Последние эпидемиологические исследования показали, что такая модификация образа жизни, как аэробные тренировки, снижает частоту сердечно-сосудистых осложнений и смертность в общей популяции. Однако остаются малоизученными механизмы, лежащие в основе антиатерогенных и антигипертензивных эффектов физических тренировок. Артериальная гипертензия ассоциируется с нарушением эндотелиальной функции, которое опосредовано снижением биодоступности оксида азота (NO). У животных с моделированной гипертензией и у людей с гипертонической болезнью было показано, что физические нагрузки улучшают функцию эндотелия. Это свидетельствует о том, что эндотелиальная дисфункция при гипертензии обратима. Предполагается, что изменение образа жизни, в том числе физические тренировки, предотвращает сердечно-сосудистые осложнения путем улучшения эндотелиальной функции у пациентов с артериальной гипертензией. Считается, что физические нагрузки увеличивают синтез NO и снижают уровень его инактивации, что приводит к повышению биодоступности NO. В данном обзоре представлены потенциальные механизмы, которые лежат в основе положительного эффекта тренировок на эндотелиальную функцию у пациентов с артериальной гипертензией.
Recent epidemiological studies have shown that lifestyle modification such as aerobic exercise reduces the incidence of cardiovascular morbidity and mortality in the general population. But still poorly understood mechanisms underlying the anti-atherogenic and anti-hypertensive effects of physical training. Hypertension is associated with impaired endothelial function, which is mediated by a decrease in the bioavailability of nitric oxide (NO). In animals with simulated hypertension and in people with essential hypertension exercise had been shown to improve endothelial function. This suggests that hypertension, as well as endothelial dysfunction is reversible. It is assumed that changes in lifestyle, including physical exercise, prevent cardiovascular complications by improving endothelial function in patients with hypertension. It is believed that exercise increase the synthesis of NO and reduce levels of inactivation, which results in increased bioavailability of NO. This review presents the potential mechanisms that underlie the positive effect of training on endothelial function in patients with hypertension.
1. Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr 2012; 23 (4): 222–31.
2. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 2002; 136: 493–503.
3. Mora S, Lee IM, Buring JE, Ridker PM. Association of physical activity and body mass index with novel and traditional cardiovascular biomarkers in women. JAMA 2006; 295: 1412–9.
4. Gayda M, Brun C, Juneau M et al. Long-term cardiac rehabilitation and exercise training programs improve metabolic parameters in metabolic syndrome patients with and without coronary heart disease. Nutr Metab Cardiovasc Dis 2008; 18 (2): 142–51.
5. Tambalis K, Panagiotakos DB, Kavouras SA, Sidossis LS. Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology 2009; 60 (5): 614–32.
6. Wang JS. Exercise and thrombogenesis. J Biomed Sci 2006; 13: 753–61.
7. Evrengul H, Seleci D, Tanriverdi H, Kaftan A. The antiarrhythmic effect and clinical consequences of ischemic preconditioning. Coron Artery Dis 2006; 17: 283–8.
8. Taylor RS, Brown A, Ebrahim S et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized trials. Am J Med 2004; 116: 682–97.
9. McAllister RM, Laughlin MH. Vascular nitric oxide: effects of physical activity, importance for health. Essays Biochem 2006; 42: 119–31.
10. Griffin KL, Woodman CR, Price EM et al. Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training. Circulation 2001; 104 (12): 1393–8.
11. Sessa WC, Pritchard K, Seyedi N et al. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 1994; 74: 349–53.
12. Goto C, Nishioka K, Umemura T et al. Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans. Am J Hypertens 2007; 20 (8): 825–30.
13. Higashi Y, Sasaki S, Kurisu S et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation 1999; 100: 1194–202.
14. Uematsu M, Ohara Y, Navas JP et al. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 1995; 269: C1371–C1378.
15. Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev 1992; 72: 369–417.
16. Lloyd PG, Prior BM, Yang HT, Terjung RL. Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol Heart Circ Physiol 2003; 284: H1668–H1678.
17. Gavin TP, Robinson CB, Yeager RC et al. Angiogenesis growth factor response to acute systemic exercise in human skeletal muscle. J Appl Physiol 2003; 96: 19–24.
18. Fontana J, Fulton D, Chen Y et al. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Aktdependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res 2002; 90: 866–73.
19. Olfert IM, Breen EC, Mathieu-Costello O, Wagner PD. Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. J Appl Physiol 2001; 91: 1176–84.
20. Lönn ME, Dennis JM, Stocker R. Actions of «antioxidants» in the protection against atherosclerosis. Free Radic Biol Med 2012; 53 (4): 863–84.
21. Davis ME, Cai H, McCann L et al. Role of c-Src in regulation of endothelial nitric oxide synthase expression during exercise training. Am J Physiol Heart Circ Physiol 2003; 284: H1449–H1453.
22. Matsumoto A, Hirata Y, Momomura S et al. Increased nitric oxide production during exercise. Lancet 1994; 343: 849–50.
23. Rush JW, Turk JR, Laughlin MH. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol Heart Circ Physiol 2003; 284: H1378–H1387.
24. Higashi Y, Sasaki S, Nakagawa K et al. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 2002; 346: 1954–62.
25. Van Guilder GP, Westby CM, Greiner JJ et al. Endothelin-1 vasoconstrictor tone increases with age in healthy men but can be reduced by regular aerobic exercise. Hypertension 2007; 50 (2): 403–9.
26. Maeda S, Miyauchi T, Kakiyama T et al. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci 2001; 69: 1005–16.
27. Lavrencic A, Salobir BG, Keber I. Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome. Arterioscler Thromb Vasc Bio 2000; 20: 551–5.
28. Griffin KL, Laughlin MH, Parker JL. Exercise training improves endothelium-mediated vasorelaxation after chronic coronary occlusion. J Appl Physiol 1999; 87: 1948–56.
29. Yen MH, Tang JH, Sheu JR et al. Chronic exercise enhances endothelium-mediated dilation in spontaneously hypertensive rats. Life Sci 1995; 57: 2205–13.
30. Willson JR, Kapoor SC. Contribution of prostaglandins to exercise-induced vasodilation in humans. Am J Physiol 1993; 265: H171–H175.
________________________________________________
1. Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr 2012; 23 (4): 222–31.
2. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 2002; 136: 493–503.
3. Mora S, Lee IM, Buring JE, Ridker PM. Association of physical activity and body mass index with novel and traditional cardiovascular biomarkers in women. JAMA 2006; 295: 1412–9.
4. Gayda M, Brun C, Juneau M et al. Long-term cardiac rehabilitation and exercise training programs improve metabolic parameters in metabolic syndrome patients with and without coronary heart disease. Nutr Metab Cardiovasc Dis 2008; 18 (2): 142–51.
5. Tambalis K, Panagiotakos DB, Kavouras SA, Sidossis LS. Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology 2009; 60 (5): 614–32.
6. Wang JS. Exercise and thrombogenesis. J Biomed Sci 2006; 13: 753–61.
7. Evrengul H, Seleci D, Tanriverdi H, Kaftan A. The antiarrhythmic effect and clinical consequences of ischemic preconditioning. Coron Artery Dis 2006; 17: 283–8.
8. Taylor RS, Brown A, Ebrahim S et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized trials. Am J Med 2004; 116: 682–97.
9. McAllister RM, Laughlin MH. Vascular nitric oxide: effects of physical activity, importance for health. Essays Biochem 2006; 42: 119–31.
10. Griffin KL, Woodman CR, Price EM et al. Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training. Circulation 2001; 104 (12): 1393–8.
11. Sessa WC, Pritchard K, Seyedi N et al. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 1994; 74: 349–53.
12. Goto C, Nishioka K, Umemura T et al. Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans. Am J Hypertens 2007; 20 (8): 825–30.
13. Higashi Y, Sasaki S, Kurisu S et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation 1999; 100: 1194–202.
14. Uematsu M, Ohara Y, Navas JP et al. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 1995; 269: C1371–C1378.
15. Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev 1992; 72: 369–417.
16. Lloyd PG, Prior BM, Yang HT, Terjung RL. Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol Heart Circ Physiol 2003; 284: H1668–H1678.
17. Gavin TP, Robinson CB, Yeager RC et al. Angiogenesis growth factor response to acute systemic exercise in human skeletal muscle. J Appl Physiol 2003; 96: 19–24.
18. Fontana J, Fulton D, Chen Y et al. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Aktdependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res 2002; 90: 866–73.
19. Olfert IM, Breen EC, Mathieu-Costello O, Wagner PD. Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. J Appl Physiol 2001; 91: 1176–84.
20. Lönn ME, Dennis JM, Stocker R. Actions of «antioxidants» in the protection against atherosclerosis. Free Radic Biol Med 2012; 53 (4): 863–84.
21. Davis ME, Cai H, McCann L et al. Role of c-Src in regulation of endothelial nitric oxide synthase expression during exercise training. Am J Physiol Heart Circ Physiol 2003; 284: H1449–H1453.
22. Matsumoto A, Hirata Y, Momomura S et al. Increased nitric oxide production during exercise. Lancet 1994; 343: 849–50.
23. Rush JW, Turk JR, Laughlin MH. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol Heart Circ Physiol 2003; 284: H1378–H1387.
24. Higashi Y, Sasaki S, Nakagawa K et al. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 2002; 346: 1954–62.
25. Van Guilder GP, Westby CM, Greiner JJ et al. Endothelin-1 vasoconstrictor tone increases with age in healthy men but can be reduced by regular aerobic exercise. Hypertension 2007; 50 (2): 403–9.
26. Maeda S, Miyauchi T, Kakiyama T et al. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci 2001; 69: 1005–16.
27. Lavrencic A, Salobir BG, Keber I. Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome. Arterioscler Thromb Vasc Bio 2000; 20: 551–5.
28. Griffin KL, Laughlin MH, Parker JL. Exercise training improves endothelium-mediated vasorelaxation after chronic coronary occlusion. J Appl Physiol 1999; 87: 1948–56.
29. Yen MH, Tang JH, Sheu JR et al. Chronic exercise enhances endothelium-mediated dilation in spontaneously hypertensive rats. Life Sci 1995; 57: 2205–13.
30. Willson JR, Kapoor SC. Contribution of prostaglandins to exercise-induced vasodilation in humans. Am J Physiol 1993; 265: H171–H175.
Авторы
С.А.Помешкина
ФГБУ Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний СО РАМН, Кемерово
рomesa@cardio.kem.ru
________________________________________________
S.A.Pomeshkina
Research Institute for Complex Problems of cardiovascular diseases, Kemerovo
рomesa@cardio.kem.ru