Сегодня в науке и клинической практике большой критике подвергается «механистическая» теория ишемической болезни сердца (ИБС), основной концепцией которой является прямая корреляция между процентом стенотического сужения коронарной артерии и степенью ишемии миокарда в зоне, кровоснабжаемой данным сосудом. Практически каждый опытный кардиолог сталкивался со случаями, в которых при визуально значительном сужении коронарной артерии, по данным коронарной ангиографии, кровоснабжение данного участка не столь выраженно страдало (по данным методик визуализации в ходе индукции ишемии). В связи с этим оценке функциональной значимости стенозов сегодня в науке уделяется большое внимание, и с течением времени это зачастую становится краеугольным камнем в выборе пути лечения пациентов с ИБС.
Необходимость выбора наиболее информативной в каждом клиническом случае методики для верификации диагноза и определения дальнейшей тактики ведения определяется необходимостью индивидуального подхода при выборе методики лечения у пациентов с ИБС, основанного на совокупности данных анатомии коронарного русла и функционального состояния миокарда, что может значительно улучшить исход и отдаленный результат лечения.
Nowadays «mechanical» theory of myocardial ischemia is being criticized in both scientific and clinical points of view. Its main point is straight correlation between percent of stenosis of coronary artery and level of myocardial ischemia in segments perfused by «narrowed» coronary artery. Almost every cardiologist has faced clinical situations, when there is no significant ischemia detected during stress-induced tests in segments perfused by coronary artery, that has significant stenosis visualized during coronary angiography. Therefore assessment of functional significance of stenosis is one of main areas of interest among patients with coronary artery disease.
In every clinical case most informative test should be chosen in purpose to spot the most appropriate way of treatment and evaluate the need of revascularization. The more accurate diagnostics is done and selection of patient for each way of treatment, the better results we can achieve.
1. ВОЗ, 2011.
2. Bax JJ, Wijns W, Cornel JH et al. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 1997; 30: 1451–60.
3. Schinkel AFL, Bax JJ, Geleijnse ML et al. Noninvasive evaluation of ischaemic heart disease: myocardial perfusion imaging or stress echocardiography? Eur Heart J 2003; 24: 789–800.
4. Beleslin BD, Ostojic M, Djordjevic-Dikic A et al. Integrated evaluation of relation between coronary lesion features and stress echocardiography results: the importance of coronary lesion morphology. J Am Coll Cardiol 1999; 33: 717–26.
5. Blankstein R, Shturman LD, Rogers IS et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 2009; 54: 1072–84.
6. Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 1971; 27: 416–32.
7. Carr CL, Lindner JR. Myocardial perfusion imaging with contrast echocardiography. Curr Cardiol Rep 2008; 10: 233–9.
8. Chopra HK. Myocardial contrast echocardiography: a new tool for assessment of myocardial perfusion. Indian Heart J 2009; 61 (1): 8–13.
9. Dijkmans PA, Senior R, Becher H et al. Myocardial contrast echocardiography evolving as a clinically feasible technique for accurate, rapid, and safe assessment of myocardial perfusion: the evidence so far. J Am Coll Cardiol 2006; 48: 2168–77.
10. Eur Heart J 2010; 31 (20): 2501–55. doi: 10.1093/eurheartj/ehq277
11. Wijns W, Kolh P, Danchin N et al. European Association for Percutaneous Cardiovascular Interventions (EAPCI).
12. George RT, Arbab-Zadeh A, Miller JM et al. Adenosine Stress 64- and 256-row detector computed tomography angiography and perfusion imaging: clinical perspective. Circ Cardiovasc Imaging 2009; 2: 174–82.
13. Gerber BL, Ordoubadi FF, Wijns W et al. Positron emission tomography using 18F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community concerted action multicenter study on use of 18F-fluoro-deoxyglucose positron emission tomography for the detection of myocardial viability. Eur Heart J 2001; 22: 1691–701.
14. Gerber BL, Raman SV, Nayak K et al. Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J Cardiovasc Magn Reson 2008; 10: 18.
15. Garcia-Garcia HM, Costa MA, Serruys PW. Imaging of coronary atherosclerosis: intravascular ultrasound. Eur Heart J 2010; 31: 2456–69.
16. Gibbons RJ, Abrams J, Chatterjee K et al. American College of Cardiology; American Heart Association Task Force on Practice Guidelines. Committee on the Management of Patients with Chronic Stable Angina. ACC/AHS 2002 guideline update for the management of patients with chronic stable angina – summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Chronic Stable Angina). Circulation 2003; 107: 149–58.
17. Hachamovitch R, Hayes S, Friedman JD et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: What is the warranty period of a normal scan? J Am Coll Cardiol 2003; 41: 1329–40.
18. Hamon M, Fau G, Nee G et al. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson 2010; 12: 29.
19. Ioannidis JPA, Trikalinos TA, Danias PG. Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: A meta-analysis. J Am Coll Cardiol 2002; 39: 2059–68.
20. Lindner JR. Perfusion imaging with vasodilator stress echocardiography a physiologically sound approach to coronary disease? Circulation: Cardiovascular Imaging 2011; 4 (6): 601–3.
21. Machac J. PET myocardial perfusion imaging. Seminars in Nuclear Medicine (Impact Factor: 3.82). 2005; 35 (1): 17–36.
22. Cadet JV. CT perfusion has better overall benefits compared with SPECT. J Am Coll Cardiol 2009.
23. Kim RJ, Wu E, Rafael A et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000; 343: 1445–53.
24. McCully RB, Roger VL, Mahoney DW et al. Outcome after normal exercise echocardiography and predictors of subsequent cardiac events: follow-up of 1325 patients. J Am Coll Cardiol 1998; 31: 144–9.
25. Naghavi M, Libby P, Falk E et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108: 1664–72.
26. Nandalur KR, Dwamena BA, Choudhri AF et al. Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad Radiol 2008.
27. Natale L, Meduri A, Caltavuturo C et al. MRI assessment of ventricular function. Rays 2001; 26: 35–44.
28. Shaw LJ, Berman DS, Maron DJ et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008; 117: 1283–91.
29. Pakkal M, Raj V, McCann GP. Non-invasive imaging in coronary artery disease including anatomical and functional evaluation of ischaemia and viability assessment. Br J Radiol 2011; 84 (3): S280–95.
30. Pijls NH, De Bruyne B, Peels K et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996; 334: 1703–8.
31. Pijls NHJ, van Schaardenburgh P, Manoharan G et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J Am Coll Cardiol 2007; 49: 2105–11.
32. Slomka PJ. Integrated CT angiography and myocardial perfusion makes progress. Medscape 2007.
33. Schwitter J, Wacker CM, van Rossum AC et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 2008; 29: 480–9.
34. Stamper D, Weissman NJ, Brezinski M. Plaque characterization with optical coherence tomography. J Am Coll Cardiol 2006; 47 (Suppl. 8): C69–79.
35. Tahara N, Kai H, Ishibashi M et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006; 48: 1825–31.
36. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg 2014; 46 (4): 517–92. doi: 10.1093/ejcts/ezu366
37. Tonino PAL, De Bruyne B, Pijls NHJ et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009; 360: 213–24.
38. Underwood SR, Anagnostopoulos C, Cerqueira M et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging 2004; 31: 261–91.
39. Wagner A, Mahrholdt H, Holly TA et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003; 361: 374–9.
Авторы
Ю.И.Бузиашвили, В.Ю.Бузиашвили*
ФГБУ Научный центр сердечно-сосудистой хирургии им. А.Н.Бакулева, Москва
*viktoriaub@mail.ru