Несмотря на полученные факты, раскрывающие механизмы патогенеза и способствующие повышению эффективности лечения сердечно-сосудистых заболеваний (ССЗ), последние продолжают доминировать среди причин смертности и инвалидизации населения. В связи с этим поиск новых методов лечения ССЗ остается наиболее актуальным в современной кардиологии. В лечении ССЗ применяются многие классы лекарственных средств, среди которых выделяются антагонисты кальция (АК). Этот класс препаратов с успехом используется в лечении больных, страдающих артериальной гипертензией и ишемической болезнью сердца [1–3, 5].
АК – гетерогенная группа лекарственных препаратов, имеющих одинаковый механизм действия, но различающихся по ряду свойств, в том числе по фармакокинетике, тканевой селективности, влиянии на частоту сердечных сокращений и др. Основным свойством всех АК является способность обратимо ингибировать ток кальция через медленные кальциевые каналы. Эти средства используются в кардиологии с конца 1960-х годов и к настоящему времени приобрели столь широкую популярность, что в большинстве развитых стран занимают одно из первых мест по частоте назначения среди препаратов, использующихся для лечения ССЗ. Обусловлено это, с одной стороны, высокой клинической эффективностью АК, с другой – относительно небольшим количеством противопоказаний к их назначению и сравнительно небольшим числом вызываемых ими побочных эффектов [1, 2, 4, 5].
Despite the facts, revealing the mechanisms of pathogenesis and enhancing the effectiveness of the treatment of cardiovascular disease (CVD), the latter continues to be the leading cause of death and disability in the population. In this regard, the search for new treatments for CVD remains the most relevant in modern cardiology. In the treatment of CVD many classes of drugs are used, among which are calcium antagonists (AA). This class of drugs has been successfully used in the treatment of patients with arterial hypertension and coronary heart disease [1–3, 5].
CA are a heterogeneous group of drugs that have the similar actionmechanism, but differ in a number of properties, including pharmacokinetics, tissue selectivity, effect on heart rate, etc. The main feature of all is the ability of CA to reversibly inhibit calcium current through the slow calcium channels. These funds are used in cardiology from the end of the 1960s and have since become so widely popular that in most developed countries they hold one of the first places on the prescription rate of drugs used for the treatment of cardiovascular disease. This is due, on the one hand, to the CA high clinical efficacy, and on the other to a relatively small number of contraindications to their purpose and the comparatively small number of side effects. [1, 2, 4, 5].
1. Желнов В.В. и др. Современные пролонгированные антагонисты кальция в клинической практике. РМЖ. 2008; 16 (7) [317]: 487–91.
2. Задионченко В.С., Шехян Г.Г., Тимофеева Н.Ю. и др. Амлодипин: лидер врачебных рекомендаций в терапии сердечно-сосудистых заболеваний. РМЖ. 2011; 19 (4) [398]: 217–22.
3. Недогода С.В. Роль амлодипина в лечении ишемической болезни сердца. Cons. Med. 2008; 10 (5): 100–4.
4. Остроумова О.Д., Поликарпов В.А., Жижина С.А., Фролова Л.И. Возможности антагонистов кальция в первичной профилактике инсультов. РМЖ. 2006; 14 (10): 754–7.
5. Ялымов А.А., Шехян Г.Г., Щикота А.М. и др. Антагонисты кальция в терапии сердечно-сосудистых заболеваний. Участковый терапевт. 2012; 5: 7.
6. Ajayi AA et al. The efficacy and tolerability of amlodipine and hydrochlorothiazide in Nigerians with essential hypertension. J Natl Med Assoc 1995; 87 (7): 485–8.
7. Alizade IG, Karayeva NT. The effects of amlodipine on cerebral circulatory values in patients with essential hypertension. Anadolu Kardiyol Derg 2001; 1 (1): 14–6.
8. Balligand J-L, Godfraind T. Amlodipine and Stroke Prevention. Hypertension 2007; 50: 71.
9. Broadhurst P et al. Intra-arterial monitoring of the antihypertensive effects of once-daily amlodipine. J Hum Hypertens 1992; 6 (Suppl. 1): 9–12.
10. Brown MJ et al. Alpha-blockade and calcium antagonism: an effective and well-tolerated combination for the treatment of resistant hypertension. J Hypertens 1995; 13 (6): 701–7.
11. Burris JF et al. Double-blind comparison of amlodipine and hydrochlorothiazide in patients with mild to moderate hypertension. J Cardiovasc Pharmacol 1988; 12 (Suppl. 7): 98–102.
12. Chahine RA et al. Randomized placebo-controlled trial of amlodipine in vasospastic angina. L Am Coll Cardiol 1993; 21 (6): 1365–70.
13. Detry JM. Amlodipine and the total ischemic burden: Circadian Anti-Ischemia Program in Europe (CAPE) trial – Methodology, safety and toleration. Cardiology 1994; 85 (Suppl. 2): 24–30.
14. Deanfield JE et al. Amlodipine reduces transient myocardial ischemia in patients with coronary artery disease: double-blind Circadian Anti-Ischemia Program in Europe (CAPE Trial). J Am Coll Cardiol 1994; 24 (6): 1460–7.
15. Frishman WH et al. Amlodipine versus atenolol in essential hypertension. Am J Cardiol 1994; 73 (3): 50–4.
16. Habeler G et al. Effectiveness and tolerance of amlodipine in treatment of patients with mild to moderate hypertension. Results of long-term study with a new calcium antagonist. Wien Klin Wochenschr 1992; 104 (1): 16–20.
17. Hayduk K et al. Is initial dose titration of amlodipine worthwhile in patients with mild to moderate hypertension? Current Med Res Opinion 1999; 15 (1): 39–45.
18. Horwitz LD et al. Comparison of amlodipine and long-acting diltiazem in the treatment of mild or moderate hypertension. Am J Hypertens 1997; 10 (11): 1263–9.
19. Ishimitsi T et al. Amlodipine, a long-acting calcium channel blocker, attenuates morning blood pressure rise in hypertensive patients. Clin Exp Pharmacol Physiol 1999; 26 (7): 500–4.
20. Khokhani RC et al. Amlodipine in mild and moderate hypertension: initial Indian experiment. J Assoc Phisicians India 1993; 41 (10): 662–3.
21. Kloner RA et al. Safety of long-acting dihydropyridine calcium channel blockers in hypertensive patients. Am J Cardiol 1998; 81 (2): 163–9.
22. Lau CP et al. Relative efficacy and tolerability of lacidipine and amlodipine in patients with mild-to-moderate hypertension: a randomized double-blind study. J Сardovasc Pharmacol 1996; 28 (2): 328.
23. Lichtlen PR, Fisher LD. Analysis of arrhythmias in the Circadian Antiischemia Program in Europe (CAPE) study. J Cardiovasc Pharmacol 1999; 33 (1): 135–9.
24. Leenen FH et al. Persistence of antihypertensive effect after missed doses of calcium antagonist with long (amlodipine) vs short (diltiazem) elimination half-life. British J Clin Pharmacol 1996; 41 (2): 83–8.
25. Minami J et al. Effects of amlodipine and nifedipine retard on autonomic nerve activity in hypertensive patients. Clin Exp Pharmacol Physiol 1998; 25 (7–8): 572–6.
26. Mogi M, Iwai M, Chen R et al. Amlodipine treatment reduces stroke size in apolipoprotein E-deficient mice. Am J Hypertens 2006; 19 (11): 1144–9.
27. Nayler WG, Gu XH. Vascular and myocardial effects of amlodipine: an overview. Postgrad Med J 1991; 67 (Suppl. 5): S41–43.
28. Nold G et al. Morning versus evening amlodipine treatment: Effect of circadian blood pressure profile in essential hypertensive patients. Blood Press Monit 1998; 3 (1): 17–25.
29. Packer M, O’Connor CM, Ghali JK et al. Effect of amlodipine on morbidity and mortality in severe chronic heart failure. Prospective Randomized Amlodipine Survival Evaluation Study Group. New Engl J Med 1996; 335 (15): 1107–14.
30. Petkar S et al. Amlodipine monotherapy in stable angina pectoris. Indian Heart J 1994; 46 (2): 85–8.
31. Pitt B et al. Effect of amlodipine on progression of atherosclerosis and the occurrence of clinical events. PREVENT investigators. Circulation 2000; 102 (13): 1503–10.
32. Rinaldi CA et al. Randomized, double-blind crossover study to investigate the effects of amlodipine and isosorbide mononitrate on the time course and severity of exercise-induced myocardial stunning. Circulation 1998; 98 (8): 749–56.
33. Sethi KK et al. Amlodipine monotherapy in mild to moderate hypertension. Indian Heart J 1994; 46 (1): 17–20.
34. Siche JP et al. Effects of amlodipine on baroreflex and sympathetic nervous system activity in mild-to-moderate hypertension. Am J Hypertens 2001; 14 (5 Pt 1): 424–8.
35. Schwartz JB. Effects of amlodipine on steady-state digoxin concentrations and renal digoxin clearance. J Cardiovasc Pharmacol 1988; 12 (1): 1–5.
36. Steffensen R et al. Effects of amlodipine and isosorbide dinitrate on exercise-induced and ambulatory ischemia in patients with chronic stable angina pectoris. Cardiovasc Drug Ther 1997; 11 (5): 629–35.
37. Susaguri M et al. Amlodipine lowers blood pressure without increasing sympathetic activity or activating the rennin-angiotensin system in patients with essential hypertension. Eur J Clin Pharmacol 1997; 53 (3–4): 197–201.
38. Videbaek LM et al. Crossover comparison of the pharmacokinetics of amlodipine and felodipine ER in hypertensive patients. Int J Clin Pharmacol Ther 1997; 35 (11): 514–8.
39. Waeber B, Ruilope LM. Amlodipine and valsartan as components of a rational and effective fixed-dose combination. Vasc Health Risk Manag 2009; 5 (1): 165–74.
40. Zhai LH, Wang SY, Liang X et al. The relationship between the effect of amlodipine on carotid intimal-medial thickness and angiotensin converting enzyme genotypes in elderly hypertensive patients. Zhonghua Xin Xue Guan Bing Za Zhi 2008; 36 (6): 510–3.
Авторы
В.С.Задионченко, Г.Г.Шехян, А.А.Ялымов*
ГБОУ ВПО Московский государственный медико-стоматологический университет им. А.И.Евдокимова Минздрава России
*ayalymov@gmail.com