May Present as Severe Hypertension without Hemolysis or Thrombocytopenia. Austin J Nephrol Hypertens. 2016;3(1):1055.
5. Rifkin BS, Brewster UC. Thrombotic microangiopathy associated with malignant hypertension. Mayo Clin Proc. 2006;81(5):593. DOI:10.4065/81.5.593
6. Lamia R, El Ati Z, Ben Fatma L, et al. Malignant hypertension-associated thrombotic microangiopathy following cocaine use. Saudi J Kidney Dis Transpl. 2016;27(1):153-6. DOI:10.4103/1319-2442.174195
7. Timmermans SAMEG, Abdul-Hamid MA, Vanderlocht J, et al. Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities. Kidney Int. 2017;91(6):1420-5. DOI:10.1016/j.kint.2016.12.009
8. Mathew RO, Nayer A, Asif A. The endothelium as the common denominator in malignant hypertension and thrombotic microangiopathy. J Am Soc Hypertens. 2016;10(4):352-9. DOI:10.1016/j.jash.2015.12.007
9. Besbas N, Karpman D, Landau D, et al. A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kidney Int. 2006;70(3):423-31. DOI:10.1038/sj.ki.5001581
10. Palma LMP, Sridharan M, Sethi S. Complement in Secondary Thrombotic Microangiopathy. Kidney Int Rep. 2021;6(1):11-23. DOI:10.1016/j.ekir.2020.10.009
11. Praga M, Rodríguez de Córdoba S. Secondary atypical hemolytic uremic syndromes in the era of complement blockade. Kidney Int. 2019;95(6):1298-300. DOI:10.1016/j.kint.2019.01.043
12. Keith NM, Wagener HP, Kernohan JW. The syndrome of malignant hypertension. Arch Intern Med (Chic). 1928;41(2):141-88. DOI:10.1001/archinte.1928.00130140003001
13. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-104. DOI:10.1093/eurheartj/ehy339
14. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. DOI:10.1038/gim.2015.30
15. Zipfel PF, Edey M, Heinen S, et al. Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS Genet. 2007;3(3):e41. DOI:10.1371/journal.pgen.0030041
16. Moore I, Strain L, Pappworth I, et al. Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood. 2010;115(2):379-87. DOI:10.1182/blood-2009-05-221549
17. Welte T, Arnold F, Kappes J, et al. Treating C3 glomerulopathy with eculizumab. BMC Nephrol. 2018;19(1):7. DOI:10.1186/s12882-017-0802-4
18. Maximiano C, Silva A, Duro I, et al. Genetic atypical hemolytic uremic syndrome in children: a 20-year experience from a tertiary center. J Bras Nefrol. 2021;43(3):311-7. DOI:10.1590/2175-8239-JBN-2020-0199
19. Timmermans SAMEG, Wérion A, Damoiseaux JGMC, et al. Diagnostic and Risk Factors for Complement Defects in Hypertensive Emergency and Thrombotic Microangiopathy. Hypertension. 2020;75(2):422-30. DOI:10.1161/HYPERTENSIONAHA.119.13714
20. El Karoui K, Boudhabhay I, Petitprez F, et al. Impact of hypertensive emergency and rare complement variants on the presentation and outcome of atypical hemolytic uremic syndrome. Haematologica. 2019;104(12):2501-11. DOI:10.3324/haematol.2019.216903
21. Vyse TJ, Morley BJ, Bartok I, et al. The molecular basis of hereditary complement factor I deficiency. J Clin Invest. 1996;97(4):925-33. DOI:10.1172/JCI118515
22. de Jong S, Volokhina EB, de Breuk A, et al. Effect of rare coding variants in the CFI gene on Factor I expression levels. Hum Mol Genet. 2020;29(14):2313-24. DOI:10.1093/hmg/ddaa114
23. Diep J, Potter D, Mai J, Hsu D. Atypical haemolytic uremic syndrome with refractory multiorgan involvement and heterozygous CFHR1/CFHR3 gene deletion. BMC Nephrol. 2023;24(1):127. DOI:10.1186/s12882-023-03153-x
24. Zhang Y, Goodfellow RX, Ghiringhelli Borsa N, et al. Complement Factor I Variants in Complement-Mediated Renal Diseases. Front Immunol. 2022;13:866330. DOI:10.3389/fimmu.2022.866330
25. Cavero T, Arjona E, Soto K, et al. Severe and malignant hypertension are common in primary atypical hemolytic uremic syndrome. Kidney Int. 2019;96(4):995-1004. DOI:10.1016/j.kint.2019.05.014
26. Totina A, Iorember F, El-Dahr SS, Yosypiv IV. Atypical hemolytic-uremic syndrome in a child presenting with malignant hypertension. Clin Pediatr (Phila). 2013;52(2):183-6. DOI:10.1177/0009922811412942
27. Omiya C, Koga K, Nishioka K, et al. A case of malignant hypertension as a presentation of atypical hemolytic uremic syndrome. Clin Nephrol Case Stud. 2023;11:72-8. DOI:10.5414/CNCS110901
28. Cavero T, Auñón P, Caravaca-Fontán F, et al. Thrombotic microangiopathy in patients with malignant hypertension. Nephrol Dial Transplant. 2023;38(5):1217-26. DOI:10.1093/ndt/gfac248
29. De Serres SA, Isenring P. Athrombocytopenic thrombotic microangiopathy, a condition that could be overlooked based on current diagnostic criteria. Nephrol Dial Transplant. 2009;24(3):1048-50. DOI:10.1093/ndt/gfn687
30. Kwak SH, Shah CV. A brief review of renal-limited thrombotic microangiopathy associated with immune checkpoint inhibitors. J Onco-Nephrol. 2023;7(2):105-10. DOI:10.1177/23993693221147769
31. Козловская Н.Л., Демьянова К.А., Кузнецов Д.В., и др. «Субклиническая» тромботическая микроангиопатия при атипичном гемолитико-уремическом синдроме: единичный случай или закономерность? Нефрология и диализ. 2014;16(2):280-7 [Kozlovskaya NL, Demyanova KA, Kuznetsov DV, et al. Atypical haemolytic uremic syndrome with ”subclinical” thrombotic microangiopathy: a single case or regularity? Nephrology and Dialysis=Nefrologiia i dializ. 2014;16(2):280-7 (in Russian)].
32. Козловская Н.Л., Акаева М.И., Столяревич Е.С., и др. Тромботическая микроангиопатия, ассоциированная со злокачественной артериальной гипертензией. Клиническая нефрология. 2017;1:49-56 [Kozlovskaya NL, Akaeva MI, Stolyarevich ES, et al. Thrombotic microangiopathy associated with malignant hypertension. Klinicheskaya nefrologiya. 2017;1:49-56 (in Russian)].
33. Saleem M, Shaikh S, Hu Z, et al. Post-Transplant Thrombotic Microangiopathy due to a Pathogenic Mutation in Complement Factor I in a Patient With Membranous Nephropathy: Case Report and Review of Literature. Front Immunol. 2022;13:909503. DOI:10.3389/fimmu.2022.909503
34. Von Tokarski F, Fillon A, Maisons V, et al. Thrombotic microangiopathies af er kidney transplantation in modern era: nosology based on chronology. BMC Nephrol. 2023;24(1):278. DOI:10.1186/s12882-023-03326-8
________________________________________________
1. Saba ES, Cambron JC, Go R, et al. Clinical Associations, Treatment, and Outcomes of Renal-Limited Thrombotic Microangiopathy. Blood. 2018;132(Suppl. 1):4978.
DOI:10.1182/blood-2018-99-117723
2. Genest DS, Patriquin CJ, Licht C, et al. Renal Thrombotic Microangiopathy: A Review. Am J Kidney Dis. 2023;81(5):591-605. DOI:10.1053/j.ajkd.2022.10.014
3. De Serres SA, Isenring P. Renal thrombotic microangiopathy revisited: when a lesion is not a clinical finding. Saudi J Kidney Dis Transpl. 2010;21(3):411-6.
4. Tsai HM. Atypical Hemolytic Uremic Syndrome May Present as Severe Hypertension without Hemolysis or Thrombocytopenia. Austin J Nephrol Hypertens. 2016;3(1):1055.
5. Rifkin BS, Brewster UC. Thrombotic microangiopathy associated with malignant hypertension. Mayo Clin Proc. 2006;81(5):593. DOI:10.4065/81.5.593
6. Lamia R, El Ati Z, Ben Fatma L, et al. Malignant hypertension-associated thrombotic microangiopathy following cocaine use. Saudi J Kidney Dis Transpl. 2016;27(1):153-6. DOI:10.4103/1319-2442.174195
7. Timmermans SAMEG, Abdul-Hamid MA, Vanderlocht J, et al. Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities. Kidney Int. 2017;91(6):1420-5. DOI:10.1016/j.kint.2016.12.009
8. Mathew RO, Nayer A, Asif A. The endothelium as the common denominator in malignant hypertension and thrombotic microangiopathy. J Am Soc Hypertens. 2016;10(4):352-9. DOI:10.1016/j.jash.2015.12.007
9. Besbas N, Karpman D, Landau D, et al. A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kidney Int. 2006;70(3):423-31. DOI:10.1038/sj.ki.5001581
10. Palma LMP, Sridharan M, Sethi S. Complement in Secondary Thrombotic Microangiopathy. Kidney Int Rep. 2021;6(1):11-23. DOI:10.1016/j.ekir.2020.10.009
11. Praga M, Rodríguez de Córdoba S. Secondary atypical hemolytic uremic syndromes in the era of complement blockade. Kidney Int. 2019;95(6):1298-300. DOI:10.1016/j.kint.2019.01.043
12. Keith NM, Wagener HP, Kernohan JW. The syndrome of malignant hypertension. Arch Intern Med (Chic). 1928;41(2):141-88. DOI:10.1001/archinte.1928.00130140003001
13. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021-104. DOI:10.1093/eurheartj/ehy339
14. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. DOI:10.1038/gim.2015.30
15. Zipfel PF, Edey M, Heinen S, et al. Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS Genet. 2007;3(3):e41. DOI:10.1371/journal.pgen.0030041
16. Moore I, Strain L, Pappworth I, et al. Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood. 2010;115(2):379-87. DOI:10.1182/blood-2009-05-221549
17. Welte T, Arnold F, Kappes J, et al. Treating C3 glomerulopathy with eculizumab. BMC Nephrol. 2018;19(1):7. DOI:10.1186/s12882-017-0802-4
18. Maximiano C, Silva A, Duro I, et al. Genetic atypical hemolytic uremic syndrome in children: a 20-year experience from a tertiary center. J Bras Nefrol. 2021;43(3):311-7. DOI:10.1590/2175-8239-JBN-2020-0199
19. Timmermans SAMEG, Wérion A, Damoiseaux JGMC, et al. Diagnostic and Risk Factors for Complement Defects in Hypertensive Emergency and Thrombotic Microangiopathy. Hypertension. 2020;75(2):422-30. DOI:10.1161/HYPERTENSIONAHA.119.13714
20. El Karoui K, Boudhabhay I, Petitprez F, et al. Impact of hypertensive emergency and rare complement variants on the presentation and outcome of atypical hemolytic uremic syndrome. Haematologica. 2019;104(12):2501-11. DOI:10.3324/haematol.2019.216903
21. Vyse TJ, Morley BJ, Bartok I, et al. The molecular basis of hereditary complement factor I deficiency. J Clin Invest. 1996;97(4):925-33. DOI:10.1172/JCI118515
22. de Jong S, Volokhina EB, de Breuk A, et al. Effect of rare coding variants in the CFI gene on Factor I expression levels. Hum Mol Genet. 2020;29(14):2313-24. DOI:10.1093/hmg/ddaa114
23. Diep J, Potter D, Mai J, Hsu D. Atypical haemolytic uremic syndrome with refractory multiorgan involvement and heterozygous CFHR1/CFHR3 gene deletion. BMC Nephrol. 2023;24(1):127. DOI:10.1186/s12882-023-03153-x
24. Zhang Y, Goodfellow RX, Ghiringhelli Borsa N, et al. Complement Factor I Variants in Complement-Mediated Renal Diseases. Front Immunol. 2022;13:866330. DOI:10.3389/fimmu.2022.866330
25. Cavero T, Arjona E, Soto K, et al. Severe and malignant hypertension are common in primary atypical hemolytic uremic syndrome. Kidney Int. 2019;96(4):995-1004. DOI:10.1016/j.kint.2019.05.014
26. Totina A, Iorember F, El-Dahr SS, Yosypiv IV. Atypical hemolytic-uremic syndrome in a child presenting with malignant hypertension. Clin Pediatr (Phila). 2013;52(2):183-6. DOI:10.1177/0009922811412942
27. Omiya C, Koga K, Nishioka K, et al. A case of malignant hypertension as a presentation of atypical hemolytic uremic syndrome. Clin Nephrol Case Stud. 2023;11:72-8. DOI:10.5414/CNCS110901
28. Cavero T, Auñón P, Caravaca-Fontán F, et al. Thrombotic microangiopathy in patients with malignant hypertension. Nephrol Dial Transplant. 2023;38(5):1217-26. DOI:10.1093/ndt/gfac248
29. De Serres SA, Isenring P. Athrombocytopenic thrombotic microangiopathy, a condition that could be overlooked based on current diagnostic criteria. Nephrol Dial Transplant. 2009;24(3):1048-50. DOI:10.1093/ndt/gfn687
30. Kwak SH, Shah CV. A brief review of renal-limited thrombotic microangiopathy associated with immune checkpoint inhibitors. J Onco-Nephrol. 2023;7(2):105-10. DOI:10.1177/23993693221147769
31. Kozlovskaya NL, Demyanova KA, Kuznetsov DV, et al. Atypical haemolytic uremic syndrome with ”subclinical” thrombotic microangiopathy: a single case or regularity? Nephrology and Dialysis=Nefrologiia i dializ. 2014;16(2):280-7 (in Russian).
32. Kozlovskaya NL, Akaeva MI, Stolyarevich ES, et al. Thrombotic microangiopathy associated with malignant hypertension. Klinicheskaya nefrologiya. 2017;1:49-56 (in Russian).
33. Saleem M, Shaikh S, Hu Z, et al. Post-Transplant Thrombotic Microangiopathy due to a Pathogenic Mutation in Complement Factor I in a Patient With Membranous Nephropathy: Case Report and Review of Literature. Front Immunol. 2022;13:909503. DOI:10.3389/fimmu.2022.909503
34. Von Tokarski F, Fillon A, Maisons V, et al. Thrombotic microangiopathies af er kidney transplantation in modern era: nosology based on chronology. BMC Nephrol. 2023;24(1):278. DOI:10.1186/s12882-023-03326-8
1ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия; 2ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова» Минздрава России, Москва, Россия; 3ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы», Москва, Россия; 4ГБУЗ «Городская клиническая больница им. А.К. Ерамишанцева» Департамента здравоохранения г. Москвы, Москва, Россия; 5ООО «Национальный центр клинической морфологической диагностики», Санкт-Петербург, Россия; 6ФГБОУ ВО «Российский университет медицины» Минздрава России, Москва, Россия; 7ГБУЗ «Городская клиническая больница №52» Департамента здравоохранения г. Москвы, Москва, Россия; 8ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России, Обнинск, Россия; 9ФГБНУ «Научно-исследовательский институт глазных болезней им. М.М. Краснова», Москва, Россия; 10Санкт-Петербургское ГБУЗ «Городская Мариинская больница», Санкт-Петербург, Россия
*0510_mary@mail.ru
________________________________________________
Mariam I. Akaeva*1,2, Natalia L. Kozlovskaya3,4, Larisa A. Bobrova1, Olga A. Vorobyeva5, Ekaterina S. Stoliarevich6,7, Petr A. Shatalov8, Tatiana V. Smirnova9, Anastasiia O. Anan'eva10
1Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; 2Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; 3Patrice Lumumba People’s Friendship University of Russia, Moscow, Russia; 4Yeramishantsev City Clinical Hospital, Moscow, Russia; 5National Center for Clinical Morphological Diagnostics, Saint Petersburg, Russia; 6Russian University of Medicine, Moscow, Russia; 7City Clinical Hospital №52, Moscow, Russia; 8National Medical Research Radiological Centre, Obninsk, Russia; 9Krasnov Research Institute of Eye Diseases, Moscow, Russiа; 10Mariinsky City Hospital, Saint Petersburg, Russia
*0510_mary@mail.ru