Блокатор рецепторов к ангиотензину II олмесартан в прерывании сердечно-сосудистого континуума: сосудо- и кардиопротективные, антиатеросклеротические и метаболические плейотропные эффекты (часть 2)
Блокатор рецепторов к ангиотензину II олмесартан в прерывании сердечно-сосудистого континуума: сосудо- и кардиопротективные, антиатеросклеротические и метаболические плейотропные эффекты (часть 2)
Блокатор рецепторов к ангиотензину II олмесартан в прерывании сердечно-сосудистого континуума: сосудо- и кардиопротективные, антиатеросклеротические и метаболические плейотропные эффекты (часть 2)
В статье представлен обзор плейотропной активности и клинической эффективности одного из представителей класса блокаторов рецепторов к ангиотензину II – олмесартана медоксомила. Проанализирован широкий спектр установленных в экспериментальных и клинических исследованиях вазо-, кардиопротективных, антиатерогенных, противовоспалительных и других эффектов олмесартана медоксомила. Приведены клинические исследования, изучающие антиатеросклеротическое воздействие данного препарата.
The article provides an overview of pleiotropic activity and clinical efficacy of one of the representatives of the class of angiotensin receptor blockers II – olmesartan medoxomil. Analyzed is a wide range of established in experimental and clinical studies and vasoconstriction, cardioprotective, anti-atherogenic, anti-inflammatory and other effects of olmesartan medoxomil. Given clinical studies evaluating anti-atherosclerotic effects of this drug.
1. Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 1991; 121 (4 Pt1): 1244–63.
2. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev 1990; 70: 921–71.
3. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504.
4. Heagerty AM, Aalkjaer C, Bund SJ et al. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension 1993; 21: 391–7.
5. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 2001; 19: 921–30.
6. Rizzoni D, Porteri E, Boari GE et al. Prognostic significance of small artery structure in hypertension. Circulation 2003; 108: 2230–5.
7. De Ciuceis C, Porteri E, Rizzoni D et al. Structural alterations of subcutaneous small-resistance arteries may predict major cardiovascular events in patients with hypertension. Am J Hypertens 2007; 20 (8): 46–52.
8. Rizzoni D, Palombo C, Porteri E et al. Relationships between coronary flow vasodilator capacity and small artery remodeling in hypertensive patients. J Hypertens 2003; 21: 625–31.
9. Rizzoni D, Porteri E, Castellano M et al. Vascular hypertrophy and remodeling in secondary hypertension. Hypertension 1996; 28: 785–90.
10. Rizzoni D, Porteri E, Guefi D et al. Cellular hypertrophy in subcutaneous small arteries of patients with renovascular hypertension. Hypertension 2000; 35: 931–5.
11. Muiesan ML, Rizzoni D, Salvetti M et al. Structural changes in small resistance arteries and left ventricular geometry in patients with primary and secondary hypertension. J Hypertens 2002; 20: 1439–44.
12. Li JJ, Chen JL. Inflammation may be a bridge connecting hypertension and atherosclerosis. Med Hypotheses 2005; 64 (5): 925–9.
13. Rosenfeld ME. An overview of the evolution of the atherosclerotic plaque: from fatty streak to plaque rupture and thrombosis. Z Kardiol 2000; 89 (Suppl. 7): 2–6.
14. Matsushita M, Nishikimi N, Sakurai T, Nimura Y. Relationship between aortic calcification and atherosclerotic disease in patients with abdominal aortic aneurysm. Int Angiol 2000; 19 (3): 276–9.
15. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340 (2): 115–26.
16. Kramer CM, Anderson JD. MRI of atherosclerosis: diagnosis and monitoring therapy. Expert Rev Cardiovasc Ther 2007; 5 (1): 69–80.
17. Theroux P, Fuster V. Acute coronary syndromes: unstable angina and non-Q-wave myocardial infarction. Circulation 1998; 97 (12): 1195–206.
18. Wasserman BA. Clinical carotid atherosclerosis. Neuroimaging Clin N Am 2002; 12 (3): 403–19.
19. Rizzoni D, Muiesan ML, Porteri E et al. Relations between cardiac and vascular structure in patients with primary and secondary hypertension. J Am Coll Cardiol 1998; 32: 985–92.
20. Varagic J, Trask AJ, Jessup JA et al. New angiotensins. J Mol Med 2008; 86 (6): 663–71.
21. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM. Renin-angiotensin system and cardiovascular risk. Lancet 2007; 369 (9568): 1208–19.
22. Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am J Cardiol 2001; 87 (8 A): 25C–32.
23. Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 2006; 98 (1): 121–8.
24. Intengan HD, Thibault G, Li JS, Schiffrin EL. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation 1999; 100: 2267–75.
25. Schiffrin EL, Park JB, Intengan HD, Touyz RM. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 2000; 101: 1653–9.
26. Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med 2002; 113: 409–18.
27. Mathiassen ON, Buus NH, Larsen ML et al. Small artery structure adapts to vasodilatation rather than to blood pressure during antihypertensive treatment. J Hypertens 2007; 25: 1027–34.
28. Ferrario CM, Strawn WB. Targeting the RAAS for the treatment of atherosclerosis. Drug Discov Today Ther Strateg 2005; 2 (3): 221–9.
29. Hammoud RA, Vaccari CS, Nagamia SH, Khan BV. Regulation of the renin-angiotensin system in coronary atherosclerosis: a review of the literature. Vasc Health Risk Manag 2007; 3 (6): 937–45.
30. Brunner HR. Clinical efficacy and tolerability of olmesartan. Clin Ther 2004; 26 (Suppl. A): A28–32.
31. Neutel JM, Kereiakes DJ. An olmesartan medoxomil-based treatment algorithm is effective in achieving 24-hour BP control in patients with type 2 diabetes mellitus, regardless of age, race, sex, or severity of hypertension: subgroup analysis of the BENIFICIARY study. Am J Cardiovasc Drugs 2010; 10 (5): 289–303.
32. Oparil S, Pimenta E. Efficacy of an olmesartan medoxomil-based treatment algorithm in patients stratified by age, race, or sex. J Clin Hypertens (Greenwich) 2010; 12 (1): 3–13.
33. Zaman AK, Fujii S, Goto D et al. Salutary effects of attenuation of angiotensin II on coronary perivascular fibrosis associated with insulin resistance and obesity. J Mol Cell Cardiol 2004; 37 (2): 525–35.
34. Naya M, Tsukamoto T, Morita K et al. J Am Coll Cardiol 2007; 50 (12): 1144–9.
35. Smith RD, Yokoyama H, Averill DB et al. The protective effects of angiotensin II blockade with olmesartan medoxomil on resistance vessel remodeling (The VIOS study): rationale and baseline characteristics. Am J Cardiovasc Drugs 2006; 6: 335–42.
36. Heagerty AM. Predicting hypertension complications from small artery structure. J Hypertens 2007; 25: 939–40.
37. Kyotani Y, Zhao J, Tomita S et al. Olmesartan inhibits angiotensin II-induced migration of vascular smooth muscle cells through Src and mitogen-activated protein kinase pathways. J Pharmacol Sci 2010; 113 (2): 161–8.
38. Miyazaki M, Takai S. Anti-atherosclerotic efficacy of Olmesartan.J Human Hypertens 2002; 16 (Suppl. 2): S7–S12.
39. Ferrario CM. Use of angiotensin II receptor blockers in animal models of atherosclerosis. Am J Hypertens 2002; 15 (1 pt 2): 9S–13S.
40. Takai S, Jin D, Sakaguchi M et al. The regressive effect of an angiotensin II receptor blocker on formed fatty streaks in monkeys fed a high-cholesterol diet. J Hypertens 2005; 23 (10): 1879–86.
41. Hirohata A, Yamamoto K, Miyoshi T et al. Impact of olmesartan on progression of coronary atherosclerosis: a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of olmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. JACC 2010; 55 (10): 976–82.
42. Fliser D, Buchholz K, Haller H for the EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators. Anti-inflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 2004; 110: 1103–7.
43. Stumpe KO, Agabiti-Rosei E, Scholze J et al. Carotid intima-media thickness and plaque volume changes following 2-year angiotensin II-receptor blockade. The Multicentre Olmesartan atherosclerosis Regression Evaluation (MORE) study. Therapeutic Advances in Cardiovascular Disease 2007; 1 (2): 97–106.
44. Yao L, Kobori H, Rahman M et al. Olmesartan improves endothelin-induced hypertension and oxidative stress in rats. Hypertens Res 2004; 27 (7): 493–500.
45. Fliser D, Wagner KK, Loos A et al. Chronic angiotensin II receptor blockade reduces (intra)renal vascular resistance in patients with type 2 diabetes. J Am Soc Nephrol 2005; 16: 1135–40.
46. Blake GJ, Rifai N, Buring JE et al. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation 2003; 108: 2993–9.
47. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107: 363–9.
48. Nakayama S, Watada H, Mita T et al. Comparison of effects of olmesartan and telmisartan on blood pressure and metabolic parameters in Japanese early-stage type-2 diabetics with hypertension. Hypertens Res 2008; 31 (1): 7–13.
49. Koike H, Sada T, Mizuno M. In vitro and in vivo pharmacology of Olmesartan medoxomil, an angiotensin II type AT1 receptor antagonist. J Hypertens 2001; 19 (S1): S3–S14.
50. Yoshida J, Yamamoto K, Mano T et al. AT1 Receptor Blocker Added to ACE Inhibitor Provides Benefits at Advanced Stage of Hypertensive Diastolic Heart Failure. Hypertension 2004; 43: 686–91.
51. Jia N, Okamoto H, Shimizu T et al. A Newly Developed Angiotensin II Type 1 Receptor Antagonist, CS866, Promotes Regression of Cardiac Hypertrophy by Reducing Integrin b1 Expression. Hypertens Res 2003; 26: 737–42.
52. Sanada S, Kitakaze M, Node K et al. Differential Subcellular Actions of ACE Inhibitors and AT1 Receptor Antagonists on Cardiac Remodeling Induced by Chronic Inhibition of NO Synthesis in Rats. Hypertension 2001; 38: 404–11.
53. Takemoto M, Egashira K, Tomita H et al. Chronic Angiotensin-Converting Enzyme Inhibition and Angiotensin II Type 1 Receptor Blockade: Effects on Cardiovascular Remodeling in Rats Induced by the Long-term Blockade of Nitric Oxide Synthesis. Hypertension 1997; 30: 1621–7.
54. Taniyama Y, Morishita R, Nakagami H et al. Potential Contribution of a Novel Antifibrotic Factor, Hepatocyte Growth Factor, to Prevention of Myocardial Fibrosis by Angiotensin II Blockade in Cardiomyopathic Hamsters. Circulation 2000; 102: 246–52.
55. Ishiyama Y, Gallagher PE, Averill DB. Upregulation of Angiotensin-Converting Enzyme 2 аfter Myocardial Infarction by Blockade of Angiotensin II Receptors. Hypertension 2004; 43: 970–6.
56. Nimata M, Kishimoto C, Yuan Z et al. Beneficial effects of Olmesartan, a novel angiotensin II receptor type 1 antagonist, upon acute autoimmune myocarditis. Mol Cell Biochem 2004; 259 (1–2): 217–22.
57. Furuhashi M, Ura N, Takizawa H et al. Blockade of the renin–angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J of Hypertension 2004; 22: 1977–82.
58. Higashiura K, Ura N, Takada T et al. The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats. Am J Hypertens 2000; 13 (3): 290–7.
59. De Vinuesa SG, Goicoechea M, Kanter J et al. Insulin resistance, inflammatory biomarkers, and adipokines in patients with chronic kidney disease: effects of angiotensin II blockade. J Am Soc Nephrol 2006; 17: S206–12.
60. Okada K, Hirano T, Ran J, Adachi M. Olmesartan medoxomil, an angiotensin II Receptor blocker ameliorates insulin resistance and decreases triglyceride production in fructosefed rats. Hypertens Res 2004; 27 (4): 293–9.
61. Ran J, Hirano T, Adachi M. Angiotensin II type 1 receptor blocker ameliorates Overproduction and accumulation of triglyceride in the liver of Zucker fatty rats. Am J Physiol Endocrinol Metab 2004; 287 (2): E227–32.
62. Simons WR. Comparative cost effectiveness of angiotensin II receptor blockers in a US managed care setting: Olmesartan medoxomil compared with losartan, valsartan and irbesartan. Pharmacoeconomics 2003; 21 (1): 61–74.
________________________________________________
1. Dzau V, Braunwald E. Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 1991; 121 (4 Pt1): 1244–63.
2. Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev 1990; 70: 921–71.
3. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62: 347–504.
4. Heagerty AM, Aalkjaer C, Bund SJ et al. Small artery structure in hypertension. Dual processes of remodeling and growth. Hypertension 1993; 21: 391–7.
5. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 2001; 19: 921–30.
6. Rizzoni D, Porteri E, Boari GE et al. Prognostic significance of small artery structure in hypertension. Circulation 2003; 108: 2230–5.
7. De Ciuceis C, Porteri E, Rizzoni D et al. Structural alterations of subcutaneous small-resistance arteries may predict major cardiovascular events in patients with hypertension. Am J Hypertens 2007; 20 (8): 46–52.
8. Rizzoni D, Palombo C, Porteri E et al. Relationships between coronary flow vasodilator capacity and small artery remodeling in hypertensive patients. J Hypertens 2003; 21: 625–31.
9. Rizzoni D, Porteri E, Castellano M et al. Vascular hypertrophy and remodeling in secondary hypertension. Hypertension 1996; 28: 785–90.
10. Rizzoni D, Porteri E, Guefi D et al. Cellular hypertrophy in subcutaneous small arteries of patients with renovascular hypertension. Hypertension 2000; 35: 931–5.
11. Muiesan ML, Rizzoni D, Salvetti M et al. Structural changes in small resistance arteries and left ventricular geometry in patients with primary and secondary hypertension. J Hypertens 2002; 20: 1439–44.
12. Li JJ, Chen JL. Inflammation may be a bridge connecting hypertension and atherosclerosis. Med Hypotheses 2005; 64 (5): 925–9.
13. Rosenfeld ME. An overview of the evolution of the atherosclerotic plaque: from fatty streak to plaque rupture and thrombosis. Z Kardiol 2000; 89 (Suppl. 7): 2–6.
14. Matsushita M, Nishikimi N, Sakurai T, Nimura Y. Relationship between aortic calcification and atherosclerotic disease in patients with abdominal aortic aneurysm. Int Angiol 2000; 19 (3): 276–9.
15. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340 (2): 115–26.
16. Kramer CM, Anderson JD. MRI of atherosclerosis: diagnosis and monitoring therapy. Expert Rev Cardiovasc Ther 2007; 5 (1): 69–80.
17. Theroux P, Fuster V. Acute coronary syndromes: unstable angina and non-Q-wave myocardial infarction. Circulation 1998; 97 (12): 1195–206.
18. Wasserman BA. Clinical carotid atherosclerosis. Neuroimaging Clin N Am 2002; 12 (3): 403–19.
19. Rizzoni D, Muiesan ML, Porteri E et al. Relations between cardiac and vascular structure in patients with primary and secondary hypertension. J Am Coll Cardiol 1998; 32: 985–92.
20. Varagic J, Trask AJ, Jessup JA et al. New angiotensins. J Mol Med 2008; 86 (6): 663–71.
21. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM. Renin-angiotensin system and cardiovascular risk. Lancet 2007; 369 (9568): 1208–19.
22. Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am J Cardiol 2001; 87 (8 A): 25C–32.
23. Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. Am J Cardiol 2006; 98 (1): 121–8.
24. Intengan HD, Thibault G, Li JS, Schiffrin EL. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation 1999; 100: 2267–75.
25. Schiffrin EL, Park JB, Intengan HD, Touyz RM. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 2000; 101: 1653–9.
26. Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med 2002; 113: 409–18.
27. Mathiassen ON, Buus NH, Larsen ML et al. Small artery structure adapts to vasodilatation rather than to blood pressure during antihypertensive treatment. J Hypertens 2007; 25: 1027–34.
28. Ferrario CM, Strawn WB. Targeting the RAAS for the treatment of atherosclerosis. Drug Discov Today Ther Strateg 2005; 2 (3): 221–9.
29. Hammoud RA, Vaccari CS, Nagamia SH, Khan BV. Regulation of the renin-angiotensin system in coronary atherosclerosis: a review of the literature. Vasc Health Risk Manag 2007; 3 (6): 937–45.
30. Brunner HR. Clinical efficacy and tolerability of olmesartan. Clin Ther 2004; 26 (Suppl. A): A28–32.
31. Neutel JM, Kereiakes DJ. An olmesartan medoxomil-based treatment algorithm is effective in achieving 24-hour BP control in patients with type 2 diabetes mellitus, regardless of age, race, sex, or severity of hypertension: subgroup analysis of the BENIFICIARY study. Am J Cardiovasc Drugs 2010; 10 (5): 289–303.
32. Oparil S, Pimenta E. Efficacy of an olmesartan medoxomil-based treatment algorithm in patients stratified by age, race, or sex. J Clin Hypertens (Greenwich) 2010; 12 (1): 3–13.
33. Zaman AK, Fujii S, Goto D et al. Salutary effects of attenuation of angiotensin II on coronary perivascular fibrosis associated with insulin resistance and obesity. J Mol Cell Cardiol 2004; 37 (2): 525–35.
34. Naya M, Tsukamoto T, Morita K et al. J Am Coll Cardiol 2007; 50 (12): 1144–9.
35. Smith RD, Yokoyama H, Averill DB et al. The protective effects of angiotensin II blockade with olmesartan medoxomil on resistance vessel remodeling (The VIOS study): rationale and baseline characteristics. Am J Cardiovasc Drugs 2006; 6: 335–42.
36. Heagerty AM. Predicting hypertension complications from small artery structure. J Hypertens 2007; 25: 939–40.
37. Kyotani Y, Zhao J, Tomita S et al. Olmesartan inhibits angiotensin II-induced migration of vascular smooth muscle cells through Src and mitogen-activated protein kinase pathways. J Pharmacol Sci 2010; 113 (2): 161–8.
38. Miyazaki M, Takai S. Anti-atherosclerotic efficacy of Olmesartan.J Human Hypertens 2002; 16 (Suppl. 2): S7–S12.
39. Ferrario CM. Use of angiotensin II receptor blockers in animal models of atherosclerosis. Am J Hypertens 2002; 15 (1 pt 2): 9S–13S.
40. Takai S, Jin D, Sakaguchi M et al. The regressive effect of an angiotensin II receptor blocker on formed fatty streaks in monkeys fed a high-cholesterol diet. J Hypertens 2005; 23 (10): 1879–86.
41. Hirohata A, Yamamoto K, Miyoshi T et al. Impact of olmesartan on progression of coronary atherosclerosis: a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of olmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. JACC 2010; 55 (10): 976–82.
42. Fliser D, Buchholz K, Haller H for the EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators. Anti-inflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 2004; 110: 1103–7.
43. Stumpe KO, Agabiti-Rosei E, Scholze J et al. Carotid intima-media thickness and plaque volume changes following 2-year angiotensin II-receptor blockade. The Multicentre Olmesartan atherosclerosis Regression Evaluation (MORE) study. Therapeutic Advances in Cardiovascular Disease 2007; 1 (2): 97–106.
44. Yao L, Kobori H, Rahman M et al. Olmesartan improves endothelin-induced hypertension and oxidative stress in rats. Hypertens Res 2004; 27 (7): 493–500.
45. Fliser D, Wagner KK, Loos A et al. Chronic angiotensin II receptor blockade reduces (intra)renal vascular resistance in patients with type 2 diabetes. J Am Soc Nephrol 2005; 16: 1135–40.
46. Blake GJ, Rifai N, Buring JE et al. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation 2003; 108: 2993–9.
47. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107: 363–9.
48. Nakayama S, Watada H, Mita T et al. Comparison of effects of olmesartan and telmisartan on blood pressure and metabolic parameters in Japanese early-stage type-2 diabetics with hypertension. Hypertens Res 2008; 31 (1): 7–13.
49. Koike H, Sada T, Mizuno M. In vitro and in vivo pharmacology of Olmesartan medoxomil, an angiotensin II type AT1 receptor antagonist. J Hypertens 2001; 19 (S1): S3–S14.
50. Yoshida J, Yamamoto K, Mano T et al. AT1 Receptor Blocker Added to ACE Inhibitor Provides Benefits at Advanced Stage of Hypertensive Diastolic Heart Failure. Hypertension 2004; 43: 686–91.
51. Jia N, Okamoto H, Shimizu T et al. A Newly Developed Angiotensin II Type 1 Receptor Antagonist, CS866, Promotes Regression of Cardiac Hypertrophy by Reducing Integrin b1 Expression. Hypertens Res 2003; 26: 737–42.
52. Sanada S, Kitakaze M, Node K et al. Differential Subcellular Actions of ACE Inhibitors and AT1 Receptor Antagonists on Cardiac Remodeling Induced by Chronic Inhibition of NO Synthesis in Rats. Hypertension 2001; 38: 404–11.
53. Takemoto M, Egashira K, Tomita H et al. Chronic Angiotensin-Converting Enzyme Inhibition and Angiotensin II Type 1 Receptor Blockade: Effects on Cardiovascular Remodeling in Rats Induced by the Long-term Blockade of Nitric Oxide Synthesis. Hypertension 1997; 30: 1621–7.
54. Taniyama Y, Morishita R, Nakagami H et al. Potential Contribution of a Novel Antifibrotic Factor, Hepatocyte Growth Factor, to Prevention of Myocardial Fibrosis by Angiotensin II Blockade in Cardiomyopathic Hamsters. Circulation 2000; 102: 246–52.
55. Ishiyama Y, Gallagher PE, Averill DB. Upregulation of Angiotensin-Converting Enzyme 2 аfter Myocardial Infarction by Blockade of Angiotensin II Receptors. Hypertension 2004; 43: 970–6.
56. Nimata M, Kishimoto C, Yuan Z et al. Beneficial effects of Olmesartan, a novel angiotensin II receptor type 1 antagonist, upon acute autoimmune myocarditis. Mol Cell Biochem 2004; 259 (1–2): 217–22.
57. Furuhashi M, Ura N, Takizawa H et al. Blockade of the renin–angiotensin system decreases adipocyte size with improvement in insulin sensitivity. J of Hypertension 2004; 22: 1977–82.
58. Higashiura K, Ura N, Takada T et al. The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats. Am J Hypertens 2000; 13 (3): 290–7.
59. De Vinuesa SG, Goicoechea M, Kanter J et al. Insulin resistance, inflammatory biomarkers, and adipokines in patients with chronic kidney disease: effects of angiotensin II blockade. J Am Soc Nephrol 2006; 17: S206–12.
60. Okada K, Hirano T, Ran J, Adachi M. Olmesartan medoxomil, an angiotensin II Receptor blocker ameliorates insulin resistance and decreases triglyceride production in fructosefed rats. Hypertens Res 2004; 27 (4): 293–9.
61. Ran J, Hirano T, Adachi M. Angiotensin II type 1 receptor blocker ameliorates Overproduction and accumulation of triglyceride in the liver of Zucker fatty rats. Am J Physiol Endocrinol Metab 2004; 287 (2): E227–32.
62. Simons WR. Comparative cost effectiveness of angiotensin II receptor blockers in a US managed care setting: Olmesartan medoxomil compared with losartan, valsartan and irbesartan. Pharmacoeconomics 2003; 21 (1): 61–74.
Авторы
М.Г.Бубнова
ФГБУ Государственный научно-исследовательский центр профилактической медицины Минздрава России. 101000, Россия, Москва, Петроверигский пер., д. 10, стр. 3 mbubnova@gnicpm.ru
________________________________________________
M.G.Bubnova
State Research Center for Preventive Medicine of the Ministry of Health of the Russian Federation. 101000, Russian Federation, Moscow, Petroverigskii per., d. 10, str. 3 mbubnova@gnicpm.ru