Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Роль ожирения в развитии и прогрессировании остеоартрита: влияние медикаментозных и хирургических методов лечения ожирения на течение воспалительных заболеваний суставов - Журнал Терапевтический архив №5 Вопросы ревматологии 2025
Роль ожирения в развитии и прогрессировании остеоартрита: влияние медикаментозных и хирургических методов лечения ожирения на течение воспалительных заболеваний суставов
Трошина Е.А., Паневин Т.С., Брискман Т.Д. Роль ожирения в развитии и прогрессировании остеоартрита: влияние медикаментозных и хирургических методов лечения ожирения на течение воспалительных заболеваний суставов. Терапевтический архив. 2025;97(5):449–454. DOI: 10.26442/00403660.2025.05.203230
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Ожирение – наиболее важный фактор риска развития остеоартрита (ОА) – прогрессирующего воспалительного поражения суставов, которое считается одной из причин тяжелой инвалидности и длительной иммобилизации. Избыточно развитая жировая ткань не только увеличивает механическую нагрузку на суставы, но и участвует в поддержании хронического неспецифического воспаления посредством выработки адипокинов, цитокинов, хемокинов, факторов комплемента и гормонов. Адипокины, включая лептин, адипонектин, химерин и резистин, регулируют воспалительные иммунные реакции в хряще, оказывая влияние также на клетки синовиальной ткани и кости. В свою очередь, хондроциты, остеобласты и остеокласты производят некоторые адипокины локально, поддерживая воспалительную микросреду внутрисуставно. Снижение массы тела при ОА может улучшить качество жизни пациента, функциональные способности суставов, привести к клинически значимому уменьшению боли и замедлить или остановить прогрессирование структурных дегенеративных изменений. Цель нашего обзора – осветить основные патогенетические взаимосвязи между ожирением и воспалением, раскрыть механизмы патологического влияния адипокинов и провоспалительных медиаторов (интерлейкина-6, фактора некроза опухоли α и др.) на хрящевой и костный гомеостаз и, как следствие, оценить их участие в развитии ОА, так как понимание особенностей иммунной регуляции и разрешения воспалительного процесса при ожирении имеет решающее значение для разработки успешных подходов к лечению ОА у пациентов с избыточной массой тела. Также в статье рассмотрен анализ актуальных исследований влияния медикаментозной терапии (лираглутид, орлистат, сибутрамин) и хирургического лечения ожирения на течение воспалительных заболеваний суставов.
Ключевые слова: остеоартрит, ожирение, адипокины
Keywords: osteoarthritis, obesity, adipokines
Ключевые слова: остеоартрит, ожирение, адипокины
________________________________________________
Keywords: osteoarthritis, obesity, adipokines
Полный текст
Список литературы
1. Zheng H, Chen C. Body mass index and risk of knee osteoarthritis: systematic review and meta-analysis of prospective studies. BMJ Open. 2015;5(12):e007568. DOI:10.1136/bmjopen-2014-007568
2. Алексеева Л.И. Новые представления о патогенезе остеоартрита, роль метаболических нарушений. Ожирение и метаболизм. 2019;16(2):75-82 [Alekseeva LI. New ideas about the pathogenesis of osteoarthritis, the role of metabolic disorders. Obesity and Metabolism. 2019;16(2):75-82 (in Russian)]. DOI:10.14341/omet10274
3. Toussirot E, Streit G, Wendling D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med Chem. 2007;14(10):1095-100. DOI:10.2174/092986707780362826
4. Presle N, Pottie P, Dumond H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthr Cartilage. 2006;14(7):6905. DOI:10.1016/j.joca.2006.01.009
5. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2(4):367-73. DOI:10.2174/1573399810602040367
6. Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. DOI:10.3390/ijms20092358
7. Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;16(11):1234-41. DOI:10.1161/CIRCULATIONAHA.107.710509
8. Li S, Schwartz AV, LaValley MP, et al. Association of Visceral Adiposity With Pain but Not Structural Osteoarthritis. Arthritis Rheumatol. 2020;72(7):1103-10. DOI:10.1002/art.41222
9. Jiang L, Tian W, Wang Y, et al. Body mass index and susceptibility to knee osteoarthritis: a systematic review and meta-analysi. Joint Bone Spine. 2012;79(3):291-7. DOI:10.1016/j.jbspin.2011.05.015
10. Yoshimura N, Muraki S, Oka H, et al. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthr Cartil. 2012;20(11):1217-26. DOI:10.1016/j.joca.2012.06.006
11. Wang H, Cheng Y, Shao D, et al. Metabolic Syndrome Increases the Risk for Knee Osteoarthritis: A Meta-Analysis. Evidence-Based Complement Altern Med. 2016;2016:1-7. DOI:10.1155/2016/7242478
12. Taylor EB. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond). 2021;135(6):731-52. DOI:10.1042/CS20200895
13. Мигачева Н.Б., Скворцова О.В., Каганова Т.И., Гинзбург А.С. Парадоксы иммунного ответа при ожирении. Эффективная фармакотерапия. 2023;19(28):30-6 [Migacheva NB, Skvortsova OV, Kaganova TI, Ginzburg AS. Paradoxes of the Immune Response in Obesity. Effective Pharmacotherapy. 2023;19(28):30-6 (in Russian)]. DOI:10.33978/2307-3586-2023-19-28-30-36
14. Стребкова Е.А., Алексеева Л.И. Остеоартроз и метаболический синдром. Фарматека для практикующих врачей. 2015;17(310):15-9 [Strebkova EA, Alekseeva LI. Osteoarthritis and metabolic syndrome. Farmateca. 2015;17(310):15-9 (in Russian)]. EDN: UXGLOZ
15. Massicotte F, Lajeunesse D, Benderdour M. Can altered production of interleukin-1β, interleukin-6, transforming growth factor-β and prostaglandin E2 by isolated human subchondral osteoblasts identity two subgroups of osteoarthritic patients. Osteoarthritis and Cartilage. 2002;10(6):491-500. DOI:10.1053/joca.2002.0528
16. Tchernot A, Despers JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404. DOI:10.1152/physrev.00033.2011
17. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res. 2019;11(8):4800-8.
18. Manferdini C, Paolella F, Gabusi E, et al. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: In vitro evaluation. Osteoarthr Cartil. 2017;25:1161-71. DOI:10.1016/j.joca.2017.01.011
19. Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. DOI:10.3390/ijms20092358
20. La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017;98:51-8. DOI:10.1016/j.cyto.2016.10.011
21. Gao M, Cui D, Xie J. The role of adiponectin for immune cell function in metabolic diseases. Diabetes Obes Metab. 2023;25(9):2427-38. DOI:10.1111/dom.15151
22. Carrion M, Frommer KW, Perez-Garcia S, et al. The Adipokine Network in Rheumatic Joint Diseases. Int J Mol Sci. 2019;20(17):4091. DOI:10.3390/ijms20174091
23. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96:1723-32. DOI:10.1182/blood.V96.5.1723
24. Sun X, Feng X, Tan W, et al. Adiponectin exacerbates collagen-induced arthritis via enhancing Th17 response and prompting RANKL expression. Sci Rep. 2015;5:11296. DOI:10.1038/srep11296
25. Chen WP, Bao J, Feng J, et al. Increased serum concentrations of visfatin and its production by different joint tissues in patients with osteoarthritis. Clin Chem Lab Med. 2010;48(8):1141-45. DOI:10.1515/CCLM.2010.230
26. Duan Y, Hao D, Li M, et al. Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol Int. 2012;32(4):985-90. DOI:10.1007/s00296-010-1731-8
27. Zhao H, Yan D, Xiang L, et al. Chemokine-like receptor 1 deficiency leads to lower bone mass in male mice. Cell Mol Life Sci. 2019;76(2):355-67. DOI:10.1007/s00018-018-2944-3
28. Huang K, du G, Li L, et al. Association of chemerin levels in synovial fluid with the severity of knee osteoarthritis. Biomarkers. 2012;17(1):16-20. DOI:10.3109/1354750X.2011.634028
29. Zhao CW, Gao YH, Song WX, et al. An Update on the Emerging Role of Resistin on the Pathogenesis of Osteoarthritis. Mediat Inflamm. 2019;2019:1532164. DOI:10.1155/2019/1532164
30. Алексеева Л.И., Кашеварова Н.Г., Таскина Е.А., и др. Эффективность и безопасность применения неденатурированного коллагена II типа у пациентов с остеоартритом коленных суставов: многоцентровое проспективное двойное слепое плацебо-контролируемое рандомизированное исследование. Терапевтический архив. 2024;96(5):500-9 [Alekseeva LI, Kashevarova NG, Taskina EA, et al. Efficacy and safety of undenatured type II collagen in patients with knee osteoarthritis: a multicenter, prospective, double-blind, placebo-controlled, randomized trial. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(5):500-9 (in Russian)]. DOI:10.26442/00403660.2024.05.202788
31. Алексеева Л.И., Кашеварова Н.Г., Таскина Е.А., и др. Эффективность и безопасность внутрисуставного применения комбинации гиалуроната натрия и хондроитина сульфата при остеоартрите коленного сустава: многоцентровое проспективное исследование. Терапевтический архив. 2020;92(5):46-54 [Alekseeva LI, Kashevarova NG, Taskina EA, et al. The efficacy and safety of intra-articular application of a combination of sodium hyaluronate and chondroitin sulfate for osteoarthritis of the knee: a multicenter prospective study. Terapevticheskii arkhiv (Ter. Arkh.). 2020;92(5):46-54 (in Russian)]. DOI:10.26442/00403660.2020.05.000631
32. Насонов Е.Л., Паневин Т.С., Трошина Е.А. Агонисты рецепторов глюкагоноподобного пептида-1: перспективы применения в ревматологии. Научно-практическая ревматология. 2024;62(2):135-44 [Nasonov ЕL, Panevin ТS, Troshina ЕА. Glucagon-like peptide-1 receptor agonists: Prospects for use in rheumatology. Rheumatology Science and Practice. 2024;62(2):135-44 (in Russian)]. DOI:10.47360/1995-4484-2024-135-144
33. Zhu H, Zhou L, Wang Q, et al. Glucagon-like peptide-1 receptor agonists as a disease-modifying therapy for knee osteoarthritis mediated by weight loss: findings from the Shanghai Osteoarthritis Cohort. Ann Rheum Dis. 2023;82(9):1218-26. DOI:10.1136/ard-2023-223845
34. Соловьева И.В., Стребкова Е.А., Алексеева Л.И., Мкртумян А.М. Влияние снижения массы тела на клинические проявления остеоартроза коленных суставов. Ожирение и метаболизм. 2014;11(4):41-7 [Soloveva IV, Strebkova EA, Alekseeva LI, Mkrtumyan AM. Influence of weight loss on the clinical manifestations of osteoarthritis of the knee-joints. Obesity and Metabolism. 2014;11(4):41-7 (in Russian)]. DOI:10.14341/omet2014441-47
35. Song Y, Wu Z, Zhao P. The effects of metformin in the treatment of osteoarthritis: Current perspectives. Front Pharmacol. 2022;13:952560. DOI:10.3389/fphar.2022.952560
36. Lim YZ, Wang Y, Estee M, et al. Metformin as a potential disease-modifying drug in osteoarthritis: a systematic review of pre-clinical and human studies. Osteoarthritis Cartilage. 2022;30(11):1434-42. DOI:10.1016/j.joca.2022.05.005
37. He M, Lu B, Opoku M, et al. Metformin Prevents or Delays the Development and Progression of Osteoarthritis: New Insight and Mechanism of Action. Cells. 2022;11(19):3012. DOI:10.3390/cells11193012
38. Meurot C, Martin C, Sudre L, et al. Liraglutide, a glucagon-like peptide 1 receptor agonist, exerts analgesic, anti-inflammatory and anti-degradative actions in osteoarthritis. Sci Rep. 2022;12(1):1567. DOI:10.1038/s41598-022-05323-7
39. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res. 2019;11(8):4800-8.
40. Que Q, Guo X, Zhan L, et al. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J Inflamm. 2019;16:13. DOI:10.1186/s12950-019-0218-y
41. Pereira M, Jeyabalan J, Jørgensen CS, et al. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone. 2015;81:459-67. DOI:10.1016/j.bone.2015.08.006
42. Meurot C, Jacques C, Martin C, et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J Orthop Translat. 2022;32:121-9. DOI:10.1016/j.jot.2022.02.001
43. Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014;57(4):781-4. DOI:10.1007/s00125-013-3145-0
44. Pastel E, McCulloch L, Ward R, et al. GLP-1 analogue-induced weight loss does not improve obesity-induced AT dysfunction. Clin Sci (Lond). 2017;131(5):343-53. DOI:10.1042/CS20160803
45. De Vincentis A, Pedone C, Vespasiani-Gentilucci U, et al. Effect of Sibutramine on Plasma C-Reactive Protein, Leptin and Adipon ectin Concentrations: A Systematic Review and Meta-Analysis of Randomized Contr olled Trials. Curr Pharm Des. 2017;23(6):870-8. DOI:10.2174/1381612822666161006122934
46. Hafida S, Mirshahi T, Nikolajczyk BS. The impact of bariatric surgery on inflammation: quenching the fire of obesity? Curr Opin Endocrinol Diabetes Obes. 2016;23(5):373-8. DOI:10.1097/MED.000000000000027
47. Richette P, Poitou C, Garnero P, et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann Rheum Dis. 2011;70(1):139-44. DOI:10.1136/ard.2010.134015
48. Edwards C, Rogers A, Lynch S, et al. The effects of bariatric surgery weight loss on knee pain in patients with knee osteoarthritis: 2 year follow-up. J Arthritis. 2014;3:132. DOI:10.1155/2012/504189
49. Hacken B, Rogers A, Chinchilli V, et al. Improvement in knee osteoarthritis pain and function following bariatric surgery: 5-year follow-up. Surg Obes Relat Dis. 2019;15(6):979-84. DOI:10.1016/j.soard.2019.04.005
50. Abu-Abeid S, Wishnitzer N, Szold A, et al. The influence of surgically-induced weight loss on the knee joint. Obes Surg. 2005;15:1437-42. DOI:10.1381/096089205774859281
51. Lohmander LS, Peltonen M, Andersson-Assarsson JC, et al. Bariatric surgery, osteoarthritis and arthroplasty of the hip and knee in Swedish Obese Subjects – up to 31 years follow-up of a controlled intervention study. Osteoarthritis Cartilage. 2023;31(5):636-46. DOI:10.1016/j.joca.2022
52. Burkard T, Holmberg D, Wretenberg P, et al. The associations between bariatric surgery and hip or knee arthroplasty, and hip or knee osteoarthritis: Propensity score-matched cohort studies. Osteoarthr Cartil Open. 2022;4(2):100249. DOI:10.1016/j.ocarto.2022.100249
53. McLawhorn AS, Levack AE, Lee YY, et al. Bariatric Surgery Improves Outcomes After Lower Extremity Arthroplasty in the Morbidly Obese: A Propensity Score-Matched Analysis of a New York Statewide Database. J Arthroplasty. 2018;33(7):2062-69. DOI:10.1016/j.arth.2017.11.056
54. Kulkarni A, Jameson SS, James P, et al. Does bariatric surgery prior to lower limb joint replacement reduce complications? Surgeon. 2011;9(1):18-21. DOI:10.1016/j.surge.2010.08.004
55. Watts CD, Martin JR, Houdek MT, et al. Prior bariatric surgery may decrease the rate of re-operation and revision following total hip arthroplasty. Bone Joint J. 2016;98-B(9):1180-4. DOI:10.1302/0301-620X.98B9.37943
2. Alekseeva LI. New ideas about the pathogenesis of osteoarthritis, the role of metabolic disorders. Obesity and Metabolism. 2019;16(2):75-82 (in Russian). DOI:10.14341/omet10274
3. Toussirot E, Streit G, Wendling D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med Chem. 2007;14(10):1095-100. DOI:10.2174/092986707780362826
4. Presle N, Pottie P, Dumond H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthr Cartilage. 2006;14(7):6905. DOI:10.1016/j.joca.2006.01.009
5. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2(4):367-73. DOI:10.2174/1573399810602040367
6. Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. DOI:10.3390/ijms20092358
7. Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;16(11):1234-41. DOI:10.1161/CIRCULATIONAHA.107.710509
8. Li S, Schwartz AV, LaValley MP, et al. Association of Visceral Adiposity With Pain but Not Structural Osteoarthritis. Arthritis Rheumatol. 2020;72(7):1103-10. DOI:10.1002/art.41222
9. Jiang L, Tian W, Wang Y, et al. Body mass index and susceptibility to knee osteoarthritis: a systematic review and meta-analysi. Joint Bone Spine. 2012;79(3):291-7. DOI:10.1016/j.jbspin.2011.05.015
10. Yoshimura N, Muraki S, Oka H, et al. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthr Cartil. 2012;20(11):1217-26. DOI:10.1016/j.joca.2012.06.006
11. Wang H, Cheng Y, Shao D, et al. Metabolic Syndrome Increases the Risk for Knee Osteoarthritis: A Meta-Analysis. Evidence-Based Complement Altern Med. 2016;2016:1-7. DOI:10.1155/2016/7242478
12. Taylor EB. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond). 2021;135(6):731-52. DOI:10.1042/CS20200895
13. Migacheva NB, Skvortsova OV, Kaganova TI, Ginzburg AS. Paradoxes of the Immune Response in Obesity. Effective Pharmacotherapy. 2023;19(28):30-6 (in Russian). DOI:10.33978/2307-3586-2023-19-28-30-36
14. Strebkova EA, Alekseeva LI. Osteoarthritis and metabolic syndrome. Farmateca. 2015;17(310):15-9 (in Russian). EDN: UXGLOZ
15. Massicotte F, Lajeunesse D, Benderdour M. Can altered production of interleukin-1β, interleukin-6, transforming growth factor-β and prostaglandin E2 by isolated human subchondral osteoblasts identity two subgroups of osteoarthritic patients. Osteoarthritis and Cartilage. 2002;10(6):491-500. DOI:10.1053/joca.2002.0528
16. Tchernot A, Despers JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404. DOI:10.1152/physrev.00033.2011
17. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res. 2019;11(8):4800-8.
18. Manferdini C, Paolella F, Gabusi E, et al. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: In vitro evaluation. Osteoarthr Cartil. 2017;25:1161-71. DOI:10.1016/j.joca.2017.01.011
19. Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. DOI:10.3390/ijms20092358
20. La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017;98:51-8. DOI:10.1016/j.cyto.2016.10.011
21. Gao M, Cui D, Xie J. The role of adiponectin for immune cell function in metabolic diseases. Diabetes Obes Metab. 2023;25(9):2427-38. DOI:10.1111/dom.15151
22. Carrion M, Frommer KW, Perez-Garcia S, et al. The Adipokine Network in Rheumatic Joint Diseases. Int J Mol Sci. 2019;20(17):4091. DOI:10.3390/ijms20174091
23. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96:1723-32. DOI:10.1182/blood.V96.5.1723
24. Sun X, Feng X, Tan W, et al. Adiponectin exacerbates collagen-induced arthritis via enhancing Th17 response and prompting RANKL expression. Sci Rep. 2015;5:11296. DOI:10.1038/srep11296
25. Chen WP, Bao J, Feng J, et al. Increased serum concentrations of visfatin and its production by different joint tissues in patients with osteoarthritis. Clin Chem Lab Med. 2010;48(8):1141-45. DOI:10.1515/CCLM.2010.230
26. Duan Y, Hao D, Li M, et al. Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol Int. 2012;32(4):985-90. DOI:10.1007/s00296-010-1731-8
27. Zhao H, Yan D, Xiang L, et al. Chemokine-like receptor 1 deficiency leads to lower bone mass in male mice. Cell Mol Life Sci. 2019;76(2):355-67. DOI:10.1007/s00018-018-2944-3
28. Huang K, du G, Li L, et al. Association of chemerin levels in synovial fluid with the severity of knee osteoarthritis. Biomarkers. 2012;17(1):16-20. DOI:10.3109/1354750X.2011.634028
29. Zhao CW, Gao YH, Song WX, et al. An Update on the Emerging Role of Resistin on the Pathogenesis of Osteoarthritis. Mediat Inflamm. 2019;2019:1532164. DOI:10.1155/2019/1532164
30. Alekseeva LI, Kashevarova NG, Taskina EA, et al. Efficacy and safety of undenatured type II collagen in patients with knee osteoarthritis: a multicenter, prospective, double-blind, placebo-controlled, randomized trial. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(5):500-9 (in Russian). DOI:10.26442/00403660.2024.05.202788
31. Alekseeva LI, Kashevarova NG, Taskina EA, et al. The efficacy and safety of intra-articular application of a combination of sodium hyaluronate and chondroitin sulfate for osteoarthritis of the knee: a multicenter prospective study. Terapevticheskii arkhiv (Ter. Arkh.). 2020;92(5):46-54 (in Russian). DOI:10.26442/00403660.2020.05.000631
32. Nasonov ЕL, Panevin ТS, Troshina ЕА. Glucagon-like peptide-1 receptor agonists: Prospects for use in rheumatology. Rheumatology Science and Practice. 2024;62(2):135-44 (in Russian). DOI:10.47360/1995-4484-2024-135-144
33. Zhu H, Zhou L, Wang Q, et al. Glucagon-like peptide-1 receptor agonists as a disease-modifying therapy for knee osteoarthritis mediated by weight loss: findings from the Shanghai Osteoarthritis Cohort. Ann Rheum Dis. 2023;82(9):1218-26. DOI:10.1136/ard-2023-223845
34. Soloveva IV, Strebkova EA, Alekseeva LI, Mkrtumyan AM. Influence of weight loss on the clinical manifestations of osteoarthritis of the knee-joints. Obesity and Metabolism. 2014;11(4):41-7 (in Russian). DOI:10.14341/omet2014441-47
35. Song Y, Wu Z, Zhao P. The effects of metformin in the treatment of osteoarthritis: Current perspectives. Front Pharmacol. 2022;13:952560. DOI:10.3389/fphar.2022.952560
36. Lim YZ, Wang Y, Estee M, et al. Metformin as a potential disease-modifying drug in osteoarthritis: a systematic review of pre-clinical and human studies. Osteoarthritis Cartilage. 2022;30(11):1434-42. DOI:10.1016/j.joca.2022.05.005
37. He M, Lu B, Opoku M, et al. Metformin Prevents or Delays the Development and Progression of Osteoarthritis: New Insight and Mechanism of Action. Cells. 2022;11(19):3012. DOI:10.3390/cells11193012
38. Meurot C, Martin C, Sudre L, et al. Liraglutide, a glucagon-like peptide 1 receptor agonist, exerts analgesic, anti-inflammatory and anti-degradative actions in osteoarthritis. Sci Rep. 2022;12(1):1567. DOI:10.1038/s41598-022-05323-7
39. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res. 2019;11(8):4800-8.
40. Que Q, Guo X, Zhan L, et al. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J Inflamm. 2019;16:13. DOI:10.1186/s12950-019-0218-y
41. Pereira M, Jeyabalan J, Jørgensen CS, et al. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone. 2015;81:459-67. DOI:10.1016/j.bone.2015.08.006
42. Meurot C, Jacques C, Martin C, et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J Orthop Translat. 2022;32:121-9. DOI:10.1016/j.jot.2022.02.001
43. Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014;57(4):781-4. DOI:10.1007/s00125-013-3145-0
44. Pastel E, McCulloch L, Ward R, et al. GLP-1 analogue-induced weight loss does not improve obesity-induced AT dysfunction. Clin Sci (Lond). 2017;131(5):343-53. DOI:10.1042/CS20160803
45. De Vincentis A, Pedone C, Vespasiani-Gentilucci U, et al. Effect of Sibutramine on Plasma C-Reactive Protein, Leptin and Adipon ectin Concentrations: A Systematic Review and Meta-Analysis of Randomized Contr olled Trials. Curr Pharm Des. 2017;23(6):870-8. DOI:10.2174/1381612822666161006122934
46. Hafida S, Mirshahi T, Nikolajczyk BS. The impact of bariatric surgery on inflammation: quenching the fire of obesity? Curr Opin Endocrinol Diabetes Obes. 2016;23(5):373-8. DOI:10.1097/MED.000000000000027
47. Richette P, Poitou C, Garnero P, et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann Rheum Dis. 2011;70(1):139-44. DOI:10.1136/ard.2010.134015
48. Edwards C, Rogers A, Lynch S, et al. The effects of bariatric surgery weight loss on knee pain in patients with knee osteoarthritis: 2 year follow-up. J Arthritis. 2014;3:132. DOI:10.1155/2012/504189
49. Hacken B, Rogers A, Chinchilli V, et al. Improvement in knee osteoarthritis pain and function following bariatric surgery: 5-year follow-up. Surg Obes Relat Dis. 2019;15(6):979-84. DOI:10.1016/j.soard.2019.04.005
50. Abu-Abeid S, Wishnitzer N, Szold A, et al. The influence of surgically-induced weight loss on the knee joint. Obes Surg. 2005;15:1437-42. DOI:10.1381/096089205774859281
51. Lohmander LS, Peltonen M, Andersson-Assarsson JC, et al. Bariatric surgery, osteoarthritis and arthroplasty of the hip and knee in Swedish Obese Subjects – up to 31 years follow-up of a controlled intervention study. Osteoarthritis Cartilage. 2023;31(5):636-46. DOI:10.1016/j.joca.2022
52. Burkard T, Holmberg D, Wretenberg P, et al. The associations between bariatric surgery and hip or knee arthroplasty, and hip or knee osteoarthritis: Propensity score-matched cohort studies. Osteoarthr Cartil Open. 2022;4(2):100249. DOI:10.1016/j.ocarto.2022.100249
53. McLawhorn AS, Levack AE, Lee YY, et al. Bariatric Surgery Improves Outcomes After Lower Extremity Arthroplasty in the Morbidly Obese: A Propensity Score-Matched Analysis of a New York Statewide Database. J Arthroplasty. 2018;33(7):2062-69. DOI:10.1016/j.arth.2017.11.056
54. Kulkarni A, Jameson SS, James P, et al. Does bariatric surgery prior to lower limb joint replacement reduce complications? Surgeon. 2011;9(1):18-21. DOI:10.1016/j.surge.2010.08.004
55. Watts CD, Martin JR, Houdek MT, et al. Prior bariatric surgery may decrease the rate of re-operation and revision following total hip arthroplasty. Bone Joint J. 2016;98-B(9):1180-4. DOI:10.1302/0301-620X.98B9.37943
2. Алексеева Л.И. Новые представления о патогенезе остеоартрита, роль метаболических нарушений. Ожирение и метаболизм. 2019;16(2):75-82 [Alekseeva LI. New ideas about the pathogenesis of osteoarthritis, the role of metabolic disorders. Obesity and Metabolism. 2019;16(2):75-82 (in Russian)]. DOI:10.14341/omet10274
3. Toussirot E, Streit G, Wendling D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med Chem. 2007;14(10):1095-100. DOI:10.2174/092986707780362826
4. Presle N, Pottie P, Dumond H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthr Cartilage. 2006;14(7):6905. DOI:10.1016/j.joca.2006.01.009
5. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2(4):367-73. DOI:10.2174/1573399810602040367
6. Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. DOI:10.3390/ijms20092358
7. Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;16(11):1234-41. DOI:10.1161/CIRCULATIONAHA.107.710509
8. Li S, Schwartz AV, LaValley MP, et al. Association of Visceral Adiposity With Pain but Not Structural Osteoarthritis. Arthritis Rheumatol. 2020;72(7):1103-10. DOI:10.1002/art.41222
9. Jiang L, Tian W, Wang Y, et al. Body mass index and susceptibility to knee osteoarthritis: a systematic review and meta-analysi. Joint Bone Spine. 2012;79(3):291-7. DOI:10.1016/j.jbspin.2011.05.015
10. Yoshimura N, Muraki S, Oka H, et al. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthr Cartil. 2012;20(11):1217-26. DOI:10.1016/j.joca.2012.06.006
11. Wang H, Cheng Y, Shao D, et al. Metabolic Syndrome Increases the Risk for Knee Osteoarthritis: A Meta-Analysis. Evidence-Based Complement Altern Med. 2016;2016:1-7. DOI:10.1155/2016/7242478
12. Taylor EB. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond). 2021;135(6):731-52. DOI:10.1042/CS20200895
13. Мигачева Н.Б., Скворцова О.В., Каганова Т.И., Гинзбург А.С. Парадоксы иммунного ответа при ожирении. Эффективная фармакотерапия. 2023;19(28):30-6 [Migacheva NB, Skvortsova OV, Kaganova TI, Ginzburg AS. Paradoxes of the Immune Response in Obesity. Effective Pharmacotherapy. 2023;19(28):30-6 (in Russian)]. DOI:10.33978/2307-3586-2023-19-28-30-36
14. Стребкова Е.А., Алексеева Л.И. Остеоартроз и метаболический синдром. Фарматека для практикующих врачей. 2015;17(310):15-9 [Strebkova EA, Alekseeva LI. Osteoarthritis and metabolic syndrome. Farmateca. 2015;17(310):15-9 (in Russian)]. EDN: UXGLOZ
15. Massicotte F, Lajeunesse D, Benderdour M. Can altered production of interleukin-1β, interleukin-6, transforming growth factor-β and prostaglandin E2 by isolated human subchondral osteoblasts identity two subgroups of osteoarthritic patients. Osteoarthritis and Cartilage. 2002;10(6):491-500. DOI:10.1053/joca.2002.0528
16. Tchernot A, Despers JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404. DOI:10.1152/physrev.00033.2011
17. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res. 2019;11(8):4800-8.
18. Manferdini C, Paolella F, Gabusi E, et al. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: In vitro evaluation. Osteoarthr Cartil. 2017;25:1161-71. DOI:10.1016/j.joca.2017.01.011
19. Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. DOI:10.3390/ijms20092358
20. La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017;98:51-8. DOI:10.1016/j.cyto.2016.10.011
21. Gao M, Cui D, Xie J. The role of adiponectin for immune cell function in metabolic diseases. Diabetes Obes Metab. 2023;25(9):2427-38. DOI:10.1111/dom.15151
22. Carrion M, Frommer KW, Perez-Garcia S, et al. The Adipokine Network in Rheumatic Joint Diseases. Int J Mol Sci. 2019;20(17):4091. DOI:10.3390/ijms20174091
23. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96:1723-32. DOI:10.1182/blood.V96.5.1723
24. Sun X, Feng X, Tan W, et al. Adiponectin exacerbates collagen-induced arthritis via enhancing Th17 response and prompting RANKL expression. Sci Rep. 2015;5:11296. DOI:10.1038/srep11296
25. Chen WP, Bao J, Feng J, et al. Increased serum concentrations of visfatin and its production by different joint tissues in patients with osteoarthritis. Clin Chem Lab Med. 2010;48(8):1141-45. DOI:10.1515/CCLM.2010.230
26. Duan Y, Hao D, Li M, et al. Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol Int. 2012;32(4):985-90. DOI:10.1007/s00296-010-1731-8
27. Zhao H, Yan D, Xiang L, et al. Chemokine-like receptor 1 deficiency leads to lower bone mass in male mice. Cell Mol Life Sci. 2019;76(2):355-67. DOI:10.1007/s00018-018-2944-3
28. Huang K, du G, Li L, et al. Association of chemerin levels in synovial fluid with the severity of knee osteoarthritis. Biomarkers. 2012;17(1):16-20. DOI:10.3109/1354750X.2011.634028
29. Zhao CW, Gao YH, Song WX, et al. An Update on the Emerging Role of Resistin on the Pathogenesis of Osteoarthritis. Mediat Inflamm. 2019;2019:1532164. DOI:10.1155/2019/1532164
30. Алексеева Л.И., Кашеварова Н.Г., Таскина Е.А., и др. Эффективность и безопасность применения неденатурированного коллагена II типа у пациентов с остеоартритом коленных суставов: многоцентровое проспективное двойное слепое плацебо-контролируемое рандомизированное исследование. Терапевтический архив. 2024;96(5):500-9 [Alekseeva LI, Kashevarova NG, Taskina EA, et al. Efficacy and safety of undenatured type II collagen in patients with knee osteoarthritis: a multicenter, prospective, double-blind, placebo-controlled, randomized trial. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(5):500-9 (in Russian)]. DOI:10.26442/00403660.2024.05.202788
31. Алексеева Л.И., Кашеварова Н.Г., Таскина Е.А., и др. Эффективность и безопасность внутрисуставного применения комбинации гиалуроната натрия и хондроитина сульфата при остеоартрите коленного сустава: многоцентровое проспективное исследование. Терапевтический архив. 2020;92(5):46-54 [Alekseeva LI, Kashevarova NG, Taskina EA, et al. The efficacy and safety of intra-articular application of a combination of sodium hyaluronate and chondroitin sulfate for osteoarthritis of the knee: a multicenter prospective study. Terapevticheskii arkhiv (Ter. Arkh.). 2020;92(5):46-54 (in Russian)]. DOI:10.26442/00403660.2020.05.000631
32. Насонов Е.Л., Паневин Т.С., Трошина Е.А. Агонисты рецепторов глюкагоноподобного пептида-1: перспективы применения в ревматологии. Научно-практическая ревматология. 2024;62(2):135-44 [Nasonov ЕL, Panevin ТS, Troshina ЕА. Glucagon-like peptide-1 receptor agonists: Prospects for use in rheumatology. Rheumatology Science and Practice. 2024;62(2):135-44 (in Russian)]. DOI:10.47360/1995-4484-2024-135-144
33. Zhu H, Zhou L, Wang Q, et al. Glucagon-like peptide-1 receptor agonists as a disease-modifying therapy for knee osteoarthritis mediated by weight loss: findings from the Shanghai Osteoarthritis Cohort. Ann Rheum Dis. 2023;82(9):1218-26. DOI:10.1136/ard-2023-223845
34. Соловьева И.В., Стребкова Е.А., Алексеева Л.И., Мкртумян А.М. Влияние снижения массы тела на клинические проявления остеоартроза коленных суставов. Ожирение и метаболизм. 2014;11(4):41-7 [Soloveva IV, Strebkova EA, Alekseeva LI, Mkrtumyan AM. Influence of weight loss on the clinical manifestations of osteoarthritis of the knee-joints. Obesity and Metabolism. 2014;11(4):41-7 (in Russian)]. DOI:10.14341/omet2014441-47
35. Song Y, Wu Z, Zhao P. The effects of metformin in the treatment of osteoarthritis: Current perspectives. Front Pharmacol. 2022;13:952560. DOI:10.3389/fphar.2022.952560
36. Lim YZ, Wang Y, Estee M, et al. Metformin as a potential disease-modifying drug in osteoarthritis: a systematic review of pre-clinical and human studies. Osteoarthritis Cartilage. 2022;30(11):1434-42. DOI:10.1016/j.joca.2022.05.005
37. He M, Lu B, Opoku M, et al. Metformin Prevents or Delays the Development and Progression of Osteoarthritis: New Insight and Mechanism of Action. Cells. 2022;11(19):3012. DOI:10.3390/cells11193012
38. Meurot C, Martin C, Sudre L, et al. Liraglutide, a glucagon-like peptide 1 receptor agonist, exerts analgesic, anti-inflammatory and anti-degradative actions in osteoarthritis. Sci Rep. 2022;12(1):1567. DOI:10.1038/s41598-022-05323-7
39. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res. 2019;11(8):4800-8.
40. Que Q, Guo X, Zhan L, et al. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J Inflamm. 2019;16:13. DOI:10.1186/s12950-019-0218-y
41. Pereira M, Jeyabalan J, Jørgensen CS, et al. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone. 2015;81:459-67. DOI:10.1016/j.bone.2015.08.006
42. Meurot C, Jacques C, Martin C, et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J Orthop Translat. 2022;32:121-9. DOI:10.1016/j.jot.2022.02.001
43. Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014;57(4):781-4. DOI:10.1007/s00125-013-3145-0
44. Pastel E, McCulloch L, Ward R, et al. GLP-1 analogue-induced weight loss does not improve obesity-induced AT dysfunction. Clin Sci (Lond). 2017;131(5):343-53. DOI:10.1042/CS20160803
45. De Vincentis A, Pedone C, Vespasiani-Gentilucci U, et al. Effect of Sibutramine on Plasma C-Reactive Protein, Leptin and Adipon ectin Concentrations: A Systematic Review and Meta-Analysis of Randomized Contr olled Trials. Curr Pharm Des. 2017;23(6):870-8. DOI:10.2174/1381612822666161006122934
46. Hafida S, Mirshahi T, Nikolajczyk BS. The impact of bariatric surgery on inflammation: quenching the fire of obesity? Curr Opin Endocrinol Diabetes Obes. 2016;23(5):373-8. DOI:10.1097/MED.000000000000027
47. Richette P, Poitou C, Garnero P, et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann Rheum Dis. 2011;70(1):139-44. DOI:10.1136/ard.2010.134015
48. Edwards C, Rogers A, Lynch S, et al. The effects of bariatric surgery weight loss on knee pain in patients with knee osteoarthritis: 2 year follow-up. J Arthritis. 2014;3:132. DOI:10.1155/2012/504189
49. Hacken B, Rogers A, Chinchilli V, et al. Improvement in knee osteoarthritis pain and function following bariatric surgery: 5-year follow-up. Surg Obes Relat Dis. 2019;15(6):979-84. DOI:10.1016/j.soard.2019.04.005
50. Abu-Abeid S, Wishnitzer N, Szold A, et al. The influence of surgically-induced weight loss on the knee joint. Obes Surg. 2005;15:1437-42. DOI:10.1381/096089205774859281
51. Lohmander LS, Peltonen M, Andersson-Assarsson JC, et al. Bariatric surgery, osteoarthritis and arthroplasty of the hip and knee in Swedish Obese Subjects – up to 31 years follow-up of a controlled intervention study. Osteoarthritis Cartilage. 2023;31(5):636-46. DOI:10.1016/j.joca.2022
52. Burkard T, Holmberg D, Wretenberg P, et al. The associations between bariatric surgery and hip or knee arthroplasty, and hip or knee osteoarthritis: Propensity score-matched cohort studies. Osteoarthr Cartil Open. 2022;4(2):100249. DOI:10.1016/j.ocarto.2022.100249
53. McLawhorn AS, Levack AE, Lee YY, et al. Bariatric Surgery Improves Outcomes After Lower Extremity Arthroplasty in the Morbidly Obese: A Propensity Score-Matched Analysis of a New York Statewide Database. J Arthroplasty. 2018;33(7):2062-69. DOI:10.1016/j.arth.2017.11.056
54. Kulkarni A, Jameson SS, James P, et al. Does bariatric surgery prior to lower limb joint replacement reduce complications? Surgeon. 2011;9(1):18-21. DOI:10.1016/j.surge.2010.08.004
55. Watts CD, Martin JR, Houdek MT, et al. Prior bariatric surgery may decrease the rate of re-operation and revision following total hip arthroplasty. Bone Joint J. 2016;98-B(9):1180-4. DOI:10.1302/0301-620X.98B9.37943
________________________________________________
2. Alekseeva LI. New ideas about the pathogenesis of osteoarthritis, the role of metabolic disorders. Obesity and Metabolism. 2019;16(2):75-82 (in Russian). DOI:10.14341/omet10274
3. Toussirot E, Streit G, Wendling D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med Chem. 2007;14(10):1095-100. DOI:10.2174/092986707780362826
4. Presle N, Pottie P, Dumond H, et al. Differential distribution of adipokines between serum and synovial fluid in patients with osteoarthritis. Contribution of joint tissues to their articular production. Osteoarthr Cartilage. 2006;14(7):6905. DOI:10.1016/j.joca.2006.01.009
5. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2(4):367-73. DOI:10.2174/1573399810602040367
6. Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. DOI:10.3390/ijms20092358
7. Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;16(11):1234-41. DOI:10.1161/CIRCULATIONAHA.107.710509
8. Li S, Schwartz AV, LaValley MP, et al. Association of Visceral Adiposity With Pain but Not Structural Osteoarthritis. Arthritis Rheumatol. 2020;72(7):1103-10. DOI:10.1002/art.41222
9. Jiang L, Tian W, Wang Y, et al. Body mass index and susceptibility to knee osteoarthritis: a systematic review and meta-analysi. Joint Bone Spine. 2012;79(3):291-7. DOI:10.1016/j.jbspin.2011.05.015
10. Yoshimura N, Muraki S, Oka H, et al. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthr Cartil. 2012;20(11):1217-26. DOI:10.1016/j.joca.2012.06.006
11. Wang H, Cheng Y, Shao D, et al. Metabolic Syndrome Increases the Risk for Knee Osteoarthritis: A Meta-Analysis. Evidence-Based Complement Altern Med. 2016;2016:1-7. DOI:10.1155/2016/7242478
12. Taylor EB. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond). 2021;135(6):731-52. DOI:10.1042/CS20200895
13. Migacheva NB, Skvortsova OV, Kaganova TI, Ginzburg AS. Paradoxes of the Immune Response in Obesity. Effective Pharmacotherapy. 2023;19(28):30-6 (in Russian). DOI:10.33978/2307-3586-2023-19-28-30-36
14. Strebkova EA, Alekseeva LI. Osteoarthritis and metabolic syndrome. Farmateca. 2015;17(310):15-9 (in Russian). EDN: UXGLOZ
15. Massicotte F, Lajeunesse D, Benderdour M. Can altered production of interleukin-1β, interleukin-6, transforming growth factor-β and prostaglandin E2 by isolated human subchondral osteoblasts identity two subgroups of osteoarthritic patients. Osteoarthritis and Cartilage. 2002;10(6):491-500. DOI:10.1053/joca.2002.0528
16. Tchernot A, Despers JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404. DOI:10.1152/physrev.00033.2011
17. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res. 2019;11(8):4800-8.
18. Manferdini C, Paolella F, Gabusi E, et al. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: In vitro evaluation. Osteoarthr Cartil. 2017;25:1161-71. DOI:10.1016/j.joca.2017.01.011
19. Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. DOI:10.3390/ijms20092358
20. La Cava A. Leptin in inflammation and autoimmunity. Cytokine. 2017;98:51-8. DOI:10.1016/j.cyto.2016.10.011
21. Gao M, Cui D, Xie J. The role of adiponectin for immune cell function in metabolic diseases. Diabetes Obes Metab. 2023;25(9):2427-38. DOI:10.1111/dom.15151
22. Carrion M, Frommer KW, Perez-Garcia S, et al. The Adipokine Network in Rheumatic Joint Diseases. Int J Mol Sci. 2019;20(17):4091. DOI:10.3390/ijms20174091
23. Yokota T, Oritani K, Takahashi I, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood. 2000;96:1723-32. DOI:10.1182/blood.V96.5.1723
24. Sun X, Feng X, Tan W, et al. Adiponectin exacerbates collagen-induced arthritis via enhancing Th17 response and prompting RANKL expression. Sci Rep. 2015;5:11296. DOI:10.1038/srep11296
25. Chen WP, Bao J, Feng J, et al. Increased serum concentrations of visfatin and its production by different joint tissues in patients with osteoarthritis. Clin Chem Lab Med. 2010;48(8):1141-45. DOI:10.1515/CCLM.2010.230
26. Duan Y, Hao D, Li M, et al. Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol Int. 2012;32(4):985-90. DOI:10.1007/s00296-010-1731-8
27. Zhao H, Yan D, Xiang L, et al. Chemokine-like receptor 1 deficiency leads to lower bone mass in male mice. Cell Mol Life Sci. 2019;76(2):355-67. DOI:10.1007/s00018-018-2944-3
28. Huang K, du G, Li L, et al. Association of chemerin levels in synovial fluid with the severity of knee osteoarthritis. Biomarkers. 2012;17(1):16-20. DOI:10.3109/1354750X.2011.634028
29. Zhao CW, Gao YH, Song WX, et al. An Update on the Emerging Role of Resistin on the Pathogenesis of Osteoarthritis. Mediat Inflamm. 2019;2019:1532164. DOI:10.1155/2019/1532164
30. Alekseeva LI, Kashevarova NG, Taskina EA, et al. Efficacy and safety of undenatured type II collagen in patients with knee osteoarthritis: a multicenter, prospective, double-blind, placebo-controlled, randomized trial. Terapevticheskii Arkhiv (Ter. Arkh.). 2024;96(5):500-9 (in Russian). DOI:10.26442/00403660.2024.05.202788
31. Alekseeva LI, Kashevarova NG, Taskina EA, et al. The efficacy and safety of intra-articular application of a combination of sodium hyaluronate and chondroitin sulfate for osteoarthritis of the knee: a multicenter prospective study. Terapevticheskii arkhiv (Ter. Arkh.). 2020;92(5):46-54 (in Russian). DOI:10.26442/00403660.2020.05.000631
32. Nasonov ЕL, Panevin ТS, Troshina ЕА. Glucagon-like peptide-1 receptor agonists: Prospects for use in rheumatology. Rheumatology Science and Practice. 2024;62(2):135-44 (in Russian). DOI:10.47360/1995-4484-2024-135-144
33. Zhu H, Zhou L, Wang Q, et al. Glucagon-like peptide-1 receptor agonists as a disease-modifying therapy for knee osteoarthritis mediated by weight loss: findings from the Shanghai Osteoarthritis Cohort. Ann Rheum Dis. 2023;82(9):1218-26. DOI:10.1136/ard-2023-223845
34. Soloveva IV, Strebkova EA, Alekseeva LI, Mkrtumyan AM. Influence of weight loss on the clinical manifestations of osteoarthritis of the knee-joints. Obesity and Metabolism. 2014;11(4):41-7 (in Russian). DOI:10.14341/omet2014441-47
35. Song Y, Wu Z, Zhao P. The effects of metformin in the treatment of osteoarthritis: Current perspectives. Front Pharmacol. 2022;13:952560. DOI:10.3389/fphar.2022.952560
36. Lim YZ, Wang Y, Estee M, et al. Metformin as a potential disease-modifying drug in osteoarthritis: a systematic review of pre-clinical and human studies. Osteoarthritis Cartilage. 2022;30(11):1434-42. DOI:10.1016/j.joca.2022.05.005
37. He M, Lu B, Opoku M, et al. Metformin Prevents or Delays the Development and Progression of Osteoarthritis: New Insight and Mechanism of Action. Cells. 2022;11(19):3012. DOI:10.3390/cells11193012
38. Meurot C, Martin C, Sudre L, et al. Liraglutide, a glucagon-like peptide 1 receptor agonist, exerts analgesic, anti-inflammatory and anti-degradative actions in osteoarthritis. Sci Rep. 2022;12(1):1567. DOI:10.1038/s41598-022-05323-7
39. Mei J, Sun J, Wu J, Zheng X. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Am J Transl Res. 2019;11(8):4800-8.
40. Que Q, Guo X, Zhan L, et al. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J Inflamm. 2019;16:13. DOI:10.1186/s12950-019-0218-y
41. Pereira M, Jeyabalan J, Jørgensen CS, et al. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone. 2015;81:459-67. DOI:10.1016/j.bone.2015.08.006
42. Meurot C, Jacques C, Martin C, et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J Orthop Translat. 2022;32:121-9. DOI:10.1016/j.jot.2022.02.001
43. Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014;57(4):781-4. DOI:10.1007/s00125-013-3145-0
44. Pastel E, McCulloch L, Ward R, et al. GLP-1 analogue-induced weight loss does not improve obesity-induced AT dysfunction. Clin Sci (Lond). 2017;131(5):343-53. DOI:10.1042/CS20160803
45. De Vincentis A, Pedone C, Vespasiani-Gentilucci U, et al. Effect of Sibutramine on Plasma C-Reactive Protein, Leptin and Adipon ectin Concentrations: A Systematic Review and Meta-Analysis of Randomized Contr olled Trials. Curr Pharm Des. 2017;23(6):870-8. DOI:10.2174/1381612822666161006122934
46. Hafida S, Mirshahi T, Nikolajczyk BS. The impact of bariatric surgery on inflammation: quenching the fire of obesity? Curr Opin Endocrinol Diabetes Obes. 2016;23(5):373-8. DOI:10.1097/MED.000000000000027
47. Richette P, Poitou C, Garnero P, et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann Rheum Dis. 2011;70(1):139-44. DOI:10.1136/ard.2010.134015
48. Edwards C, Rogers A, Lynch S, et al. The effects of bariatric surgery weight loss on knee pain in patients with knee osteoarthritis: 2 year follow-up. J Arthritis. 2014;3:132. DOI:10.1155/2012/504189
49. Hacken B, Rogers A, Chinchilli V, et al. Improvement in knee osteoarthritis pain and function following bariatric surgery: 5-year follow-up. Surg Obes Relat Dis. 2019;15(6):979-84. DOI:10.1016/j.soard.2019.04.005
50. Abu-Abeid S, Wishnitzer N, Szold A, et al. The influence of surgically-induced weight loss on the knee joint. Obes Surg. 2005;15:1437-42. DOI:10.1381/096089205774859281
51. Lohmander LS, Peltonen M, Andersson-Assarsson JC, et al. Bariatric surgery, osteoarthritis and arthroplasty of the hip and knee in Swedish Obese Subjects – up to 31 years follow-up of a controlled intervention study. Osteoarthritis Cartilage. 2023;31(5):636-46. DOI:10.1016/j.joca.2022
52. Burkard T, Holmberg D, Wretenberg P, et al. The associations between bariatric surgery and hip or knee arthroplasty, and hip or knee osteoarthritis: Propensity score-matched cohort studies. Osteoarthr Cartil Open. 2022;4(2):100249. DOI:10.1016/j.ocarto.2022.100249
53. McLawhorn AS, Levack AE, Lee YY, et al. Bariatric Surgery Improves Outcomes After Lower Extremity Arthroplasty in the Morbidly Obese: A Propensity Score-Matched Analysis of a New York Statewide Database. J Arthroplasty. 2018;33(7):2062-69. DOI:10.1016/j.arth.2017.11.056
54. Kulkarni A, Jameson SS, James P, et al. Does bariatric surgery prior to lower limb joint replacement reduce complications? Surgeon. 2011;9(1):18-21. DOI:10.1016/j.surge.2010.08.004
55. Watts CD, Martin JR, Houdek MT, et al. Prior bariatric surgery may decrease the rate of re-operation and revision following total hip arthroplasty. Bone Joint J. 2016;98-B(9):1180-4. DOI:10.1302/0301-620X.98B9.37943
Авторы
Е.А. Трошина1, Т.С. Паневин2,3, Т.Д. Брискман*1
1ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия;
2ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва, Россия;
3ФГБОУ ВО «Дальневосточный государственный медицинский университет» Минздрава России, Хабаровск, Россия
*bri_tanchik@mail.ru
1National Medical Research Center for Endocrinology, Moscow, Russia;
2Nasonova Research Institute of Rheumatology, Moscow, Russia;
3Far Eastern State Medical University, Khabarovsk, Russia
*bri_tanchik@mail.ru
1ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия;
2ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва, Россия;
3ФГБОУ ВО «Дальневосточный государственный медицинский университет» Минздрава России, Хабаровск, Россия
*bri_tanchik@mail.ru
________________________________________________
1National Medical Research Center for Endocrinology, Moscow, Russia;
2Nasonova Research Institute of Rheumatology, Moscow, Russia;
3Far Eastern State Medical University, Khabarovsk, Russia
*bri_tanchik@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
