Новая коронавирусная инфекция (COVID-19) может приводить к возникновению отдаленных последствий, в частности к постковидному синдрому, одним из частых проявлений которого является одышка. В постковидный период одышка может сохраняться от одного до нескольких месяцев и, возможно, лет, существенно влияя на качество жизни пациентов. В обзоре рассмотрены возможные факторы риска и причины одышки в постковидном периоде, включая повреждение легочной ткани, патологию сердечной-сосудистой системы, синдром гипервентиляции, дисфункцию вегетативной нервной системы, детренированность, анемию и пр. Представлен анализ ковид-ассоциированных причин одышки в зависимости от тяжести течения острой COVID-19. Показана важность мультидисциплинарного подхода в диагностике и лечении пациентов с одышкой после перенесенной COVID-19.
New coronavirus infection may lead to long-term consequences, particularly to post-COVID syndrome, one of the most common manifestations of which is dyspnea. Post-COVID-19 shortness of breath may persist from one to several months and even years that results in low quality of life of patients. The review highlights possible risk factors and causes of dyspnea in post-COVID period such as lung damage, cardiovascular pathology, hyperventilation syndrome, dysfunction of the autonomic nervous system, detraining, anemia, etc. The authors present data about COVID-19-associated causes of dyspnea and severity of acute COVID-19. The review emphasizes the importance of a multidisciplinary approach to the diagnosis and treatment of patients with shortness of breath in post-COVID-19 period.
Keywords: dyspnea, COVID-19, post-COVID syndrome, hyperventilation syndrome, post-COVID-19 pulmonary fibrosis, post intensive care syndrome
1. Karki P. Prevalence and cause of Dyspnea in a general population: The Tromsø Study. HEL-3950 Master’s thesis in Public Health September. Available at: https://munin.uit.no/bitstream/handle/10037/8313/thesis.pdf?sequence=2&isAllowed=y. Accessed: 26.12.2023.
2. Parshall MB, Schwartzstein RM, Adams L, et al. An official American Thoracic Society statement: upd ate on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012;185(4):435-52. DOI:10.1164/rccm.201111-2042ST
3. Cabrera Martimbianco AL, Pacheco RL, Bagattini ÂM, Riera R. Frequency, signs and symptoms, and criteria adopted for long COVID-19: A systematic review. Int J Clin Pract. 2021;75(10):e14357. DOI:10.1111/ijcp.14357
4. d'Ettorre G, Gentilini Cacciola E, Santinelli L, et al. Covid-19 sequelae in working age patients: A systematic review. J Med Virol. 2022;94(3):858-68. DOI:10.1002/jmv.27399
5. Статистика коронавируса в мире. Режим доступа: https://gogov.ru/covid-19/world. Ссылка активна на 26.12.2023 [Statistika koronavirusa v mire. Available at: https://gogov.ru/covid-19/world. Accessed: 26.12.2023 (in Russian)].
6. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE), 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK567261. Accessed: 26.12.2023.
7. Cardiology, United States American College. COVID-19 Clinical Guidance for the Cardiovascular Care Team. Available at: https://www.acc.org/~/media/665AFA1E710B4B3293138D14BE8D1213.pdf. Accessed: 26.12.2023.
8. Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18-22. DOI:10.1016/j.bbi.2020.03.031
9. Zheng B, Daines L, Han Q, et al. Prevalence, risk factors and treatments for post-COVID-19 breathlessness: a systematic review and meta-analysis. Eur Respir Rev. 2022;31(166). DOI:10.1183/16000617.0071-2022
10. Awatade NT, Wark PAB, Chan ASL, et al. The Complex Association between COPD and COVID-19. J Clin Med. 2023;12(11). DOI:10.3390/jcm12113791
11. Wirth KJ, Scheibenbogen C. Dyspnea in Post-COVID Syndrome following Mild Acute COVID-19 Infections: Potential Causes and Consequences for a Therapeutic Approach. Medicina (Kaunas). 2022;58(3). DOI:10.3390/medicina58030419
12. Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med. 2021;19(1):162. DOI:10.1186/s12967-021-02833-2
13. Bai C, Chotirmall SH, Rello J, et al. Updated guidance on the management of COVID-19: from an American Thoracic Society/European Respiratory Society coordinated International Task Force (29 July 2020). Eur Respir Rev. 2020;29(157). DOI:10.1183/16000617.0287-2020
14. Rinaldo RF, Mondoni M, Parazzini EM, et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur Respir J. 2021;58(2). DOI:10.1183/13993003.00870-2021
15. Jahn K, Sava M, Sommer G, et al. Exercise capacity impairment after COVID-19 pneumonia is mainly caused by deconditioning. Eur Respir J. 2022;59(1). DOI:10.1183/13993003.01136-2021
16. Gao Y, Chen R, Geng Q, et al. Cardiopulmonary exercise testing might be helpful for interpretation of impaired pulmonary function in recovered COVID-19 patients. Eur Respir J. 2021;57(1). DOI:10.1183/13993003.04265-2020
17. Halpert G, Amital H, Shoenfeld Y. Dysregulation of G protein-coupled receptors of the autonomic nervous system, adrenergic and muscarinic acetylcholine receptors, in patients with autoimmune dysautonomic-related disorders. Brain Behav Immun Health. 2020;4:100056. DOI:10.1016/j.bbih.2020.100056
18. Dotan A, Shoenfeld Y. Perspectives on vaccine induced thrombotic thrombocytopenia. J Autoimmun. 2021;121:102663. DOI:10.1016/j.jaut.2021.102663
19. Dotan A, Mahroum N, Bogdanos DP, Shoenfeld Y. COVID-19 as an infectome paradigm of autoimmunity. J Allergy Clin Immunol. 2022;149(1):63-4. DOI:10.1016/j.jaci.2021.11.009
20. Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100. DOI:10.1016/j.jtauto.2021.100100
21. Dotan A, David P, Arnheim D, Shoenfeld Y. The autonomic aspects of the post-COVID19 syndrome. Autoimmun Rev. 2022;21(5):103071. DOI:10.1016/j.autrev.2022.103071
22. Goodman BP, Khoury JA, Blair JE, Grill MF. COVID-19 Dysautonomia. Front Neurol. 2021;12:624968. DOI:10.3389/fneur.2021.624968
23. Ursini F, Ciaffi J, Mancarella L, et al. Fibromyalgia: a new facet of the post-COVID-19 syndrome spectrum? Results from a web-based survey. RMD Open. 2021;7(3). DOI:10.1136/rmdopen-2021-001735
24. Neuman A, Gunnbjörnsdottir M, Tunsäter A, et al. Dyspnea in relation to symptoms of anxiety and depression: A prospective population study. Respir Med. 2006;100(10):1843-9. DOI:10.1016/j.rmed.2006.01.016
25. Currow DC, Chang S, Reddel HK, et al. Breathlessness, Anxiety, Depression, and Function-The BAD-F Study: A Cross-Sectional and Population Prevalence Study in Adults. J Pain Symptom Manage. 2020;59(2):197-205.e2. DOI:10.1016/j.jpainsymman.2019.09.021
26. Zeng N, Zhao YM, Yan W, et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: call for research priority and action. Mol Psychiatry. 2023;28(1):423-33. DOI:10.1038/s41380-022-01614-7
27. Premraj L, Kannapadi NV, Briggs J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci. 2022;434:120162. DOI:10.1016/j.jns.2022.120162
28. Huerga Encabo H, Grey W, Garcia-Albornoz M, et al. Human Erythroid Progenitors Are Directly Infected by SARS-CoV-2: Implications for Emerging Erythropoiesis in Severe COVID-19 Patients. Stem Cell Reports. 2021;16(3):428-36. DOI:10.1016/j.stemcr.2021.02.001
29. Elahi S. Hematopoietic responses to SARS-CoV-2 infection. Cell Mol Life Sci. 2022;79(3):187. DOI:10.1007/s00018-022-04220-6
30. Grau M, Ibershoff L, Zacher J, et al. Even patients with mild COVID-19 symptoms after SARS-CoV-2 infection show prolonged altered red blood cell morphology and rheological parameters. J Cell Mol Med. 2022;26(10):3022-30. DOI:10.1111/jcmm.17320
31. Cosic I, Cosic D, Loncarevic I. RRM Prediction of Erythrocyte Band3 Protein as Alternative Receptor for SARS-CoV-2. Virus Appl Sci. 2020;10(11):4053. DOI:10.3390/app10114053
32. AbouYabis AN, Bell GT. Hemolytic Anemia Complicating COVID-19 Infection. J Hematol. 2021;10(5):221-7. DOI:10.14740/jh906
33. Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26(1):225-39. DOI:10.1080/16078454.2021.1881225
34. Al-Kuraishy HM, Al-Gareeb AI, Kaushik A, et al. Hemolytic anemia in COVID-19. Ann Hematol. 2022;101(9):1887-95. DOI:10.1007/s00277-022-04907-7
35. Algassim AA, Elghazaly AA, Alnahdi AS, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol.
2021;100(1):37-43. DOI:10.1007/s00277-020-04256-3
36. Suriawinata E, Mehta KJ. Iron and iron-related proteins in COVID-19. Clin Exp Med. 2023;23(4):969-91. DOI:10.1007/s10238-022-00851-y
37. Zhao K, Huang J, Dai D, et al. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open Forum Infect Dis. 2020;7(7):ofaa250. DOI:10.1093/ofid/ofaa250
38. Nai A, Lorè NI, Pagani A, et al. Hepcidin levels predict Covid-19 severity and mortality in a cohort of hospitalized Italian patients. Am J Hematol. 2021;96(1):E32-5. DOI:10.1002/ajh.26027
39. Sonnweber T, Boehm A, Sahanic S, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients' performance: a prospective observational cohort study. Respir Res. 2020;21(1):276. DOI:10.1186/s12931-020-01546-2
40. Jeng SS, Chen YH. Association of Zinc with Anemia. Nutrients. 2022;14(22). DOI:10.3390/nu14224918
41. Blanco JR, Cobos-Ceballos MJ, Navarro F, et al. Pulmonary long-term consequences of COVID-19 infections after hospital discharge. Clin Microbiol Infect. 2021;27(6):892-6. DOI:10.1016/j.cmi.2021.02.019
42. Hama Amin BJ, Kakamad FH, Ahmed GS, et al. Post COVID-19 pulmonary fibrosis; a meta-analysis study. Ann Med Surg (Lond). 2022;77:103590. DOI:10.1016/j.amsu.2022.103590
43. Antonio GE, Wong KT, Hui DS, et al. Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology. 2003;228(3):810-5. DOI:10.1148/radiol.2283030726
44. Das KM, Lee EY, Singh R, et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging. 2017;27(3):342-9. DOI:10.4103/ijri.IJRI_469_16
45. Харагезов Д.А., Лазутин Ю.Н., Мирзоян Э.А., и др. Фиброз легких как последствие COVID-19. Обзор литературы. Современные проблемы науки и образования. 2022;2:143 [Kharagezov DA, Lazutin YN, Mirzoyan EA, et al. Fibrosis of the lungs as a consequence of COVID-19. Literature review. Modern Problems of Science and Education. 2022;2:143 (in Russian)]. DOI:10.17513/spno.31592
46. Al-Ani F, Chehade S, Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res. 2020;192:152-60. DOI:10.1016/j.thromres.2020.05.039
47. Lo Re V 3rd, Dutcher SK, Connolly JG, et al. Association of COVID-19 vs Influenza With Risk of Arterial and Venous Thrombotic Events Among Hospitalized Patients. JAMA. 2022;328(7):637-51. DOI:10.1001/jama.2022.13072
48. Li P, Zhao W, Kaatz S, et al. Factors Associated With Risk of Postdischarge Thrombosis in Patients With COVID-19. JAMA Netw Open. 2021;4(11):e2135397. DOI:10.1001/jamanetworkopen.2021.35397
49. Ammirati E, Lupi L, Palazzini M, et al. Prevalence, Characteristics, and Outcomes of COVID-19-Associated Acute Myocarditis. Circulation. 2022;145(15):1123-39. DOI:10.1161/CIRCULATIONAHA.121.056817
50. Puntmann VO, Martin S, Shchendrygina A, et al. Long-term cardiac pathology in individuals with mild initial COVID-19 illness. Nat Med. 2022;28(10):2117-23.
DOI:10.1038/s41591-022-02000-0
51. Writing Committee, Gluckman TJ, Bhave NM, et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and Other Myocardial Involvement, Post-Acute Sequelae of SARS-CoV-2 Infection, and Return to Play: A Report of the American College of Cardiology Solution Se t Oversight Committee. J Am Coll Cardiol. 2022;79(17):1717-56. DOI:10.1016/j.jacc.2022.02.003
52. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265-73. DOI:10.1001/jamacardio.2020.3557
53. Karlstad Ø, Hovi P, Husby A, et al. SARS-CoV-2 Vaccination and Myocarditis in a Nordic Cohort Study of 23 Million Residents. JAMA Cardiol. 2022;7(6):600-12. DOI:10.1001/jamacardio.2022.0583
54. Luk A, Clarke B, Dahdah N, et al. Myocarditis and Pericarditis After COVID-19 mRNA Vaccination: Practical Considerations for Care Providers. Can J Cardiol.
2021;37(10):1629-34. DOI:10.1016/j.cjca.2021.08.001
55. Ruzieh M, Moustafa A, Sabbagh E, et al. Challenges in Treatment of Inappropriate Sinus Tachycardia. Curr Cardiol Rev. 2018;14(1):42-4. DOI:10.2174/1573403X13666171129183826
56. Подзолков В.И., Тарзиманова А.И., Брагина А.Е., и др. Поражение сердечно-сосудистой системы у больных с коронавирусной инфекцией SARS-CoV-2. Часть 1: предикторы развития неблагоприятного прогноза. Рациональная Фармакотерапия в Кардиологии. 2021;17(6):825-30 [Podzolkov VI, Tarzimanova AI, Bragina AE, et al. Damage to the Cardiovascular System in Patients with SARS-CoV-2 Coronavirus Infection. Part 1: Predictors of the Development of an Unfavorable Prognosis. Rational Pharmacotherapy in Cardiology. 2021;17(6):825-30 (in Russian)]. DOI:10.20996/1819-6446-2021-11-03
57. Белкин А.А. Синдром последствий интенсивной терапии (ПИТ-синдром). Вестник интенсивной терапии им. А.И. Салтанова. 2018;2:12-23 [Belkin AA. Syndrome Effects of Intensive Therapy – Post Intensive Care Syndrome (PICS). Alexander Saltanov Intensive Care Herald. 2018;2:12-23 (in Russian)]. DOI:10.21320/1818-474X-2018-2-12-23
58. Sankar K, Gould MK, Prescott HC. Psychological Morbidity After COVID-19 Critical Illness. Chest. 2023;163(1):139-47. DOI:10.1016/j.chest.2022.09.035
59. Imran J, Nasa P, Alexander L, et al. Psychological distress among survivors of moderate-to-critical COVID-19 illness: A multicentric prospective cross-sectional study. Indian J Psychiatry. 2021;63(3):285-9. DOI:10.4103/psychiatry.IndianJPsychiatry_1074_20
60. Magnúsdóttir I, Lovik A, Unnarsdóttir AB, et al. Acute COVID-19 severity and mental health morbidity trajectories in patient populations of six nations: an observational study. Lancet Public Health. 2022;7(5):e406-16. DOI:10.1016/S2468-2667(22)00042-1
________________________________________________
1. Karki P. Prevalence and cause of Dyspnea in a general population: The Tromsø Study. HEL-3950 Master’s thesis in Public Health September. Available at: https://munin.uit.no/bitstream/handle/10037/8313/thesis.pdf?sequence=2&isAllowed=y. Accessed: 26.12.2023.
2. Parshall MB, Schwartzstein RM, Adams L, et al. An official American Thoracic Society statement: upd ate on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012;185(4):435-52. DOI:10.1164/rccm.201111-2042ST
3. Cabrera Martimbianco AL, Pacheco RL, Bagattini ÂM, Riera R. Frequency, signs and symptoms, and criteria adopted for long COVID-19: A systematic review. Int J Clin Pract. 2021;75(10):e14357. DOI:10.1111/ijcp.14357
4. d'Ettorre G, Gentilini Cacciola E, Santinelli L, et al. Covid-19 sequelae in working age patients: A systematic review. J Med Virol. 2022;94(3):858-68. DOI:10.1002/jmv.27399
5. Statistika koronavirusa v mire. Available at: https://gogov.ru/covid-19/world. Accessed: 26.12.2023 (in Russian).
6. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE), 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK567261. Accessed: 26.12.2023.
7. Cardiology, United States American College. COVID-19 Clinical Guidance for the Cardiovascular Care Team. Available at: https://www.acc.org/~/media/665AFA1E710B4B3293138D14BE8D1213.pdf. Accessed: 26.12.2023.
8. Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18-22. DOI:10.1016/j.bbi.2020.03.031
9. Zheng B, Daines L, Han Q, et al. Prevalence, risk factors and treatments for post-COVID-19 breathlessness: a systematic review and meta-analysis. Eur Respir Rev. 2022;31(166). DOI:10.1183/16000617.0071-2022
10. Awatade NT, Wark PAB, Chan ASL, et al. The Complex Association between COPD and COVID-19. J Clin Med. 2023;12(11). DOI:10.3390/jcm12113791
11. Wirth KJ, Scheibenbogen C. Dyspnea in Post-COVID Syndrome following Mild Acute COVID-19 Infections: Potential Causes and Consequences for a Therapeutic Approach. Medicina (Kaunas). 2022;58(3). DOI:10.3390/medicina58030419
12. Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med. 2021;19(1):162. DOI:10.1186/s12967-021-02833-2
13. Bai C, Chotirmall SH, Rello J, et al. Updated guidance on the management of COVID-19: from an American Thoracic Society/European Respiratory Society coordinated International Task Force (29 July 2020). Eur Respir Rev. 2020;29(157). DOI:10.1183/16000617.0287-2020
14. Rinaldo RF, Mondoni M, Parazzini EM, et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur Respir J. 2021;58(2). DOI:10.1183/13993003.00870-2021
15. Jahn K, Sava M, Sommer G, et al. Exercise capacity impairment after COVID-19 pneumonia is mainly caused by deconditioning. Eur Respir J. 2022;59(1). DOI:10.1183/13993003.01136-2021
16. Gao Y, Chen R, Geng Q, et al. Cardiopulmonary exercise testing might be helpful for interpretation of impaired pulmonary function in recovered COVID-19 patients. Eur Respir J. 2021;57(1). DOI:10.1183/13993003.04265-2020
17. Halpert G, Amital H, Shoenfeld Y. Dysregulation of G protein-coupled receptors of the autonomic nervous system, adrenergic and muscarinic acetylcholine receptors, in patients with autoimmune dysautonomic-related disorders. Brain Behav Immun Health. 2020;4:100056. DOI:10.1016/j.bbih.2020.100056
18. Dotan A, Shoenfeld Y. Perspectives on vaccine induced thrombotic thrombocytopenia. J Autoimmun. 2021;121:102663. DOI:10.1016/j.jaut.2021.102663
19. Dotan A, Mahroum N, Bogdanos DP, Shoenfeld Y. COVID-19 as an infectome paradigm of autoimmunity. J Allergy Clin Immunol. 2022;149(1):63-4. DOI:10.1016/j.jaci.2021.11.009
20. Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100. DOI:10.1016/j.jtauto.2021.100100
21. Dotan A, David P, Arnheim D, Shoenfeld Y. The autonomic aspects of the post-COVID19 syndrome. Autoimmun Rev. 2022;21(5):103071. DOI:10.1016/j.autrev.2022.103071
22. Goodman BP, Khoury JA, Blair JE, Grill MF. COVID-19 Dysautonomia. Front Neurol. 2021;12:624968. DOI:10.3389/fneur.2021.624968
23. Ursini F, Ciaffi J, Mancarella L, et al. Fibromyalgia: a new facet of the post-COVID-19 syndrome spectrum? Results from a web-based survey. RMD Open. 2021;7(3). DOI:10.1136/rmdopen-2021-001735
24. Neuman A, Gunnbjörnsdottir M, Tunsäter A, et al. Dyspnea in relation to symptoms of anxiety and depression: A prospective population study. Respir Med. 2006;100(10):1843-9. DOI:10.1016/j.rmed.2006.01.016
25. Currow DC, Chang S, Reddel HK, et al. Breathlessness, Anxiety, Depression, and Function-The BAD-F Study: A Cross-Sectional and Population Prevalence Study in Adults. J Pain Symptom Manage. 2020;59(2):197-205.e2. DOI:10.1016/j.jpainsymman.2019.09.021
26. Zeng N, Zhao YM, Yan W, et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: call for research priority and action. Mol Psychiatry. 2023;28(1):423-33. DOI:10.1038/s41380-022-01614-7
27. Premraj L, Kannapadi NV, Briggs J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci. 2022;434:120162. DOI:10.1016/j.jns.2022.120162
28. Huerga Encabo H, Grey W, Garcia-Albornoz M, et al. Human Erythroid Progenitors Are Directly Infected by SARS-CoV-2: Implications for Emerging Erythropoiesis in Severe COVID-19 Patients. Stem Cell Reports. 2021;16(3):428-36. DOI:10.1016/j.stemcr.2021.02.001
29. Elahi S. Hematopoietic responses to SARS-CoV-2 infection. Cell Mol Life Sci. 2022;79(3):187. DOI:10.1007/s00018-022-04220-6
30. Grau M, Ibershoff L, Zacher J, et al. Even patients with mild COVID-19 symptoms after SARS-CoV-2 infection show prolonged altered red blood cell morphology and rheological parameters. J Cell Mol Med. 2022;26(10):3022-30. DOI:10.1111/jcmm.17320
31. Cosic I, Cosic D, Loncarevic I. RRM Prediction of Erythrocyte Band3 Protein as Alternative Receptor for SARS-CoV-2. Virus Appl Sci. 2020;10(11):4053. DOI:10.3390/app10114053
32. AbouYabis AN, Bell GT. Hemolytic Anemia Complicating COVID-19 Infection. J Hematol. 2021;10(5):221-7. DOI:10.14740/jh906
33. Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26(1):225-39. DOI:10.1080/16078454.2021.1881225
34. Al-Kuraishy HM, Al-Gareeb AI, Kaushik A, et al. Hemolytic anemia in COVID-19. Ann Hematol. 2022;101(9):1887-95. DOI:10.1007/s00277-022-04907-7
35. Algassim AA, Elghazaly AA, Alnahdi AS, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol.
2021;100(1):37-43. DOI:10.1007/s00277-020-04256-3
36. Suriawinata E, Mehta KJ. Iron and iron-related proteins in COVID-19. Clin Exp Med. 2023;23(4):969-91. DOI:10.1007/s10238-022-00851-y
37. Zhao K, Huang J, Dai D, et al. Serum Iron Level as a Potential Predictor of Coronavirus Disease 2019 Severity and Mortality: A Retrospective Study. Open Forum Infect Dis. 2020;7(7):ofaa250. DOI:10.1093/ofid/ofaa250
38. Nai A, Lorè NI, Pagani A, et al. Hepcidin levels predict Covid-19 severity and mortality in a cohort of hospitalized Italian patients. Am J Hematol. 2021;96(1):E32-5. DOI:10.1002/ajh.26027
39. Sonnweber T, Boehm A, Sahanic S, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients' performance: a prospective observational cohort study. Respir Res. 2020;21(1):276. DOI:10.1186/s12931-020-01546-2
40. Jeng SS, Chen YH. Association of Zinc with Anemia. Nutrients. 2022;14(22). DOI:10.3390/nu14224918
41. Blanco JR, Cobos-Ceballos MJ, Navarro F, et al. Pulmonary long-term consequences of COVID-19 infections after hospital discharge. Clin Microbiol Infect. 2021;27(6):892-6. DOI:10.1016/j.cmi.2021.02.019
42. Hama Amin BJ, Kakamad FH, Ahmed GS, et al. Post COVID-19 pulmonary fibrosis; a meta-analysis study. Ann Med Surg (Lond). 2022;77:103590. DOI:10.1016/j.amsu.2022.103590
43. Antonio GE, Wong KT, Hui DS, et al. Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology. 2003;228(3):810-5. DOI:10.1148/radiol.2283030726
44. Das KM, Lee EY, Singh R, et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging. 2017;27(3):342-9. DOI:10.4103/ijri.IJRI_469_16
45. Kharagezov DA, Lazutin YN, Mirzoyan EA, et al. Fibrosis of the lungs as a consequence of COVID-19. Literature review. Modern Problems of Science and Education. 2022;2:143 (in Russian). DOI:10.17513/spno.31592
46. Al-Ani F, Chehade S, Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res. 2020;192:152-60. DOI:10.1016/j.thromres.2020.05.039
47. Lo Re V 3rd, Dutcher SK, Connolly JG, et al. Association of COVID-19 vs Influenza With Risk of Arterial and Venous Thrombotic Events Among Hospitalized Patients. JAMA. 2022;328(7):637-51. DOI:10.1001/jama.2022.13072
48. Li P, Zhao W, Kaatz S, et al. Factors Associated With Risk of Postdischarge Thrombosis in Patients With COVID-19. JAMA Netw Open. 2021;4(11):e2135397. DOI:10.1001/jamanetworkopen.2021.35397
49. Ammirati E, Lupi L, Palazzini M, et al. Prevalence, Characteristics, and Outcomes of COVID-19-Associated Acute Myocarditis. Circulation. 2022;145(15):1123-39. DOI:10.1161/CIRCULATIONAHA.121.056817
50. Puntmann VO, Martin S, Shchendrygina A, et al. Long-term cardiac pathology in individuals with mild initial COVID-19 illness. Nat Med. 2022;28(10):2117-23.
DOI:10.1038/s41591-022-02000-0
51. Writing Committee, Gluckman TJ, Bhave NM, et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and Other Myocardial Involvement, Post-Acute Sequelae of SARS-CoV-2 Infection, and Return to Play: A Report of the American College of Cardiology Solution Se t Oversight Committee. J Am Coll Cardiol. 2022;79(17):1717-56. DOI:10.1016/j.jacc.2022.02.003
52. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265-73. DOI:10.1001/jamacardio.2020.3557
53. Karlstad Ø, Hovi P, Husby A, et al. SARS-CoV-2 Vaccination and Myocarditis in a Nordic Cohort Study of 23 Million Residents. JAMA Cardiol. 2022;7(6):600-12. DOI:10.1001/jamacardio.2022.0583
54. Luk A, Clarke B, Dahdah N, et al. Myocarditis and Pericarditis After COVID-19 mRNA Vaccination: Practical Considerations for Care Providers. Can J Cardiol.
2021;37(10):1629-34. DOI:10.1016/j.cjca.2021.08.001
55. Ruzieh M, Moustafa A, Sabbagh E, et al. Challenges in Treatment of Inappropriate Sinus Tachycardia. Curr Cardiol Rev. 2018;14(1):42-4. DOI:10.2174/1573403X13666171129183826
56. Podzolkov VI, Tarzimanova AI, Bragina AE, et al. Damage to the Cardiovascular System in Patients with SARS-CoV-2 Coronavirus Infection. Part 1: Predictors of the Development of an Unfavorable Prognosis. Rational Pharmacotherapy in Cardiology. 2021;17(6):825-30 (in Russian). DOI:10.20996/1819-6446-2021-11-03
57. Belkin AA. Syndrome Effects of Intensive Therapy – Post Intensive Care Syndrome (PICS). Alexander Saltanov Intensive Care Herald. 2018;2:12-23 (in Russian).
DOI:10.21320/1818-474X-2018-2-12-23
58. Sankar K, Gould MK, Prescott HC. Psychological Morbidity After COVID-19 Critical Illness. Chest. 2023;163(1):139-47. DOI:10.1016/j.chest.2022.09.035
59. Imran J, Nasa P, Alexander L, et al. Psychological distress among survivors of moderate-to-critical COVID-19 illness: A multicentric prospective cross-sectional study. Indian J Psychiatry. 2021;63(3):285-9. DOI:10.4103/psychiatry.IndianJPsychiatry_1074_20
60. Magnúsdóttir I, Lovik A, Unnarsdóttir AB, et al. Acute COVID-19 severity and mental health morbidity trajectories in patient populations of six nations: an observational study. Lancet Public Health. 2022;7(5):e406-16. DOI:10.1016/S2468-2667(22)00042-1
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*vetluzhskaya_m_v@staff.sechenov.ru
________________________________________________
Valery I. Podzolkov, Maria V. Vetluzhskaya*, Ivan D. Medvedev, Antonina A. Abramova, Galina A. Kislenko