Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Блокатор рецепторов к ангиотензину II олмесартан в прерывании сердечно-сосудистого континуума: сосудо- и кардиопротективные, антиатеросклеротические и метаболические плейотропные эффекты (часть 2)
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: артериальная гипертония, олмесартан медоксомил, атеросклероз.
________________________________________________
The article provides an overview of pleiotropic activity and clinical efficacy of one of the representatives of the class of angiotensin receptor blockers II – olmesartan medoxomil. Analyzed is a wide range of established in experimental and clinical studies and vasoconstriction, cardioprotective, anti-atherogenic, anti-inflammatory and other effects of olmesartan medoxomil. Given clinical studies evaluating anti-atherosclerotic effects of this drug.
Key words: arterial hypertension, olmesartan medoxomil, atherosclerosis.
2. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev 1990; 70: 921–71.
3. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504.
4. Heagerty AM, Aalkjaer C, Bund SJ et al. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension 1993; 21: 391–7.
5. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 2001; 19: 921–30.
6. Rizzoni D, Porteri E, Boari GE et al. Prognostic significance of small artery structure in hypertension. Circulation 2003; 108: 2230–5.
7. De Ciuceis C, Porteri E, Rizzoni D et al. Structural alterations of subcutaneous small-resistance arteries may predict major cardiovascular events in patients with hypertension. Am J Hypertens 2007; 20 (8): 46–52.
8. Rizzoni D, Palombo C, Porteri E et al. Relationships between coronary flow vasodilator capacity and small artery remodeling in hypertensive patients. J Hypertens 2003; 21: 625–31.
9. Rizzoni D, Porteri E, Castellano M et al. Vascular hypertrophy and remodeling in secondary hypertension. Hypertension 1996; 28: 785–90.
10. Rizzoni D, Porteri E, Guefi D et al. Cellular hypertrophy in subcutaneous small arteries of patients with renovascular hypertension. Hypertension 2000; 35: 931–5.
11. Muiesan ML, Rizzoni D, Salvetti M et al. Structural changes in small resistance arteries and left ventricular geometry in patients with primary and secondary hypertension. J Hypertens 2002; 20: 1439–44.
12. Li JJ, Chen JL. Inflammation may be a bridge connecting hypertension and atherosclerosis. Med Hypotheses 2005; 64 (5): 925–9.
13. Rosenfeld ME. An overview of the evolution of the atherosclerotic plaque: from fatty streak to plaque rupture and thrombosis. Z Kardiol 2000; 89 (Suppl. 7): 2–6.
14. Matsushita M, Nishikimi N, Sakurai T, Nimura Y. Relationship between aortic calcification and atherosclerotic disease in patients with abdominal aortic aneurysm. Int Angiol 2000; 19 (3): 276–9.
15. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340 (2): 115–26.
16. Kramer CM, Anderson JD. MRI of atherosclerosis: diagnosis and monitoring therapy. Expert Rev Cardiovasc Ther 2007; 5 (1): 69–80.
17. Theroux P, Fuster V. Acute coronary syndromes: unstable angina and non-Q-wave myocardial infarction. Circulation 1998; 97 (12): 1195–206.
18. Wasserman BA. Clinical carotid atherosclerosis. Neuroimaging Clin N Am 2002; 12 (3): 403–19.
19. Rizzoni D, Muiesan ML, Porteri E et al. Relations between cardiac and vascular structure in patients with primary and secondary hypertension. J Am Coll Cardiol 1998; 32: 985–92.
20. Varagic J, Trask AJ, Jessup JA et al. New angiotensins. J Mol Med 2008; 86 (6): 663–71.
21. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM. Renin-angiotensin system and cardiovascular risk. Lancet 2007; 369 (9568): 1208–19.
22. Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am J Cardiol 2001; 87 (8 A): 25C–32.
23. Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 2006; 98 (1): 121–8.
24. Intengan HD, Thibault G, Li JS, Schiffrin EL. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation 1999; 100: 2267–75.
25. Schiffrin EL, Park JB, Intengan HD, Touyz RM. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 2000; 101: 1653–9.
26. Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med 2002; 113: 409–18.
27. Mathiassen ON, Buus NH, Larsen ML et al. Small artery structure adapts to vasodilatation rather than to blood pressure during antihypertensive treatment. J Hypertens 2007; 25: 1027–34.
28. Ferrario CM, Strawn WB. Targeting the RAAS for the treatment of atherosclerosis. Drug Discov Today Ther Strateg 2005; 2 (3): 221–9.
29. Hammoud RA, Vaccari CS, Nagamia SH, Khan BV. Regulation of the renin-angiotensin system in coronary atherosclerosis: a review of the literature. Vasc Health Risk Manag 2007; 3 (6): 937–45.
30. Brunner HR. Clinical efficacy and tolerability of olmesartan. Clin Ther 2004; 26 (Suppl. A): A28–32.
31. Neutel JM, Kereiakes DJ. An olmesartan medoxomil-based treatment algorithm is effective in achieving 24-hour BP control in patients with type 2 diabetes mellitus, regardless of age, race, sex, or severity of hypertension: subgroup analysis of the BENIFICIARY study. Am J Cardiovasc Drugs 2010; 10 (5): 289–303.
32. Oparil S, Pimenta E. Efficacy of an olmesartan medoxomil-based treatment algorithm in patients stratified by age, race, or sex. J Clin Hypertens (Greenwich) 2010; 12 (1): 3–13.
33. Zaman AK, Fujii S, Goto D et al. Salutary effects of attenuation of angiotensin II on coronary perivascular fibrosis associated with insulin resistance and obesity. J Mol Cell Cardiol 2004; 37 (2): 525–35.
34. Naya M, Tsukamoto T, Morita K et al. J Am Coll Cardiol 2007; 50 (12): 1144–9.
35. Smith RD, Yokoyama H, Averill DB et al. The protective effects of angiotensin II blockade with olmesartan medoxomil on resistance vessel remodeling (The VIOS study): rationale and baseline characteristics. Am J Cardiovasc Drugs 2006; 6: 335–42.
36. Heagerty AM. Predicting hypertension complications from small artery structure. J Hypertens 2007; 25: 939–40.
37. Kyotani Y, Zhao J, Tomita S et al. Olmesartan inhibits angiotensin II-induced migration of vascular smooth muscle cells through Src and mitogen-activated protein kinase pathways. J Pharmacol Sci 2010; 113 (2): 161–8.
38. Miyazaki M, Takai S. Anti-atherosclerotic efficacy of Olmesartan.J Human Hypertens 2002; 16 (Suppl. 2): S7–S12.
39. Ferrario CM. Use of angiotensin II receptor blockers in animal models of atherosclerosis. Am J Hypertens 2002; 15 (1 pt 2): 9S–13S.
40. Takai S, Jin D, Sakaguchi M et al. The regressive effect of an angiotensin II receptor blocker on formed fatty streaks in monkeys fed a high-cholesterol diet. J Hypertens 2005; 23 (10): 1879–86.
41. Hirohata A, Yamamoto K, Miyoshi T et al. Impact of olmesartan on progression of coronary atherosclerosis: a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of olmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. JACC 2010; 55 (10): 976–82.
42. Fliser D, Buchholz K, Haller H for the EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators. Anti-inflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 2004; 110: 1103–7.
43. Stumpe KO, Agabiti-Rosei E, Scholze J et al. Carotid intima-media thickness and plaque volume changes following 2-year angiotensin II-receptor blockade. The Multicentre Olmesartan atherosclerosis Regression Evaluation (MORE) study. Therapeutic Advances in Cardiovascular Disease 2007; 1 (2): 97–106.
44. Yao L, Kobori H, Rahman M et al. Olmesartan improves endothelin-induced hypertension and oxidative stress in rats. Hypertens Res 2004; 27 (7): 493–500.
45. Fliser D, Wagner KK, Loos A et al. Chronic angiotensin II receptor blockade reduces (intra)renal vascular resistance in patients with type 2 diabetes. J Am Soc Nephrol 2005; 16: 1135–40.
46. Blake GJ, Rifai N, Buring JE et al. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation 2003; 108: 2993–9.
47. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107: 363–9.
48. Nakayama S, Watada H, Mita T et al. Comparison of effects of olmesartan and telmisartan on blood pressure and metabolic parameters in Japanese early-stage type-2 diabetics with hypertension. Hypertens Res 2008; 31 (1): 7–13.
49. Koike H, Sada T, Mizuno M. In vitro and in vivo pharmacology of Olmesartan medoxomil, an angiotensin II type AT1 receptor antagonist. J Hypertens 2001; 19 (S1): S3–S14.
50. Yoshida J, Yamamoto K, Mano T et al. AT1 Receptor Blocker Added to ACE Inhibitor Provides Benefits at Advanced Stage of Hypertensive Diastolic Heart Failure. Hypertension 2004; 43: 686–91.
51. Jia N, Okamoto H, Shimizu T et al. A Newly Developed Angiotensin II Type 1 Receptor Antagonist, CS866, Promotes Regression of Cardiac Hypertrophy by Reducing Integrin b1 Expression. Hypertens Res 2003; 26: 737–42.
52. Sanada S, Kitakaze M, Node K et al. Differential Subcellular Actions of ACE Inhibitors and AT1 Receptor Antagonists on Cardiac Remodeling Induced by Chronic Inhibition of NO Synthesis in Rats. Hypertension 2001; 38: 404–11.
53. Takemoto M, Egashira K, Tomita H et al. Chronic Angiotensin-Converting Enzyme Inhibition and Angiotensin II Type 1 Receptor Blockade: Effects on Cardiovascular Remodeling in Rats Induced by the Long-term Blockade of Nitric Oxide Synthesis. Hypertension 1997; 30: 1621–7.
54. Taniyama Y, Morishita R, Nakagami H et al. Potential Contribution of a Novel Antifibrotic Factor, Hepatocyte Growth Factor, to Prevention of Myocardial Fibrosis by Angiotensin II Blockade in Cardiomyopathic Hamsters. Circulation 2000; 102: 246–52.
55. Ishiyama Y, Gallagher PE, Averill DB. Upregulation of Angiotensin-Converting Enzyme 2 аfter Myocardial Infarction by Blockade of Angiotensin II Receptors. Hypertension 2004; 43: 970–6.
56. Nimata M, Kishimoto C, Yuan Z et al. Beneficial effects of Olmesartan, a novel angiotensin II receptor type 1 antagonist, upon acute autoimmune myocarditis. Mol Cell Biochem 2004; 259 (1–2): 217–22.
57. Furuhashi M, Ura N, Takizawa H et al. Blockade of the renin–angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J of Hypertension 2004; 22: 1977–82.
58. Higashiura K, Ura N, Takada T et al. The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats. Am J Hypertens 2000; 13 (3): 290–7.
59. De Vinuesa SG, Goicoechea M, Kanter J et al. Insulin resistance, inflammatory biomarkers, and adipokines in patients with chronic kidney disease: effects of angiotensin II blockade. J Am Soc Nephrol 2006; 17: S206–12.
60. Okada K, Hirano T, Ran J, Adachi M. Olmesartan medoxomil, an angiotensin II Receptor blocker ameliorates insulin resistance and decreases triglyceride production in fructosefed rats. Hypertens Res 2004; 27 (4): 293–9.
61. Ran J, Hirano T, Adachi M. Angiotensin II type 1 receptor blocker ameliorates Overproduction and accumulation of triglyceride in the liver of Zucker fatty rats. Am J Physiol Endocrinol Metab 2004; 287 (2): E227–32.
62. Simons WR. Comparative cost effectiveness of angiotensin II receptor blockers in a US managed care setting: Olmesartan medoxomil compared with losartan, valsartan and irbesartan. Pharmacoeconomics 2003; 21 (1): 61–74.
________________________________________________
1. Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 1991; 121 (4 Pt1): 1244–63.
2. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev 1990; 70: 921–71.
3. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504.
4. Heagerty AM, Aalkjaer C, Bund SJ et al. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension 1993; 21: 391–7.
5. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 2001; 19: 921–30.
6. Rizzoni D, Porteri E, Boari GE et al. Prognostic significance of small artery structure in hypertension. Circulation 2003; 108: 2230–5.
7. De Ciuceis C, Porteri E, Rizzoni D et al. Structural alterations of subcutaneous small-resistance arteries may predict major cardiovascular events in patients with hypertension. Am J Hypertens 2007; 20 (8): 46–52.
8. Rizzoni D, Palombo C, Porteri E et al. Relationships between coronary flow vasodilator capacity and small artery remodeling in hypertensive patients. J Hypertens 2003; 21: 625–31.
9. Rizzoni D, Porteri E, Castellano M et al. Vascular hypertrophy and remodeling in secondary hypertension. Hypertension 1996; 28: 785–90.
10. Rizzoni D, Porteri E, Guefi D et al. Cellular hypertrophy in subcutaneous small arteries of patients with renovascular hypertension. Hypertension 2000; 35: 931–5.
11. Muiesan ML, Rizzoni D, Salvetti M et al. Structural changes in small resistance arteries and left ventricular geometry in patients with primary and secondary hypertension. J Hypertens 2002; 20: 1439–44.
12. Li JJ, Chen JL. Inflammation may be a bridge connecting hypertension and atherosclerosis. Med Hypotheses 2005; 64 (5): 925–9.
13. Rosenfeld ME. An overview of the evolution of the atherosclerotic plaque: from fatty streak to plaque rupture and thrombosis. Z Kardiol 2000; 89 (Suppl. 7): 2–6.
14. Matsushita M, Nishikimi N, Sakurai T, Nimura Y. Relationship between aortic calcification and atherosclerotic disease in patients with abdominal aortic aneurysm. Int Angiol 2000; 19 (3): 276–9.
15. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340 (2): 115–26.
16. Kramer CM, Anderson JD. MRI of atherosclerosis: diagnosis and monitoring therapy. Expert Rev Cardiovasc Ther 2007; 5 (1): 69–80.
17. Theroux P, Fuster V. Acute coronary syndromes: unstable angina and non-Q-wave myocardial infarction. Circulation 1998; 97 (12): 1195–206.
18. Wasserman BA. Clinical carotid atherosclerosis. Neuroimaging Clin N Am 2002; 12 (3): 403–19.
19. Rizzoni D, Muiesan ML, Porteri E et al. Relations between cardiac and vascular structure in patients with primary and secondary hypertension. J Am Coll Cardiol 1998; 32: 985–92.
20. Varagic J, Trask AJ, Jessup JA et al. New angiotensins. J Mol Med 2008; 86 (6): 663–71.
21. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM. Renin-angiotensin system and cardiovascular risk. Lancet 2007; 369 (9568): 1208–19.
22. Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am J Cardiol 2001; 87 (8 A): 25C–32.
23. Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 2006; 98 (1): 121–8.
24. Intengan HD, Thibault G, Li JS, Schiffrin EL. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation 1999; 100: 2267–75.
25. Schiffrin EL, Park JB, Intengan HD, Touyz RM. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 2000; 101: 1653–9.
26. Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med 2002; 113: 409–18.
27. Mathiassen ON, Buus NH, Larsen ML et al. Small artery structure adapts to vasodilatation rather than to blood pressure during antihypertensive treatment. J Hypertens 2007; 25: 1027–34.
28. Ferrario CM, Strawn WB. Targeting the RAAS for the treatment of atherosclerosis. Drug Discov Today Ther Strateg 2005; 2 (3): 221–9.
29. Hammoud RA, Vaccari CS, Nagamia SH, Khan BV. Regulation of the renin-angiotensin system in coronary atherosclerosis: a review of the literature. Vasc Health Risk Manag 2007; 3 (6): 937–45.
30. Brunner HR. Clinical efficacy and tolerability of olmesartan. Clin Ther 2004; 26 (Suppl. A): A28–32.
31. Neutel JM, Kereiakes DJ. An olmesartan medoxomil-based treatment algorithm is effective in achieving 24-hour BP control in patients with type 2 diabetes mellitus, regardless of age, race, sex, or severity of hypertension: subgroup analysis of the BENIFICIARY study. Am J Cardiovasc Drugs 2010; 10 (5): 289–303.
32. Oparil S, Pimenta E. Efficacy of an olmesartan medoxomil-based treatment algorithm in patients stratified by age, race, or sex. J Clin Hypertens (Greenwich) 2010; 12 (1): 3–13.
33. Zaman AK, Fujii S, Goto D et al. Salutary effects of attenuation of angiotensin II on coronary perivascular fibrosis associated with insulin resistance and obesity. J Mol Cell Cardiol 2004; 37 (2): 525–35.
34. Naya M, Tsukamoto T, Morita K et al. J Am Coll Cardiol 2007; 50 (12): 1144–9.
35. Smith RD, Yokoyama H, Averill DB et al. The protective effects of angiotensin II blockade with olmesartan medoxomil on resistance vessel remodeling (The VIOS study): rationale and baseline characteristics. Am J Cardiovasc Drugs 2006; 6: 335–42.
36. Heagerty AM. Predicting hypertension complications from small artery structure. J Hypertens 2007; 25: 939–40.
37. Kyotani Y, Zhao J, Tomita S et al. Olmesartan inhibits angiotensin II-induced migration of vascular smooth muscle cells through Src and mitogen-activated protein kinase pathways. J Pharmacol Sci 2010; 113 (2): 161–8.
38. Miyazaki M, Takai S. Anti-atherosclerotic efficacy of Olmesartan.J Human Hypertens 2002; 16 (Suppl. 2): S7–S12.
39. Ferrario CM. Use of angiotensin II receptor blockers in animal models of atherosclerosis. Am J Hypertens 2002; 15 (1 pt 2): 9S–13S.
40. Takai S, Jin D, Sakaguchi M et al. The regressive effect of an angiotensin II receptor blocker on formed fatty streaks in monkeys fed a high-cholesterol diet. J Hypertens 2005; 23 (10): 1879–86.
41. Hirohata A, Yamamoto K, Miyoshi T et al. Impact of olmesartan on progression of coronary atherosclerosis: a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of olmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. JACC 2010; 55 (10): 976–82.
42. Fliser D, Buchholz K, Haller H for the EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators. Anti-inflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 2004; 110: 1103–7.
43. Stumpe KO, Agabiti-Rosei E, Scholze J et al. Carotid intima-media thickness and plaque volume changes following 2-year angiotensin II-receptor blockade. The Multicentre Olmesartan atherosclerosis Regression Evaluation (MORE) study. Therapeutic Advances in Cardiovascular Disease 2007; 1 (2): 97–106.
44. Yao L, Kobori H, Rahman M et al. Olmesartan improves endothelin-induced hypertension and oxidative stress in rats. Hypertens Res 2004; 27 (7): 493–500.
45. Fliser D, Wagner KK, Loos A et al. Chronic angiotensin II receptor blockade reduces (intra)renal vascular resistance in patients with type 2 diabetes. J Am Soc Nephrol 2005; 16: 1135–40.
46. Blake GJ, Rifai N, Buring JE et al. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation 2003; 108: 2993–9.
47. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107: 363–9.
48. Nakayama S, Watada H, Mita T et al. Comparison of effects of olmesartan and telmisartan on blood pressure and metabolic parameters in Japanese early-stage type-2 diabetics with hypertension. Hypertens Res 2008; 31 (1): 7–13.
49. Koike H, Sada T, Mizuno M. In vitro and in vivo pharmacology of Olmesartan medoxomil, an angiotensin II type AT1 receptor antagonist. J Hypertens 2001; 19 (S1): S3–S14.
50. Yoshida J, Yamamoto K, Mano T et al. AT1 Receptor Blocker Added to ACE Inhibitor Provides Benefits at Advanced Stage of Hypertensive Diastolic Heart Failure. Hypertension 2004; 43: 686–91.
51. Jia N, Okamoto H, Shimizu T et al. A Newly Developed Angiotensin II Type 1 Receptor Antagonist, CS866, Promotes Regression of Cardiac Hypertrophy by Reducing Integrin b1 Expression. Hypertens Res 2003; 26: 737–42.
52. Sanada S, Kitakaze M, Node K et al. Differential Subcellular Actions of ACE Inhibitors and AT1 Receptor Antagonists on Cardiac Remodeling Induced by Chronic Inhibition of NO Synthesis in Rats. Hypertension 2001; 38: 404–11.
53. Takemoto M, Egashira K, Tomita H et al. Chronic Angiotensin-Converting Enzyme Inhibition and Angiotensin II Type 1 Receptor Blockade: Effects on Cardiovascular Remodeling in Rats Induced by the Long-term Blockade of Nitric Oxide Synthesis. Hypertension 1997; 30: 1621–7.
54. Taniyama Y, Morishita R, Nakagami H et al. Potential Contribution of a Novel Antifibrotic Factor, Hepatocyte Growth Factor, to Prevention of Myocardial Fibrosis by Angiotensin II Blockade in Cardiomyopathic Hamsters. Circulation 2000; 102: 246–52.
55. Ishiyama Y, Gallagher PE, Averill DB. Upregulation of Angiotensin-Converting Enzyme 2 аfter Myocardial Infarction by Blockade of Angiotensin II Receptors. Hypertension 2004; 43: 970–6.
56. Nimata M, Kishimoto C, Yuan Z et al. Beneficial effects of Olmesartan, a novel angiotensin II receptor type 1 antagonist, upon acute autoimmune myocarditis. Mol Cell Biochem 2004; 259 (1–2): 217–22.
57. Furuhashi M, Ura N, Takizawa H et al. Blockade of the renin–angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J of Hypertension 2004; 22: 1977–82.
58. Higashiura K, Ura N, Takada T et al. The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats. Am J Hypertens 2000; 13 (3): 290–7.
59. De Vinuesa SG, Goicoechea M, Kanter J et al. Insulin resistance, inflammatory biomarkers, and adipokines in patients with chronic kidney disease: effects of angiotensin II blockade. J Am Soc Nephrol 2006; 17: S206–12.
60. Okada K, Hirano T, Ran J, Adachi M. Olmesartan medoxomil, an angiotensin II Receptor blocker ameliorates insulin resistance and decreases triglyceride production in fructosefed rats. Hypertens Res 2004; 27 (4): 293–9.
61. Ran J, Hirano T, Adachi M. Angiotensin II type 1 receptor blocker ameliorates Overproduction and accumulation of triglyceride in the liver of Zucker fatty rats. Am J Physiol Endocrinol Metab 2004; 287 (2): E227–32.
62. Simons WR. Comparative cost effectiveness of angiotensin II receptor blockers in a US managed care setting: Olmesartan medoxomil compared with losartan, valsartan and irbesartan. Pharmacoeconomics 2003; 21 (1): 61–74.
ФГБУ Государственный научно-исследовательский центр профилактической медицины Минздрава России. 101000, Россия, Москва, Петроверигский пер., д. 10, стр. 3
mbubnova@gnicpm.ru
________________________________________________
M.G.Bubnova
State Research Center for Preventive Medicine of the Ministry of Health of the Russian Federation. 101000, Russian Federation, Moscow, Petroverigskii per., d. 10, str. 3
mbubnova@gnicpm.ru