Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Триметазидин модифицированного высвобождения в лечении пациентов с тяжелым течением хронической ишемической болезни сердца: от теории к реальной клинической практике - Научно-практический журнал Cardioсоматика Том 5, №1 (2014)
Триметазидин модифицированного высвобождения в лечении пациентов с тяжелым течением хронической ишемической болезни сердца: от теории к реальной клинической практике
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
В статье рассмотрены современные представления о роли цитопротекторной терапии у лиц с ишемической болезнью сердца. Особое внимание уделено обоснованию применения триметазидина модифицированного высвобождения (ТМЗ МВ) при тяжелом многососудистом поражении коронарного русла в сочетании с систолической дисфункцией левого желудочка. Приведено описание клинического случая с акцентом на возможность включения в схему консервативного лечения ТМЗ МВ у полиморбидного пациента пожилого возраста с тяжело протекающей ишемической болезнью сердца.
Ключевые слова: ишемическая болезнь сердца, многососудистое поражение, систолическая дисфункция, медикаментозное лечение, триметазидин модифицированного высвобождения.
Key words: ischemic heart disease, multi-vessel lesion, systolic dysfunction, drug treatment, Trimetazidine modified release.
Ключевые слова: ишемическая болезнь сердца, многососудистое поражение, систолическая дисфункция, медикаментозное лечение, триметазидин модифицированного высвобождения.
________________________________________________
Key words: ischemic heart disease, multi-vessel lesion, systolic dysfunction, drug treatment, Trimetazidine modified release.
Полный текст
Список литературы
1. Васюк Ю.А., Шальнова С.А., Школьник Е.Л. и др. Исследование ПРИМА. Сравнение клинического эффекта триметазидина MB у мужчин и женщин. Кардиология. 2011; 51 (6): 11–5.
2. Мареев В.Ю., Агеев Ф.Т., Арутюнов Г.П. и др. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Сердечная недостаточность. 2013; 14 (7): 379–472.
3. Ciapponi A, Pizarro R, Harrison J. Trimetazidine for stable angina. Cochrane Database Syst Rev 2005; 4: CD003614.
4. Clarke B, Wyatt KM, McCormack JG. Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol 1996; 28 (2): 341–50.
5. Cohn JN, Levine TB, Olivari MT et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984: 311 (13): 819–23.
6. Danchin N, Marzilli M, Parkhomenko A et al. Efficacy comparison of trimetazidine with therapeutic alternatives in stable angina pectoris: a network meta-analysis. Cardiology 2011; 120 (2): 59–72.
7. Deleiris J, Boucher F. Rationale for trimetazidine administration in myocardial-ischemia reperfusion syndrome. Eur Heart J 1993; 14 (Suppl. G): 34–40.
8. Dell’Halia L, Sabri A. Activation of the renin-angiotensin system in hypertrophy and heart failure. Heart Failure. Ed. D.Mann. Philadelphia: Saunders, 2004; p. 129–44.
9. Di Napoli P, Chierchia S, Taccardi AA et al. Trimetazidine improves post-ischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts. Nitric Oxide-Biol Ch 2007; 16 (2): 228–36.
10. El-Kady T, El-Sabban K, Gabaly M et al. Effects of trimetazidine on myocardial perfusion and the contractile response of chronically dysfunctional myocardium in ischemic cardiomyopathy: a 24-month study. Am J Cardiovasc Drugs 2005; 5: 271–8.
11. Fox K, Garcia MA, Ardissino D et al. Guidelines on the management of stable angina pectoris: the Task Force of the European Society of Cardiology. Eur Heart J 2006; 27 (11): 1341–81.
12. Fragasso G, Rosano G, Baek SH et al. Effect of partial fatty acid oxidation inhibition with trimetazidine on mortality and morbidity in heart failure: results from an international multicentre retrospective cohort study. Int J Cardiol 2013; 163 (3): 320–5.
13. Gao D, Ning N, Niu X et al. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 2011; 97 (4): 278–86.
14. Hasegawa K, Iwai-Kanai E, Sasayama S. Neurohormonal regulation of myocardial cell apoptosis during the development of heart failure. J Cell Physiol 2001; 186 (1): 11–8.
15. Imamura Y, Ando H, Ashihara T, Fukuyama T. Myocardial adrenergic nervous activity is intensified in patients with heart failure without left ventricular volume or pressure overload. J Am Coll Cardiol 1996; 28 (2): 371–5.
16. Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res 2009; 81 (3): 412–9.
17. Iyengar SS, Rosano GM. Effect of antianginal drugs in stable angina on predicted mortality risk after surviving a myocardial infarction: a preliminary study (METRO). Am J Cardiovasc Drugs 2009; 9 (5): 293–7.
18. Kantor PF, Lucien A, Kozak R et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose --oxidation by inhibiting mitochondrial longchain-ketoacyl coenzyme A thiolase. Circ Res 2000; 86 (5): 580–8.
19. Kaye D, Lefkovits J, Jennings G et al. Adverse consequence of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 1995; 26 (5): 1257–63.
20. Kiyosue T, Nakamura S, Arita M. Effects of trimetazidine on action potentials and membrane currents of guinea-pig ventricular myocytes. J Mol Cell Cardiol 1986; 18 (2): 1301–11.
21. Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004; 25 (8): 634–41.
22. Levin ER, Gardner DG, Samson WK. Mechanisms of disease – Natriuretic peptides. N Engl J Med 1998; 339: 321–8.
23. Lopaschuk GD, Ussher JR, Folmes CD et al. Myocardial Fatty Acid Metabolism in Health and Disease. Physiol Rev 2010; 90 (1): 207–58.
24. Management of stable angina pectoris. Recommendations of the Task Force of the European Society of Cardiology Eur Heart J 1997; 18: 314–413.
25. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 2002; 91 (11): 988–98.
26. Mann DL. Activation of inflammatory mediators in heart failure. Heart Failure. Philadelphia: Saunders, 2004: p. 159–80.
27. Margulies KB, Houser SR. Myocyte abnormalities in human heart failure. Heart Failure Philadelphia: Saunders, 2004; p. 41–98.
28. Marzilli M, Klein WW. Efficacy and tolerability of trimetazidine in stable angina: a meta-analysis of randomized, double-blind, controlled trials. Coron Artery Dis 2003; 14 (2): 171–9.
29. Masmoudi K, Masson H, Gras V et al. Extrapyramidal adverse drug reactions associated with trimetazidine: a series of 21 cases. Fundam Clin Pharmacol 2011.
30. Montastruc JL, Sommet A, Olivier P et al. Drugs, Parkinson’s disease and parkinsonian syndroms: recent advances in pharmacovigilance. Therapie 2006; 61 (1): 29–38.
31. Narula J, Pandley P, Arbustini E et al. Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 1999; 96 (14): 8144–9.
32. Opie LH. The metabolic vicious cycle in heart failure. Lancet 2004; 364 (9447): 1733–4.
33. Ruixing Y, Wenwu L, Al-Ghazali R. Trimetazidine inhibits cardiomyocyte apoptosis in a rabbit model of ischemia-reperfusion. Transl Res 2007; 149 (3): 152–60.
34. Schonfeld P, Wojtczak L. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 2008; 45 (3): 231–41.
35. Stanley WC, Lopaschuk GD, Hall JL et al. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions – Potential for pharmacological interventions. Cardiovasc Res 1997; 33 (2): 243–57.
36. Wallhaus TR, Taylor M, Degrado TR. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 2001; 103 (20): 2441–6.
37. Williams FM, Tanda K, Kus M et al. Trimetazidine inhibits neutrophil accumulation after myocardial-ischemia and reperfusion in rabbits. J Cardiovasc Pharmacol 1993; 22 (6): 828–33.
38. Zhang L, Lu Y, Jiang H et al. Additional use of Trimetazidine in patients with chronic heart failure: a meta-analysis. J Am Coll Cardiol 2012; 59 (10): 913–22.
2. Мареев В.Ю., Агеев Ф.Т., Арутюнов Г.П. и др. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Сердечная недостаточность. 2013; 14 (7): 379–472.
3. Ciapponi A, Pizarro R, Harrison J. Trimetazidine for stable angina. Cochrane Database Syst Rev 2005; 4: CD003614.
4. Clarke B, Wyatt KM, McCormack JG. Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol 1996; 28 (2): 341–50.
5. Cohn JN, Levine TB, Olivari MT et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984: 311 (13): 819–23.
6. Danchin N, Marzilli M, Parkhomenko A et al. Efficacy comparison of trimetazidine with therapeutic alternatives in stable angina pectoris: a network meta-analysis. Cardiology 2011; 120 (2): 59–72.
7. Deleiris J, Boucher F. Rationale for trimetazidine administration in myocardial-ischemia reperfusion syndrome. Eur Heart J 1993; 14 (Suppl. G): 34–40.
8. Dell’Halia L, Sabri A. Activation of the renin-angiotensin system in hypertrophy and heart failure. Heart Failure. Ed. D.Mann. Philadelphia: Saunders, 2004; p. 129–44.
9. Di Napoli P, Chierchia S, Taccardi AA et al. Trimetazidine improves post-ischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts. Nitric Oxide-Biol Ch 2007; 16 (2): 228–36.
10. El-Kady T, El-Sabban K, Gabaly M et al. Effects of trimetazidine on myocardial perfusion and the contractile response of chronically dysfunctional myocardium in ischemic cardiomyopathy: a 24-month study. Am J Cardiovasc Drugs 2005; 5: 271–8.
11. Fox K, Garcia MA, Ardissino D et al. Guidelines on the management of stable angina pectoris: the Task Force of the European Society of Cardiology. Eur Heart J 2006; 27 (11): 1341–81.
12. Fragasso G, Rosano G, Baek SH et al. Effect of partial fatty acid oxidation inhibition with trimetazidine on mortality and morbidity in heart failure: results from an international multicentre retrospective cohort study. Int J Cardiol 2013; 163 (3): 320–5.
13. Gao D, Ning N, Niu X et al. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 2011; 97 (4): 278–86.
14. Hasegawa K, Iwai-Kanai E, Sasayama S. Neurohormonal regulation of myocardial cell apoptosis during the development of heart failure. J Cell Physiol 2001; 186 (1): 11–8.
15. Imamura Y, Ando H, Ashihara T, Fukuyama T. Myocardial adrenergic nervous activity is intensified in patients with heart failure without left ventricular volume or pressure overload. J Am Coll Cardiol 1996; 28 (2): 371–5.
16. Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res 2009; 81 (3): 412–9.
17. Iyengar SS, Rosano GM. Effect of antianginal drugs in stable angina on predicted mortality risk after surviving a myocardial infarction: a preliminary study (METRO). Am J Cardiovasc Drugs 2009; 9 (5): 293–7.
18. Kantor PF, Lucien A, Kozak R et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose --oxidation by inhibiting mitochondrial longchain-ketoacyl coenzyme A thiolase. Circ Res 2000; 86 (5): 580–8.
19. Kaye D, Lefkovits J, Jennings G et al. Adverse consequence of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 1995; 26 (5): 1257–63.
20. Kiyosue T, Nakamura S, Arita M. Effects of trimetazidine on action potentials and membrane currents of guinea-pig ventricular myocytes. J Mol Cell Cardiol 1986; 18 (2): 1301–11.
21. Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004; 25 (8): 634–41.
22. Levin ER, Gardner DG, Samson WK. Mechanisms of disease – Natriuretic peptides. N Engl J Med 1998; 339: 321–8.
23. Lopaschuk GD, Ussher JR, Folmes CD et al. Myocardial Fatty Acid Metabolism in Health and Disease. Physiol Rev 2010; 90 (1): 207–58.
24. Management of stable angina pectoris. Recommendations of the Task Force of the European Society of Cardiology Eur Heart J 1997; 18: 314–413.
25. Mann DL. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 2002; 91 (11): 988–98.
26. Mann DL. Activation of inflammatory mediators in heart failure. Heart Failure. Philadelphia: Saunders, 2004: p. 159–80.
27. Margulies KB, Houser SR. Myocyte abnormalities in human heart failure. Heart Failure Philadelphia: Saunders, 2004; p. 41–98.
28. Marzilli M, Klein WW. Efficacy and tolerability of trimetazidine in stable angina: a meta-analysis of randomized, double-blind, controlled trials. Coron Artery Dis 2003; 14 (2): 171–9.
29. Masmoudi K, Masson H, Gras V et al. Extrapyramidal adverse drug reactions associated with trimetazidine: a series of 21 cases. Fundam Clin Pharmacol 2011.
30. Montastruc JL, Sommet A, Olivier P et al. Drugs, Parkinson’s disease and parkinsonian syndroms: recent advances in pharmacovigilance. Therapie 2006; 61 (1): 29–38.
31. Narula J, Pandley P, Arbustini E et al. Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 1999; 96 (14): 8144–9.
32. Opie LH. The metabolic vicious cycle in heart failure. Lancet 2004; 364 (9447): 1733–4.
33. Ruixing Y, Wenwu L, Al-Ghazali R. Trimetazidine inhibits cardiomyocyte apoptosis in a rabbit model of ischemia-reperfusion. Transl Res 2007; 149 (3): 152–60.
34. Schonfeld P, Wojtczak L. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 2008; 45 (3): 231–41.
35. Stanley WC, Lopaschuk GD, Hall JL et al. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions – Potential for pharmacological interventions. Cardiovasc Res 1997; 33 (2): 243–57.
36. Wallhaus TR, Taylor M, Degrado TR. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 2001; 103 (20): 2441–6.
37. Williams FM, Tanda K, Kus M et al. Trimetazidine inhibits neutrophil accumulation after myocardial-ischemia and reperfusion in rabbits. J Cardiovasc Pharmacol 1993; 22 (6): 828–33.
38. Zhang L, Lu Y, Jiang H et al. Additional use of Trimetazidine in patients with chronic heart failure: a meta-analysis. J Am Coll Cardiol 2012; 59 (10): 913–22.
Авторы
А.В.Барсуков, Д.В.Глуховской
ФГБВОУ ВПО Военно-медицинская академия им. С.М.Кирова Минобороны России,
Санкт-Петербург
Military medical academy named after S.M.Kirov, Saint Petersburg
ФГБВОУ ВПО Военно-медицинская академия им. С.М.Кирова Минобороны России,
Санкт-Петербург
________________________________________________
Military medical academy named after S.M.Kirov, Saint Petersburg
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
