Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Предикторы развития правожелудочковой недостаточности у пациентов после имплантации устройства механической поддержки левого желудочка - Журнал Терапевтический архив №4 Вопросы диагностики внутренних болезней 2025
Предикторы развития правожелудочковой недостаточности у пациентов после имплантации устройства механической поддержки левого желудочка
Шахраманова Ж.А., Нарусов О.Ю., Макеев М.И., Смирнов С.М., Дзыбинская Е.В., Ганаев К.Г., Ширяев А.А., Меркулова И.А., Певзнер Д.В., Саидова М.А., Терещенко С.Н. Предикторы развития правожелудочковой недостаточности у пациентов после имплантации устройства механической поддержки левого желудочка. Терапевтический архив. 2025;97(4):322–328. DOI: 10.26442/00403660.2025.04.203169
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Цель. Определить предикторы ранней и поздней правожелудочковой недостаточности (ПЖН) по данным трансторакальной эхокардиографии (ЭхоКГ) и катетеризации правых отделов сердца (КПОС) у пациентов с имплантированным устройством механической поддержки левого желудочка (LVAD – left ventricular assist device).
Материалы и методы. В исследование включены 23 пациента с имплантированным LVAD. До имплантации всем пациентам выполнена трансторакальная ЭхоКГ с комплексной оценкой правого желудочка (ПЖ) с применением технологии спекл-трекинг ЭхоКГ и 3D-ЭхоКГ, а также КПОС с измерением стандартных показателей и расчетом индекса пульсации легочной артерии PAPi.
Результаты. При однофакторном анализе выявлены 9 ЭхоКГ-предикторов и один предиктор по данным КПОС – PAPi. Наибольшей площадью под ROC-кривой обладали 3D-фракция выброса правого желудочка (ФВПЖ) – 0,841, 95% доверительный интервал (ДИ) 0,677–1,006, чувствительность 0,889, специфичность 0,786; р<0,001 с отрезным значением ≤42% [отношение шансов (ОШ) 29,3 при 95% ДИ 2,6–336,4; р=0,007] и PAPi (площадь под ROC-кривой 0,869 при 95% ДИ 0,503–0,975, чувствительность 0,778, специфичность 0,857; р<0,001) с пороговым значением ≤2,2 (ОШ 20 при 95% ДИ 1,2–333,3; р=0,035). Комбинация этих показателей стала самой точной прогностической моделью (чувствительность 0,778, специфичность 1). Сочетание ЭхоКГ-параметров 3D-ФВПЖ и систолической скорости движения фиброзного кольца трикуспидального клапана по данным тканевой миокардиальной допплерографии обладает схожей чувствительностью (0,778) и чуть меньшей специфичностью (0,929).
Заключение. Оптимальный независимый ЭхоКГ-предиктор ранней ПЖН – 3D-ФВПЖ. Самой точной моделью оказалось сочетание 3D-ФВПЖ и PAPi, однако комбинация только ЭхоКГ-параметров 3D-ФВПЖ и систолической скорости движения фиброзного кольца трикуспидального клапана по данным тканевой миокардиальной допплерографии уступает лишь немного в специфичности, что позволяет предварительно оценить риск ПЖН.
Ключевые слова: LVAD, искусственный левый желудочек, механическая поддержка кровообращения, правожелудочковая недостаточность
Materials and methods. Twenty-three patients with LVAD were included in the study. Before implantation, all patients underwent TTEchoCG with comprehensive evaluation of the right ventricle (RV) using speckle-tracking echocardiography (STE) and 3D-echocardiography (3D-RVEF), as well as RHC with measurement of standard indices and calculation of pulmonary artery pulsatility index (PAPi).
Results. The highest area under the ROC curve was the RV ejection fraction determined by 3D-RVEF (0.841 with 95% CI 0.677–1.006, sensitivity 0.889, specificity 0.786; p<0.001) with a cut-off value ≤42% (OR 29.3 with 95% CI 2.6–336.4; p=0.007) and PAPi (area on ROC curve 0.869 with 95% CI 0.503–0.975, sensitivity 0.778, specificity 0.857; p<0.001,) with a threshold value ≤2.2 (OR 20 with 95% CI 1.2–333.3; p=0.035). The combination of these parameters was the most accurate prognostic model (sensitivity 0.778, specificity 1). The combination of echocardiographic parameters – 3D-RVEF and systolic velocity of the tricuspid valve fibrous ring according to tissue myocardial Doppler (TMD: S’ml) has similar sensitivity (0.778) and slightly lower specificity (0.929).
Conclusion. The optimal independent echocardiographic predictor of early RVF is 3D-RVEF. The combination of 3D-RVEF and PAPi proved to be the most accurate model, but the combination of 3D-RVEF and S’ml-TMD echocardiographic parameters alone is only slightly inferior in specificity, which allows preliminary assessment of the risk of RVF.
Keywords: LVAD, artificial left ventricle, mechanical circulatory support, right ventricular failure
Материалы и методы. В исследование включены 23 пациента с имплантированным LVAD. До имплантации всем пациентам выполнена трансторакальная ЭхоКГ с комплексной оценкой правого желудочка (ПЖ) с применением технологии спекл-трекинг ЭхоКГ и 3D-ЭхоКГ, а также КПОС с измерением стандартных показателей и расчетом индекса пульсации легочной артерии PAPi.
Результаты. При однофакторном анализе выявлены 9 ЭхоКГ-предикторов и один предиктор по данным КПОС – PAPi. Наибольшей площадью под ROC-кривой обладали 3D-фракция выброса правого желудочка (ФВПЖ) – 0,841, 95% доверительный интервал (ДИ) 0,677–1,006, чувствительность 0,889, специфичность 0,786; р<0,001 с отрезным значением ≤42% [отношение шансов (ОШ) 29,3 при 95% ДИ 2,6–336,4; р=0,007] и PAPi (площадь под ROC-кривой 0,869 при 95% ДИ 0,503–0,975, чувствительность 0,778, специфичность 0,857; р<0,001) с пороговым значением ≤2,2 (ОШ 20 при 95% ДИ 1,2–333,3; р=0,035). Комбинация этих показателей стала самой точной прогностической моделью (чувствительность 0,778, специфичность 1). Сочетание ЭхоКГ-параметров 3D-ФВПЖ и систолической скорости движения фиброзного кольца трикуспидального клапана по данным тканевой миокардиальной допплерографии обладает схожей чувствительностью (0,778) и чуть меньшей специфичностью (0,929).
Заключение. Оптимальный независимый ЭхоКГ-предиктор ранней ПЖН – 3D-ФВПЖ. Самой точной моделью оказалось сочетание 3D-ФВПЖ и PAPi, однако комбинация только ЭхоКГ-параметров 3D-ФВПЖ и систолической скорости движения фиброзного кольца трикуспидального клапана по данным тканевой миокардиальной допплерографии уступает лишь немного в специфичности, что позволяет предварительно оценить риск ПЖН.
Ключевые слова: LVAD, искусственный левый желудочек, механическая поддержка кровообращения, правожелудочковая недостаточность
________________________________________________
Materials and methods. Twenty-three patients with LVAD were included in the study. Before implantation, all patients underwent TTEchoCG with comprehensive evaluation of the right ventricle (RV) using speckle-tracking echocardiography (STE) and 3D-echocardiography (3D-RVEF), as well as RHC with measurement of standard indices and calculation of pulmonary artery pulsatility index (PAPi).
Results. The highest area under the ROC curve was the RV ejection fraction determined by 3D-RVEF (0.841 with 95% CI 0.677–1.006, sensitivity 0.889, specificity 0.786; p<0.001) with a cut-off value ≤42% (OR 29.3 with 95% CI 2.6–336.4; p=0.007) and PAPi (area on ROC curve 0.869 with 95% CI 0.503–0.975, sensitivity 0.778, specificity 0.857; p<0.001,) with a threshold value ≤2.2 (OR 20 with 95% CI 1.2–333.3; p=0.035). The combination of these parameters was the most accurate prognostic model (sensitivity 0.778, specificity 1). The combination of echocardiographic parameters – 3D-RVEF and systolic velocity of the tricuspid valve fibrous ring according to tissue myocardial Doppler (TMD: S’ml) has similar sensitivity (0.778) and slightly lower specificity (0.929).
Conclusion. The optimal independent echocardiographic predictor of early RVF is 3D-RVEF. The combination of 3D-RVEF and PAPi proved to be the most accurate model, but the combination of 3D-RVEF and S’ml-TMD echocardiographic parameters alone is only slightly inferior in specificity, which allows preliminary assessment of the risk of RVF.
Keywords: LVAD, artificial left ventricle, mechanical circulatory support, right ventricular failure
Полный текст
Список литературы
1. McDonagh T, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-726. DOI:10.1093/eurheartj/ehab368
2. Mehra M, Cleveland J, Uriel N, et al. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants. Eur J Heart Fail. 2021;23(8):1392-400. DOI:10.1002/ejhf.2211
3. Yuzefpolskaya M, Schroeder S, Houston B, et al. The Society of Thoracic Surgeons Intermacs 2022 Annual Report: Focus on the 2018 Heart Transplant Allocation System. Ann Thorac Surg. 2023;115:311-27. DOI:10.1016/j.athoracsur.2022.11.023
4. Chatterjee A, Feldmann C, Hanke J, et al. The momentum of HeartMate 3: A novel active magnetically levitated centrifugal left ventricular assist device (LVAD). J Thorac Dis. 2018;10:1790-3. DOI:10.21037/jtd.2017.10.124
5. Wagner T, Bernhardt A, Magnussen C, et al. Right heart failure before LVAD implantation predicts right heart failure after LVAD implantation – Is it that easy? J Cardiothorac Surg. 2020;15(1). DOI:10.1186/s13019-020-01150-x
6. Ramandi M, Melle J, Gorter T, et al. Right ventricular dysfunction in patients with new-onset heart failure: longitudinal follow-up during guideline-directed medical therapy. Eur J Heart Fail. 2022;24(12):2226-34. DOI:10.1002/ejhf.2721
7. Adamopoulos S, Bonios M, Gal T, et al. Right heart failure with left ventricular assist devices: Preoperative, perioperative and postoperative management strategies. A clinical consensus statement of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2024;26(11):2304-22. DOI:10.1002/ejhf.3323
8. Stainback R, Estep J, Agler D, et al. Echocardiography in the Management of Patients with Left Ventricular Assist Devices: Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28(8):853-909. DOI:10.1016/j.echo.2015.05.008
9. Estep J, Nicoara A, Cavalcante J, et al. Recommendations for Multimodality Imaging of Patients With Left Ventricular Assist Devices and Temporary Mechanical Support: Updated Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2024;37(9):820-71. DOI:10.1016/j.echo.2024.06.005
10. Cameli M, Loiacono F, Sparla S, et al. Systematic left ventricular assist device implant eligibility with non-invasive assessment: The siena protocol. J Cardiovasc Ultrasound. 2017;25(2):39-46. DOI:10.4250/jcu.2017.25.2.39
11. Shad R, Fong R, Quach N, et al. Long-term survival in patients with post-LVAD right ventricular failure: multi-state modelling with competing outcomes of heart transplant. J Heart Lung Transplant. 2021;40(8):778-85. DOI:10.1016/j.healun.2021.05.002
12. Mehra M, Castagna F, Butler J. The transformative potential of left ventricular assist devices in advanced heart failure: no more a therapeutic orphan. Eur Heart J. 2024;45(8):626-8. DOI:10.1093/eurheartj/ehad555
13. Yim I, Khan-Kheil A, Drury N, Lim H. A systematic review and physiology of pulmonary artery pulsatility index in left ventricular assist device therapy. Interdisc Cardiovasc Thorac Surg. 2023;36(5). DOI:10.1093/icvts/ivad068
14. Nitta D, Kinugawa K, Imamura T, et al. A useful scoring system for predicting right ventricular assist device requirement among patients with a paracorporeal left ventricular assist device. Int Heart J. 2018;59(5):983-90. DOI:10.1536/ihj.17-487
15. Gonzalez M, QWang, Yaranov D, et al. Dynamic Assessment of Pulmonary Artery Pulsatility Index Provides Incremental Risk Assessment for Early Right Ventricular Failure After Left Ventricular Assist Device. J Card Fail. 2021;27(7):777-85. DOI:10.1016/j.cardfail.2021.02.012
16. Stricagnoli M, SciaccalugaC, Mandoli G, et al. Clinical, echocardiographic and hemodynamic predictors of right heart failure after LVAD placement. Int J Cardiovasc Imaging. 2022;38(3):561-70. DOI:10.1007/s10554-021-02433-7
17. Silverton N, Patel R, Zimmerman J, et al. Intraoperative Transesophageal Echocardiography and Right Ventricular Failure After Left Ventricular Assist Device Implantation. J Cardiothorac Vasc Anesth. 2018;32(5):2096-103. DOI:10.1053/j.jvca.2018.02.023
18. Kukucka M, Stepanenko A, Potapov E, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30(1):64-9. DOI:10.1016/j.healun.2010.09.006
19. Shimada Y, Shiota M, Siegel R, Shiota T. Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: A meta-analysis study. J Am Soc Echocardiogr. 2010;23(9):943-53. DOI:10.1016/j.echo.2010.06.029
20. Magunia H, Dietrich C, Langer H, et al. 3D echocardiography derived right ventricular function is associated with right ventricular failure and mid-term survival after left ventricular assist device implantation. Int J Cardiol. 2018;272:348-55. DOI:10.1016/j.ijcard.2018.06.026
21. Kiernan M, French A, DeNofrio D, et al. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21(3):189-97. DOI:10.1016/j.cardfail.2014.12.009
22. Matthews J, Koelling T, Pagani F, Aaronson K. The Right Ventricular Failure Risk Score. A Pre-Operative Tool for Assessing the Risk of Right Ventricular Failure in Left Ventricular Assist Device Candidates. J Am Coll Cardiol. 2008;51(22):2163-72. DOI:10.1016/j.jacc.2008.03.009
23. Soliman O, Akin S, Muslem R, et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices. Circulation. 2018;137(9):891-906. DOI:10.1161/CIRCULATIONAHA
24. Atluri P, Goldstone A, Fairman A, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857-64. DOI:10.1016/j.athoracsur.2013.03.099
25. Taleb I, Kyriakopoulos CP, Fong R, et al. Machine Learning Multicenter Risk Model to Predict Right Ventricular Failure After Mechanical Circulatory Support: The STOP-RVF Score. JAMA Cardiol. 2024;9(3):272-82. DOI:10.1001/jamacardio.2023.5372
2. Mehra M, Cleveland J, Uriel N, et al. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants. Eur J Heart Fail. 2021;23(8):1392-400. DOI:10.1002/ejhf.2211
3. Yuzefpolskaya M, Schroeder S, Houston B, et al. The Society of Thoracic Surgeons Intermacs 2022 Annual Report: Focus on the 2018 Heart Transplant Allocation System. Ann Thorac Surg. 2023;115:311-27. DOI:10.1016/j.athoracsur.2022.11.023
4. Chatterjee A, Feldmann C, Hanke J, et al. The momentum of HeartMate 3: A novel active magnetically levitated centrifugal left ventricular assist device (LVAD). J Thorac Dis. 2018;10:1790-3. DOI:10.21037/jtd.2017.10.124
5. Wagner T, Bernhardt A, Magnussen C, et al. Right heart failure before LVAD implantation predicts right heart failure after LVAD implantation – Is it that easy? J Cardiothorac Surg. 2020;15(1). DOI:10.1186/s13019-020-01150-x
6. Ramandi M, Melle J, Gorter T, et al. Right ventricular dysfunction in patients with new-onset heart failure: longitudinal follow-up during guideline-directed medical therapy. Eur J Heart Fail. 2022;24(12):2226-34. DOI:10.1002/ejhf.2721
7. Adamopoulos S, Bonios M, Gal T, et al. Right heart failure with left ventricular assist devices: Preoperative, perioperative and postoperative management strategies. A clinical consensus statement of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2024;26(11):2304-22. DOI:10.1002/ejhf.3323
8. Stainback R, Estep J, Agler D, et al. Echocardiography in the Management of Patients with Left Ventricular Assist Devices: Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28(8):853-909. DOI:10.1016/j.echo.2015.05.008
9. Estep J, Nicoara A, Cavalcante J, et al. Recommendations for Multimodality Imaging of Patients With Left Ventricular Assist Devices and Temporary Mechanical Support: Updated Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2024;37(9):820-71. DOI:10.1016/j.echo.2024.06.005
10. Cameli M, Loiacono F, Sparla S, et al. Systematic left ventricular assist device implant eligibility with non-invasive assessment: The siena protocol. J Cardiovasc Ultrasound. 2017;25(2):39-46. DOI:10.4250/jcu.2017.25.2.39
11. Shad R, Fong R, Quach N, et al. Long-term survival in patients with post-LVAD right ventricular failure: multi-state modelling with competing outcomes of heart transplant. J Heart Lung Transplant. 2021;40(8):778-85. DOI:10.1016/j.healun.2021.05.002
12. Mehra M, Castagna F, Butler J. The transformative potential of left ventricular assist devices in advanced heart failure: no more a therapeutic orphan. Eur Heart J. 2024;45(8):626-8. DOI:10.1093/eurheartj/ehad555
13. Yim I, Khan-Kheil A, Drury N, Lim H. A systematic review and physiology of pulmonary artery pulsatility index in left ventricular assist device therapy. Interdisc Cardiovasc Thorac Surg. 2023;36(5). DOI:10.1093/icvts/ivad068
14. Nitta D, Kinugawa K, Imamura T, et al. A useful scoring system for predicting right ventricular assist device requirement among patients with a paracorporeal left ventricular assist device. Int Heart J. 2018;59(5):983-90. DOI:10.1536/ihj.17-487
15. Gonzalez M, QWang, Yaranov D, et al. Dynamic Assessment of Pulmonary Artery Pulsatility Index Provides Incremental Risk Assessment for Early Right Ventricular Failure After Left Ventricular Assist Device. J Card Fail. 2021;27(7):777-85. DOI:10.1016/j.cardfail.2021.02.012
16. Stricagnoli M, SciaccalugaC, Mandoli G, et al. Clinical, echocardiographic and hemodynamic predictors of right heart failure after LVAD placement. Int J Cardiovasc Imaging. 2022;38(3):561-70. DOI:10.1007/s10554-021-02433-7
17. Silverton N, Patel R, Zimmerman J, et al. Intraoperative Transesophageal Echocardiography and Right Ventricular Failure After Left Ventricular Assist Device Implantation. J Cardiothorac Vasc Anesth. 2018;32(5):2096-103. DOI:10.1053/j.jvca.2018.02.023
18. Kukucka M, Stepanenko A, Potapov E, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30(1):64-9. DOI:10.1016/j.healun.2010.09.006
19. Shimada Y, Shiota M, Siegel R, Shiota T. Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: A meta-analysis study. J Am Soc Echocardiogr. 2010;23(9):943-53. DOI:10.1016/j.echo.2010.06.029
20. Magunia H, Dietrich C, Langer H, et al. 3D echocardiography derived right ventricular function is associated with right ventricular failure and mid-term survival after left ventricular assist device implantation. Int J Cardiol. 2018;272:348-55. DOI:10.1016/j.ijcard.2018.06.026
21. Kiernan M, French A, DeNofrio D, et al. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21(3):189-97. DOI:10.1016/j.cardfail.2014.12.009
22. Matthews J, Koelling T, Pagani F, Aaronson K. The Right Ventricular Failure Risk Score. A Pre-Operative Tool for Assessing the Risk of Right Ventricular Failure in Left Ventricular Assist Device Candidates. J Am Coll Cardiol. 2008;51(22):2163-72. DOI:10.1016/j.jacc.2008.03.009
23. Soliman O, Akin S, Muslem R, et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices. Circulation. 2018;137(9):891-906. DOI:10.1161/CIRCULATIONAHA
24. Atluri P, Goldstone A, Fairman A, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857-64. DOI:10.1016/j.athoracsur.2013.03.099
25. Taleb I, Kyriakopoulos CP, Fong R, et al. Machine Learning Multicenter Risk Model to Predict Right Ventricular Failure After Mechanical Circulatory Support: The STOP-RVF Score. JAMA Cardiol. 2024;9(3):272-82. DOI:10.1001/jamacardio.2023.5372
2. Mehra M, Cleveland J, Uriel N, et al. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants. Eur J Heart Fail. 2021;23(8):1392-400. DOI:10.1002/ejhf.2211
3. Yuzefpolskaya M, Schroeder S, Houston B, et al. The Society of Thoracic Surgeons Intermacs 2022 Annual Report: Focus on the 2018 Heart Transplant Allocation System. Ann Thorac Surg. 2023;115:311-27. DOI:10.1016/j.athoracsur.2022.11.023
4. Chatterjee A, Feldmann C, Hanke J, et al. The momentum of HeartMate 3: A novel active magnetically levitated centrifugal left ventricular assist device (LVAD). J Thorac Dis. 2018;10:1790-3. DOI:10.21037/jtd.2017.10.124
5. Wagner T, Bernhardt A, Magnussen C, et al. Right heart failure before LVAD implantation predicts right heart failure after LVAD implantation – Is it that easy? J Cardiothorac Surg. 2020;15(1). DOI:10.1186/s13019-020-01150-x
6. Ramandi M, Melle J, Gorter T, et al. Right ventricular dysfunction in patients with new-onset heart failure: longitudinal follow-up during guideline-directed medical therapy. Eur J Heart Fail. 2022;24(12):2226-34. DOI:10.1002/ejhf.2721
7. Adamopoulos S, Bonios M, Gal T, et al. Right heart failure with left ventricular assist devices: Preoperative, perioperative and postoperative management strategies. A clinical consensus statement of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2024;26(11):2304-22. DOI:10.1002/ejhf.3323
8. Stainback R, Estep J, Agler D, et al. Echocardiography in the Management of Patients with Left Ventricular Assist Devices: Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28(8):853-909. DOI:10.1016/j.echo.2015.05.008
9. Estep J, Nicoara A, Cavalcante J, et al. Recommendations for Multimodality Imaging of Patients With Left Ventricular Assist Devices and Temporary Mechanical Support: Updated Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2024;37(9):820-71. DOI:10.1016/j.echo.2024.06.005
10. Cameli M, Loiacono F, Sparla S, et al. Systematic left ventricular assist device implant eligibility with non-invasive assessment: The siena protocol. J Cardiovasc Ultrasound. 2017;25(2):39-46. DOI:10.4250/jcu.2017.25.2.39
11. Shad R, Fong R, Quach N, et al. Long-term survival in patients with post-LVAD right ventricular failure: multi-state modelling with competing outcomes of heart transplant. J Heart Lung Transplant. 2021;40(8):778-85. DOI:10.1016/j.healun.2021.05.002
12. Mehra M, Castagna F, Butler J. The transformative potential of left ventricular assist devices in advanced heart failure: no more a therapeutic orphan. Eur Heart J. 2024;45(8):626-8. DOI:10.1093/eurheartj/ehad555
13. Yim I, Khan-Kheil A, Drury N, Lim H. A systematic review and physiology of pulmonary artery pulsatility index in left ventricular assist device therapy. Interdisc Cardiovasc Thorac Surg. 2023;36(5). DOI:10.1093/icvts/ivad068
14. Nitta D, Kinugawa K, Imamura T, et al. A useful scoring system for predicting right ventricular assist device requirement among patients with a paracorporeal left ventricular assist device. Int Heart J. 2018;59(5):983-90. DOI:10.1536/ihj.17-487
15. Gonzalez M, QWang, Yaranov D, et al. Dynamic Assessment of Pulmonary Artery Pulsatility Index Provides Incremental Risk Assessment for Early Right Ventricular Failure After Left Ventricular Assist Device. J Card Fail. 2021;27(7):777-85. DOI:10.1016/j.cardfail.2021.02.012
16. Stricagnoli M, SciaccalugaC, Mandoli G, et al. Clinical, echocardiographic and hemodynamic predictors of right heart failure after LVAD placement. Int J Cardiovasc Imaging. 2022;38(3):561-70. DOI:10.1007/s10554-021-02433-7
17. Silverton N, Patel R, Zimmerman J, et al. Intraoperative Transesophageal Echocardiography and Right Ventricular Failure After Left Ventricular Assist Device Implantation. J Cardiothorac Vasc Anesth. 2018;32(5):2096-103. DOI:10.1053/j.jvca.2018.02.023
18. Kukucka M, Stepanenko A, Potapov E, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30(1):64-9. DOI:10.1016/j.healun.2010.09.006
19. Shimada Y, Shiota M, Siegel R, Shiota T. Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: A meta-analysis study. J Am Soc Echocardiogr. 2010;23(9):943-53. DOI:10.1016/j.echo.2010.06.029
20. Magunia H, Dietrich C, Langer H, et al. 3D echocardiography derived right ventricular function is associated with right ventricular failure and mid-term survival after left ventricular assist device implantation. Int J Cardiol. 2018;272:348-55. DOI:10.1016/j.ijcard.2018.06.026
21. Kiernan M, French A, DeNofrio D, et al. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21(3):189-97. DOI:10.1016/j.cardfail.2014.12.009
22. Matthews J, Koelling T, Pagani F, Aaronson K. The Right Ventricular Failure Risk Score. A Pre-Operative Tool for Assessing the Risk of Right Ventricular Failure in Left Ventricular Assist Device Candidates. J Am Coll Cardiol. 2008;51(22):2163-72. DOI:10.1016/j.jacc.2008.03.009
23. Soliman O, Akin S, Muslem R, et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices. Circulation. 2018;137(9):891-906. DOI:10.1161/CIRCULATIONAHA
24. Atluri P, Goldstone A, Fairman A, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857-64. DOI:10.1016/j.athoracsur.2013.03.099
25. Taleb I, Kyriakopoulos CP, Fong R, et al. Machine Learning Multicenter Risk Model to Predict Right Ventricular Failure After Mechanical Circulatory Support: The STOP-RVF Score. JAMA Cardiol. 2024;9(3):272-82. DOI:10.1001/jamacardio.2023.5372
________________________________________________
2. Mehra M, Cleveland J, Uriel N, et al. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants. Eur J Heart Fail. 2021;23(8):1392-400. DOI:10.1002/ejhf.2211
3. Yuzefpolskaya M, Schroeder S, Houston B, et al. The Society of Thoracic Surgeons Intermacs 2022 Annual Report: Focus on the 2018 Heart Transplant Allocation System. Ann Thorac Surg. 2023;115:311-27. DOI:10.1016/j.athoracsur.2022.11.023
4. Chatterjee A, Feldmann C, Hanke J, et al. The momentum of HeartMate 3: A novel active magnetically levitated centrifugal left ventricular assist device (LVAD). J Thorac Dis. 2018;10:1790-3. DOI:10.21037/jtd.2017.10.124
5. Wagner T, Bernhardt A, Magnussen C, et al. Right heart failure before LVAD implantation predicts right heart failure after LVAD implantation – Is it that easy? J Cardiothorac Surg. 2020;15(1). DOI:10.1186/s13019-020-01150-x
6. Ramandi M, Melle J, Gorter T, et al. Right ventricular dysfunction in patients with new-onset heart failure: longitudinal follow-up during guideline-directed medical therapy. Eur J Heart Fail. 2022;24(12):2226-34. DOI:10.1002/ejhf.2721
7. Adamopoulos S, Bonios M, Gal T, et al. Right heart failure with left ventricular assist devices: Preoperative, perioperative and postoperative management strategies. A clinical consensus statement of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2024;26(11):2304-22. DOI:10.1002/ejhf.3323
8. Stainback R, Estep J, Agler D, et al. Echocardiography in the Management of Patients with Left Ventricular Assist Devices: Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28(8):853-909. DOI:10.1016/j.echo.2015.05.008
9. Estep J, Nicoara A, Cavalcante J, et al. Recommendations for Multimodality Imaging of Patients With Left Ventricular Assist Devices and Temporary Mechanical Support: Updated Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2024;37(9):820-71. DOI:10.1016/j.echo.2024.06.005
10. Cameli M, Loiacono F, Sparla S, et al. Systematic left ventricular assist device implant eligibility with non-invasive assessment: The siena protocol. J Cardiovasc Ultrasound. 2017;25(2):39-46. DOI:10.4250/jcu.2017.25.2.39
11. Shad R, Fong R, Quach N, et al. Long-term survival in patients with post-LVAD right ventricular failure: multi-state modelling with competing outcomes of heart transplant. J Heart Lung Transplant. 2021;40(8):778-85. DOI:10.1016/j.healun.2021.05.002
12. Mehra M, Castagna F, Butler J. The transformative potential of left ventricular assist devices in advanced heart failure: no more a therapeutic orphan. Eur Heart J. 2024;45(8):626-8. DOI:10.1093/eurheartj/ehad555
13. Yim I, Khan-Kheil A, Drury N, Lim H. A systematic review and physiology of pulmonary artery pulsatility index in left ventricular assist device therapy. Interdisc Cardiovasc Thorac Surg. 2023;36(5). DOI:10.1093/icvts/ivad068
14. Nitta D, Kinugawa K, Imamura T, et al. A useful scoring system for predicting right ventricular assist device requirement among patients with a paracorporeal left ventricular assist device. Int Heart J. 2018;59(5):983-90. DOI:10.1536/ihj.17-487
15. Gonzalez M, QWang, Yaranov D, et al. Dynamic Assessment of Pulmonary Artery Pulsatility Index Provides Incremental Risk Assessment for Early Right Ventricular Failure After Left Ventricular Assist Device. J Card Fail. 2021;27(7):777-85. DOI:10.1016/j.cardfail.2021.02.012
16. Stricagnoli M, SciaccalugaC, Mandoli G, et al. Clinical, echocardiographic and hemodynamic predictors of right heart failure after LVAD placement. Int J Cardiovasc Imaging. 2022;38(3):561-70. DOI:10.1007/s10554-021-02433-7
17. Silverton N, Patel R, Zimmerman J, et al. Intraoperative Transesophageal Echocardiography and Right Ventricular Failure After Left Ventricular Assist Device Implantation. J Cardiothorac Vasc Anesth. 2018;32(5):2096-103. DOI:10.1053/j.jvca.2018.02.023
18. Kukucka M, Stepanenko A, Potapov E, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30(1):64-9. DOI:10.1016/j.healun.2010.09.006
19. Shimada Y, Shiota M, Siegel R, Shiota T. Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: A meta-analysis study. J Am Soc Echocardiogr. 2010;23(9):943-53. DOI:10.1016/j.echo.2010.06.029
20. Magunia H, Dietrich C, Langer H, et al. 3D echocardiography derived right ventricular function is associated with right ventricular failure and mid-term survival after left ventricular assist device implantation. Int J Cardiol. 2018;272:348-55. DOI:10.1016/j.ijcard.2018.06.026
21. Kiernan M, French A, DeNofrio D, et al. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21(3):189-97. DOI:10.1016/j.cardfail.2014.12.009
22. Matthews J, Koelling T, Pagani F, Aaronson K. The Right Ventricular Failure Risk Score. A Pre-Operative Tool for Assessing the Risk of Right Ventricular Failure in Left Ventricular Assist Device Candidates. J Am Coll Cardiol. 2008;51(22):2163-72. DOI:10.1016/j.jacc.2008.03.009
23. Soliman O, Akin S, Muslem R, et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices. Circulation. 2018;137(9):891-906. DOI:10.1161/CIRCULATIONAHA
24. Atluri P, Goldstone A, Fairman A, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857-64. DOI:10.1016/j.athoracsur.2013.03.099
25. Taleb I, Kyriakopoulos CP, Fong R, et al. Machine Learning Multicenter Risk Model to Predict Right Ventricular Failure After Mechanical Circulatory Support: The STOP-RVF Score. JAMA Cardiol. 2024;9(3):272-82. DOI:10.1001/jamacardio.2023.5372
Авторы
Ж.А. Шахраманова*, О.Ю. Нарусов, М.И. Макеев, С.М. Смирнов, Е.В. Дзыбинская, К.Г. Ганаев, А.А. Ширяев, И.А. Меркулова, Д.В. Певзнер, М.А. Саидова, С.Н. Терещенко
ФГБУ «Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова» Минздрава России, Москва, Россия
*Jane-20498@mail.ru
Chazov National Medical Research Center of Cardiology, Moscow, Russia
*Jane-20498@mail.ru
ФГБУ «Национальный медицинский исследовательский центр кардиологии им. акад. Е.И. Чазова» Минздрава России, Москва, Россия
*Jane-20498@mail.ru
________________________________________________
Chazov National Medical Research Center of Cardiology, Moscow, Russia
*Jane-20498@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
