Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Возможности радиомики в интерпретации ультразвуковых и КТ-данных у пациентов с хронической болезнью почек - Журнал Терапевтический архив №6 Вопросы нефрологии 2025
Возможности радиомики в интерпретации ультразвуковых и КТ-данных у пациентов с хронической болезнью почек
Проскура А.В., Исмаилов Х.М., Смолеевский А.Г., Салпагарова А.И., Бобкова И.Н., Шестюк А.М. Возможности радиомики в интерпретации ультразвуковых и КТ-данных у пациентов с хронической болезнью почек. Терапевтический архив. 2025;97(6):503–508. DOI: 10.26442/00403660.2025.06.203259
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
© ООО «КОНСИЛИУМ МЕДИКУМ», 2025 г.
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Цель настоящего обзора – изучение возможностей радиомики в интерпретации данных ультразвукового исследования и мультиспиральной компьютерной томографии у пациентов с хронической болезнью почек (ХБП). Радиомика представляет собой перспективное направление анализа медицинских изображений, основанное на извлечении количественных признаков, не доступных при стандартном визуальном анализе, и последующем применении методов искусственного интеллекта для их обработки и интерпретации. В статье рассмотрены основы радиомических методов, включая текстурный анализ изображений и создание диагностических моделей с использованием алгоритмов машинного обучения. Подробно обсуждаются преимущества радиомических характеристик, в частности статистических признаков II порядка и более высоких порядков, в оценке интерстициального фиброза и других патологических изменений паренхимы почек. Приведены результаты исследований, демонстрирующие высокую степень корреляции радиомических признаков с гистологическими изменениями, выявленными при биопсии почек. Подчеркивается перспективность радиомики как неинвазивного подхода для оценки степени поражения почек и мониторинга прогрессирования ХБП. В заключении указана необходимость дальнейших исследований для стандартизации и расширения применения радиомических методов в клинической практике с целью повышения точности диагностики и улучшения прогностической оценки пациентов с ХБП.
Ключевые слова: радиомика, хроническая почечная недостаточность, фиброз, искусственный интеллект, система поддержки принятия врачебных решений
Keywords: radiomics, chronic renal failure, fibrosis, artificial intelligence, medical decision support system
Ключевые слова: радиомика, хроническая почечная недостаточность, фиброз, искусственный интеллект, система поддержки принятия врачебных решений
________________________________________________
Keywords: radiomics, chronic renal failure, fibrosis, artificial intelligence, medical decision support system
Полный текст
Список литературы
1. Pirrone G, Matrone F, Chiovati P, et al. Predicting local failure after partial prostate re-irradiation using a dosiomic-based machine learning model. J Pers Med. 2022;12(9):1491. DOI:10.3390/jpm12091491
2. Miranda Magalhaes Santos JM, Clemente Oliveira B, Araujo-Filho JAB, et al. State-of-the-art in radiomics of hepatocellular carcinoma: A review of basic principles, applications, and limitations. Abdominal Radiology (NY). 2020;45(2):342-53. DOI:10.1007/s00261-019-02299-3
3. Shin J, Seo N, Baek SE, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy. Radiology. 2022;303(2):351-8. DOI:10.1148/radiol.211986
4. Vicini S, Bortolotto C, Rengo M, et al. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: Focus on the three most common cancers. Radiol Med. 2022;127(8):819-36. DOI:10.1007/s11547-022-01512-6
5. Wu L, Lou X, Kong N, et al. Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? A systematic review. Eur Radiol. 2023;33(3):2105-17. DOI:10.1007/s00330-022-09174-8
6. Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features. Radiology. 2021;298(3):505-16. DOI:10.1148/radiol.2021202553
7. Li H, Gao L, Ma H, et al. Radiomics-based features for prediction of histological subtypes in Central Lung Cancer. Front Oncol. 2021;11:658887. DOI:10.3389/fonc.2021.658887
8. Mukherjee P, Cintra M, Huang C, et al. CT-based radiomic signatures for predicting histopathologic features in head and neck squamous cell carcinoma. Radiol Imaging Cancer. 2020;2(3):e190039. DOI:10.1148/rycan.2020190039
9. Wang M, Perucho JAU, Hu Y, et al. Computed Tomographic Radiomics in differentiating histologic subtypes of epithelial ovarian carcinoma. JAMA Netw Open. 2022;5(12):e2245141. DOI:10.1001/jamanetworkopen.2022.45141
10. Park HJ, Lee SS, Park B, et al. Radiomics analysis of gadoxetic acid-enhanced MRI for staging liver fibrosis. Radiology. 2019;290(2):380-7. DOI:10.1148/radiol.2018181197
11. Meng J, Luo Z, Chen Z, et al. Intestinal fibrosis classification in patients with Crohn’s disease using CT enterography-based deep learning: Comparisons with radiomics and radiologists. Eur Radiol. 2022;32(12):8692-705. DOI:10.1007/s00330-022-08842-z
12. Refaee T, Salahuddin Z, Frix AN, et al. Diagnosis of idiopathic pulmonary fibrosis in high-resolution computed tomography scans using a combination of handcrafted radiomics and deep learning. Front Med (Lausanne). 2022;9:915243. DOI:10.3389/fmed.2022.915243
13. Herzenberg AM, Fogo AB, Reich HN, et al. Validation of the Oxford classification of IgA nephropathy. Kidney Int. 2011;80(3):310-7. DOI:10.1038/ki.2011.126
14. Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556-63. DOI:10.1681/ASN.2010010010
15. Srivastava A, Palsson R, Kaze AD, et al. The prognostic value of histopathologic lesions in native kidney biopsy specimens: results from the Boston kidney biopsy cohort study. J Am Soc Nephrol. 2018;29(8):2213-24. DOI:10.1681/ASN.2017121260
16. Canetta PA, Khairallah P, Kiryluk K, et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin J Am Soc Nephrol. 2020;15(11):1595-602. DOI:10.2215/CJN.04710420
17. Barinotti A, Radin M, Cecchi I, et al. Serum biomarkers of renal fibrosis: A systematic review. Int J Mol Sci. 2022;23(22):14139. DOI:10.3390/ijms232214139
18. Huang E, Mengel M, Clahsen-van Groningen MC, Jackson AM. Diagnostic potential of minimally invasive biomarkers: A biopsy-centered viewpoint from the Banff Minimally Invasive Diagnostics Working Group. Transplantation. 2023;107(1):45-52. DOI:10.1097/TP.0000000000004339
19. Ce M, Felisaz PF, Ali M, et al. Ultrasound elastography in chronic kidney disease: A systematic review and meta-analysis. J Med Ultrason (2001). 2023;50(3):381-415. DOI:10.1007/s10396-023-01304-z
20. Buchanan CE, Mahmoud H, Cox EF, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol Dial Transpl. 2020;35(6):955-64. DOI:10.1093/ndt/gfz129
21. Bandara MS, Gurunayaka B, Lakraj G, et al. Ultrasound based radiomics features of chronic kidney disease. Acad Radiol. 2022;29(2):229-35. DOI:10.1016/j.acra.2021.01.006
22. Choi YH, Kim JE, Lee RW, et al. Histopathological correlations of CT-based radiomics imaging biomarkers in native kidney biopsy. BMC Medical Imaging. 2024;24(1):256. DOI:10.1186/s12880-024-01434-x
23. Beck-Tölly A, Eder M, Beitzke D, et al. Magnetic resonance imaging for evaluation of interstitial fibrosis in kidney allografts. Transplant Direct. 2020;6(8):e577. DOI:10.1097/TXD.0000000000001009
24. Berchtold L, Crowe LA, Combescure C, et al. Diffusion-magnetic resonance imaging predicts decline of kidney function in chronic kidney disease and in patients with a kidney allograft. Kidney Int. 2022;101(4):804-13. DOI:10.1016/j.kint.2021.12.014
2. Miranda Magalhaes Santos JM, Clemente Oliveira B, Araujo-Filho JAB, et al. State-of-the-art in radiomics of hepatocellular carcinoma: A review of basic principles, applications, and limitations. Abdominal Radiology (NY). 2020;45(2):342-53. DOI:10.1007/s00261-019-02299-3
3. Shin J, Seo N, Baek SE, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy. Radiology. 2022;303(2):351-8. DOI:10.1148/radiol.211986
4. Vicini S, Bortolotto C, Rengo M, et al. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: Focus on the three most common cancers. Radiol Med. 2022;127(8):819-36. DOI:10.1007/s11547-022-01512-6
5. Wu L, Lou X, Kong N, et al. Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? A systematic review. Eur Radiol. 2023;33(3):2105-17. DOI:10.1007/s00330-022-09174-8
6. Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features. Radiology. 2021;298(3):505-16. DOI:10.1148/radiol.2021202553
7. Li H, Gao L, Ma H, et al. Radiomics-based features for prediction of histological subtypes in Central Lung Cancer. Front Oncol. 2021;11:658887. DOI:10.3389/fonc.2021.658887
8. Mukherjee P, Cintra M, Huang C, et al. CT-based radiomic signatures for predicting histopathologic features in head and neck squamous cell carcinoma. Radiol Imaging Cancer. 2020;2(3):e190039. DOI:10.1148/rycan.2020190039
9. Wang M, Perucho JAU, Hu Y, et al. Computed Tomographic Radiomics in differentiating histologic subtypes of epithelial ovarian carcinoma. JAMA Netw Open. 2022;5(12):e2245141. DOI:10.1001/jamanetworkopen.2022.45141
10. Park HJ, Lee SS, Park B, et al. Radiomics analysis of gadoxetic acid-enhanced MRI for staging liver fibrosis. Radiology. 2019;290(2):380-7. DOI:10.1148/radiol.2018181197
11. Meng J, Luo Z, Chen Z, et al. Intestinal fibrosis classification in patients with Crohn’s disease using CT enterography-based deep learning: Comparisons with radiomics and radiologists. Eur Radiol. 2022;32(12):8692-705. DOI:10.1007/s00330-022-08842-z
12. Refaee T, Salahuddin Z, Frix AN, et al. Diagnosis of idiopathic pulmonary fibrosis in high-resolution computed tomography scans using a combination of handcrafted radiomics and deep learning. Front Med (Lausanne). 2022;9:915243. DOI:10.3389/fmed.2022.915243
13. Herzenberg AM, Fogo AB, Reich HN, et al. Validation of the Oxford classification of IgA nephropathy. Kidney Int. 2011;80(3):310-7. DOI:10.1038/ki.2011.126
14. Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556-63. DOI:10.1681/ASN.2010010010
15. Srivastava A, Palsson R, Kaze AD, et al. The prognostic value of histopathologic lesions in native kidney biopsy specimens: results from the Boston kidney biopsy cohort study. J Am Soc Nephrol. 2018;29(8):2213-24. DOI:10.1681/ASN.2017121260
16. Canetta PA, Khairallah P, Kiryluk K, et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin J Am Soc Nephrol. 2020;15(11):1595-602. DOI:10.2215/CJN.04710420
17. Barinotti A, Radin M, Cecchi I, et al. Serum biomarkers of renal fibrosis: A systematic review. Int J Mol Sci. 2022;23(22):14139. DOI:10.3390/ijms232214139
18. Huang E, Mengel M, Clahsen-van Groningen MC, Jackson AM. Diagnostic potential of minimally invasive biomarkers: A biopsy-centered viewpoint from the Banff Minimally Invasive Diagnostics Working Group. Transplantation. 2023;107(1):45-52. DOI:10.1097/TP.0000000000004339
19. Ce M, Felisaz PF, Ali M, et al. Ultrasound elastography in chronic kidney disease: A systematic review and meta-analysis. J Med Ultrason (2001). 2023;50(3):381-415. DOI:10.1007/s10396-023-01304-z
20. Buchanan CE, Mahmoud H, Cox EF, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol Dial Transpl. 2020;35(6):955-64. DOI:10.1093/ndt/gfz129
21. Bandara MS, Gurunayaka B, Lakraj G, et al. Ultrasound based radiomics features of chronic kidney disease. Acad Radiol. 2022;29(2):229-35. DOI:10.1016/j.acra.2021.01.006
22. Choi YH, Kim JE, Lee RW, et al. Histopathological correlations of CT-based radiomics imaging biomarkers in native kidney biopsy. BMC Medical Imaging. 2024;24(1):256. DOI:10.1186/s12880-024-01434-x
23. Beck-Tölly A, Eder M, Beitzke D, et al. Magnetic resonance imaging for evaluation of interstitial fibrosis in kidney allografts. Transplant Direct. 2020;6(8):e577. DOI:10.1097/TXD.0000000000001009
24. Berchtold L, Crowe LA, Combescure C, et al. Diffusion-magnetic resonance imaging predicts decline of kidney function in chronic kidney disease and in patients with a kidney allograft. Kidney Int. 2022;101(4):804-13. DOI:10.1016/j.kint.2021.12.014
2. Miranda Magalhaes Santos JM, Clemente Oliveira B, Araujo-Filho JAB, et al. State-of-the-art in radiomics of hepatocellular carcinoma: A review of basic principles, applications, and limitations. Abdominal Radiology (NY). 2020;45(2):342-53. DOI:10.1007/s00261-019-02299-3
3. Shin J, Seo N, Baek SE, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy. Radiology. 2022;303(2):351-8. DOI:10.1148/radiol.211986
4. Vicini S, Bortolotto C, Rengo M, et al. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: Focus on the three most common cancers. Radiol Med. 2022;127(8):819-36. DOI:10.1007/s11547-022-01512-6
5. Wu L, Lou X, Kong N, et al. Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? A systematic review. Eur Radiol. 2023;33(3):2105-17. DOI:10.1007/s00330-022-09174-8
6. Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features. Radiology. 2021;298(3):505-16. DOI:10.1148/radiol.2021202553
7. Li H, Gao L, Ma H, et al. Radiomics-based features for prediction of histological subtypes in Central Lung Cancer. Front Oncol. 2021;11:658887. DOI:10.3389/fonc.2021.658887
8. Mukherjee P, Cintra M, Huang C, et al. CT-based radiomic signatures for predicting histopathologic features in head and neck squamous cell carcinoma. Radiol Imaging Cancer. 2020;2(3):e190039. DOI:10.1148/rycan.2020190039
9. Wang M, Perucho JAU, Hu Y, et al. Computed Tomographic Radiomics in differentiating histologic subtypes of epithelial ovarian carcinoma. JAMA Netw Open. 2022;5(12):e2245141. DOI:10.1001/jamanetworkopen.2022.45141
10. Park HJ, Lee SS, Park B, et al. Radiomics analysis of gadoxetic acid-enhanced MRI for staging liver fibrosis. Radiology. 2019;290(2):380-7. DOI:10.1148/radiol.2018181197
11. Meng J, Luo Z, Chen Z, et al. Intestinal fibrosis classification in patients with Crohn’s disease using CT enterography-based deep learning: Comparisons with radiomics and radiologists. Eur Radiol. 2022;32(12):8692-705. DOI:10.1007/s00330-022-08842-z
12. Refaee T, Salahuddin Z, Frix AN, et al. Diagnosis of idiopathic pulmonary fibrosis in high-resolution computed tomography scans using a combination of handcrafted radiomics and deep learning. Front Med (Lausanne). 2022;9:915243. DOI:10.3389/fmed.2022.915243
13. Herzenberg AM, Fogo AB, Reich HN, et al. Validation of the Oxford classification of IgA nephropathy. Kidney Int. 2011;80(3):310-7. DOI:10.1038/ki.2011.126
14. Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556-63. DOI:10.1681/ASN.2010010010
15. Srivastava A, Palsson R, Kaze AD, et al. The prognostic value of histopathologic lesions in native kidney biopsy specimens: results from the Boston kidney biopsy cohort study. J Am Soc Nephrol. 2018;29(8):2213-24. DOI:10.1681/ASN.2017121260
16. Canetta PA, Khairallah P, Kiryluk K, et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin J Am Soc Nephrol. 2020;15(11):1595-602. DOI:10.2215/CJN.04710420
17. Barinotti A, Radin M, Cecchi I, et al. Serum biomarkers of renal fibrosis: A systematic review. Int J Mol Sci. 2022;23(22):14139. DOI:10.3390/ijms232214139
18. Huang E, Mengel M, Clahsen-van Groningen MC, Jackson AM. Diagnostic potential of minimally invasive biomarkers: A biopsy-centered viewpoint from the Banff Minimally Invasive Diagnostics Working Group. Transplantation. 2023;107(1):45-52. DOI:10.1097/TP.0000000000004339
19. Ce M, Felisaz PF, Ali M, et al. Ultrasound elastography in chronic kidney disease: A systematic review and meta-analysis. J Med Ultrason (2001). 2023;50(3):381-415. DOI:10.1007/s10396-023-01304-z
20. Buchanan CE, Mahmoud H, Cox EF, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol Dial Transpl. 2020;35(6):955-64. DOI:10.1093/ndt/gfz129
21. Bandara MS, Gurunayaka B, Lakraj G, et al. Ultrasound based radiomics features of chronic kidney disease. Acad Radiol. 2022;29(2):229-35. DOI:10.1016/j.acra.2021.01.006
22. Choi YH, Kim JE, Lee RW, et al. Histopathological correlations of CT-based radiomics imaging biomarkers in native kidney biopsy. BMC Medical Imaging. 2024;24(1):256. DOI:10.1186/s12880-024-01434-x
23. Beck-Tölly A, Eder M, Beitzke D, et al. Magnetic resonance imaging for evaluation of interstitial fibrosis in kidney allografts. Transplant Direct. 2020;6(8):e577. DOI:10.1097/TXD.0000000000001009
24. Berchtold L, Crowe LA, Combescure C, et al. Diffusion-magnetic resonance imaging predicts decline of kidney function in chronic kidney disease and in patients with a kidney allograft. Kidney Int. 2022;101(4):804-13. DOI:10.1016/j.kint.2021.12.014
________________________________________________
2. Miranda Magalhaes Santos JM, Clemente Oliveira B, Araujo-Filho JAB, et al. State-of-the-art in radiomics of hepatocellular carcinoma: A review of basic principles, applications, and limitations. Abdominal Radiology (NY). 2020;45(2):342-53. DOI:10.1007/s00261-019-02299-3
3. Shin J, Seo N, Baek SE, et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy. Radiology. 2022;303(2):351-8. DOI:10.1148/radiol.211986
4. Vicini S, Bortolotto C, Rengo M, et al. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: Focus on the three most common cancers. Radiol Med. 2022;127(8):819-36. DOI:10.1007/s11547-022-01512-6
5. Wu L, Lou X, Kong N, et al. Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? A systematic review. Eur Radiol. 2023;33(3):2105-17. DOI:10.1007/s00330-022-09174-8
6. Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features. Radiology. 2021;298(3):505-16. DOI:10.1148/radiol.2021202553
7. Li H, Gao L, Ma H, et al. Radiomics-based features for prediction of histological subtypes in Central Lung Cancer. Front Oncol. 2021;11:658887. DOI:10.3389/fonc.2021.658887
8. Mukherjee P, Cintra M, Huang C, et al. CT-based radiomic signatures for predicting histopathologic features in head and neck squamous cell carcinoma. Radiol Imaging Cancer. 2020;2(3):e190039. DOI:10.1148/rycan.2020190039
9. Wang M, Perucho JAU, Hu Y, et al. Computed Tomographic Radiomics in differentiating histologic subtypes of epithelial ovarian carcinoma. JAMA Netw Open. 2022;5(12):e2245141. DOI:10.1001/jamanetworkopen.2022.45141
10. Park HJ, Lee SS, Park B, et al. Radiomics analysis of gadoxetic acid-enhanced MRI for staging liver fibrosis. Radiology. 2019;290(2):380-7. DOI:10.1148/radiol.2018181197
11. Meng J, Luo Z, Chen Z, et al. Intestinal fibrosis classification in patients with Crohn’s disease using CT enterography-based deep learning: Comparisons with radiomics and radiologists. Eur Radiol. 2022;32(12):8692-705. DOI:10.1007/s00330-022-08842-z
12. Refaee T, Salahuddin Z, Frix AN, et al. Diagnosis of idiopathic pulmonary fibrosis in high-resolution computed tomography scans using a combination of handcrafted radiomics and deep learning. Front Med (Lausanne). 2022;9:915243. DOI:10.3389/fmed.2022.915243
13. Herzenberg AM, Fogo AB, Reich HN, et al. Validation of the Oxford classification of IgA nephropathy. Kidney Int. 2011;80(3):310-7. DOI:10.1038/ki.2011.126
14. Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556-63. DOI:10.1681/ASN.2010010010
15. Srivastava A, Palsson R, Kaze AD, et al. The prognostic value of histopathologic lesions in native kidney biopsy specimens: results from the Boston kidney biopsy cohort study. J Am Soc Nephrol. 2018;29(8):2213-24. DOI:10.1681/ASN.2017121260
16. Canetta PA, Khairallah P, Kiryluk K, et al. Systematic review and meta-analysis of native kidney biopsy complications. Clin J Am Soc Nephrol. 2020;15(11):1595-602. DOI:10.2215/CJN.04710420
17. Barinotti A, Radin M, Cecchi I, et al. Serum biomarkers of renal fibrosis: A systematic review. Int J Mol Sci. 2022;23(22):14139. DOI:10.3390/ijms232214139
18. Huang E, Mengel M, Clahsen-van Groningen MC, Jackson AM. Diagnostic potential of minimally invasive biomarkers: A biopsy-centered viewpoint from the Banff Minimally Invasive Diagnostics Working Group. Transplantation. 2023;107(1):45-52. DOI:10.1097/TP.0000000000004339
19. Ce M, Felisaz PF, Ali M, et al. Ultrasound elastography in chronic kidney disease: A systematic review and meta-analysis. J Med Ultrason (2001). 2023;50(3):381-415. DOI:10.1007/s10396-023-01304-z
20. Buchanan CE, Mahmoud H, Cox EF, et al. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Nephrol Dial Transpl. 2020;35(6):955-64. DOI:10.1093/ndt/gfz129
21. Bandara MS, Gurunayaka B, Lakraj G, et al. Ultrasound based radiomics features of chronic kidney disease. Acad Radiol. 2022;29(2):229-35. DOI:10.1016/j.acra.2021.01.006
22. Choi YH, Kim JE, Lee RW, et al. Histopathological correlations of CT-based radiomics imaging biomarkers in native kidney biopsy. BMC Medical Imaging. 2024;24(1):256. DOI:10.1186/s12880-024-01434-x
23. Beck-Tölly A, Eder M, Beitzke D, et al. Magnetic resonance imaging for evaluation of interstitial fibrosis in kidney allografts. Transplant Direct. 2020;6(8):e577. DOI:10.1097/TXD.0000000000001009
24. Berchtold L, Crowe LA, Combescure C, et al. Diffusion-magnetic resonance imaging predicts decline of kidney function in chronic kidney disease and in patients with a kidney allograft. Kidney Int. 2022;101(4):804-13. DOI:10.1016/j.kint.2021.12.014
Авторы
А.В. Проскура*1, Х.М. Исмаилов1, А.Г. Смолеевский1, А.И. Салпагарова1, И.Н. Бобкова1, А.М. Шестюк2
1ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2УЗ «Брестская областная клиническая больница», Брест, Беларусь
*proskura_a_v_1@staff.sechenov.ru
1Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2Brest Regional Clinical Hospital, Brest, Belarus
*proskura_a_v_1@staff.sechenov.ru
1ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия;
2УЗ «Брестская областная клиническая больница», Брест, Беларусь
*proskura_a_v_1@staff.sechenov.ru
________________________________________________
1Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
2Brest Regional Clinical Hospital, Brest, Belarus
*proskura_a_v_1@staff.sechenov.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
