Анализ факторов, влияющих на значения параметров интраоперационной флоуметрии коронарных шунтов: ретроспективное одноцентровое одномоментное исследование
Анализ факторов, влияющих на значения параметров интраоперационной флоуметрии коронарных шунтов: ретроспективное одноцентровое одномоментное исследование
Базылев В.В., Тунгусов Д.С., Сенжапов И.Я., Гаранян Д.Н., Микуляк А.И. Анализ факторов, влияющих на значения параметров интраоперационной флоуметрии коронарных шунтов: ретроспективное одноцентровое одномоментное исследование. CardioСоматика. 2022. Т. 13, № 3. С. 156–161. DOI: https://doi.org/10.17816/CS133651
________________________________________________
Bazylev VV, Tungusov DS, Senzhapov IYa, Garanyan DN, Mikulyak AI. Analysis of factors influencing the values of parameters of intraoperative flowmetry of coronary bypass grafts: retrospective single-center cross-sectional study. CardioSomatics. 2022;13(3):156–161. DOI: https://doi.org/10.17816/CS133651
Анализ факторов, влияющих на значения параметров интраоперационной флоуметрии коронарных шунтов: ретроспективное одноцентровое одномоментное исследование
Базылев В.В., Тунгусов Д.С., Сенжапов И.Я., Гаранян Д.Н., Микуляк А.И. Анализ факторов, влияющих на значения параметров интраоперационной флоуметрии коронарных шунтов: ретроспективное одноцентровое одномоментное исследование. CardioСоматика. 2022. Т. 13, № 3. С. 156–161. DOI: https://doi.org/10.17816/CS133651
________________________________________________
Bazylev VV, Tungusov DS, Senzhapov IYa, Garanyan DN, Mikulyak AI. Analysis of factors influencing the values of parameters of intraoperative flowmetry of coronary bypass grafts: retrospective single-center cross-sectional study. CardioSomatics. 2022;13(3):156–161. DOI: https://doi.org/10.17816/CS133651
Цель. Определить факторы, которые могут повлиять на значение параметров интраоперационной флоуметрии коронарных шунтов. Материал и методы. В ФГБУ ФЦССХ (Пенза) интраоперационный метод ультразвуковой флоуметрии является рутинной процедурой, сопровождающей коронарное шунтирование. В ретроспективное одномоментное исследование были последовательно включены 995 пациентов, которым выполнили изолированное коронарное шунтирование бассейна левой коронарной артерии (КА). Критериями исключения являлись поражение русла правой коронарной артерии, экстренный характер операции, сочетанная патология клапанного аппарата. Из исследования исключены пациенты, которым выполнялась ревизия анастомоза в связи с изменением параметров флоуметрии. Интраоперационную оценку коронарных шунтов осуществляли с помощью флоуметров «VeryQ» и «MiraQ MediStim» (Норвегия). Результаты. Проведена оценка 1733 артериальных и 479 венозных шунтов. На значение средней объёмной скорости кровотока влияют следующие факторы: композитное шунтирование пограничного стеноза увеличивает шанс снижения объёмной скорости кровотока ниже пороговой величины в 1,841 раза (отношение шансов, OR=1,841; p=0,018); сочетание окклюзии и пограничного стеноза при композитном шунтировании увеличивает шанс снижения объёмной скорости кровотока в 3,91 раза (OR=3,91; p=0,041); увеличение диаметра шунтируемой артерии на 1,0 мм уменьшает шанс снижения объёмной скорости кровотока на 53,7% (OR=0,423; p=0,05). Заключение. На индекс периферического сопротивления (Pi) оказывают влияние следующие факторы: диаметр КА (OR=0,21; p=0,001); степень проксимального стеноза КА (OR=0,987; p=0,034); состояние сосудистой стенки (OR=2,25; p=0,05); тип используемого кондуита (OR=0,298; p=0,002); способ шунтирования (OR=1,699; p=0,017). На значение средней объёмной скорости кровотока влияют следующие факторы: способ шунтирования (OR=1,841; p=0,018); сочетание окклюзии и пограничного стеноза при композитном шунтировании (OR=3,91; p=0,041); диаметр шунтируемой артерии (OR=0,423; p=0,05).
Ключевые слова: коронарное шунтирование, флоуметрия, объёмная скорость кровотока
________________________________________________
Оbjective. This study determines the factors that can affect the value of the parameters of intraoperative flowmetry of coronary bypass grafts. Material and methods. TTFM is a routine procedure accompanying coronary artery bypass grafting at the Federal State Budgetary Institution FTSSSh (Penza). This retrospective study included 995 consecutive patients who underwent isolated coronary artery bypass grafting of the left coronary artery. The exclusion criteria were damage to the right coronary artery bed, the emergency nature of the operation, and the combined pathology of the valvular apparatus. Patients who underwent anastomosis revision due to flowmetry parameters changes were also excluded from the study. Intraoperative assessment of coronary artery bypass grafts was performed using VeryQ and MiraQ MediStim® flowmeters (Norway). Results. A total of 1733 arterial and 479 venous grafts were evaluated. The following factors influenced the average volumetric blood flow velocity value: composite shunting of the border stenosis increases the chance of reducing the volumetric blood flow below the threshold value by 1.841 times (OR=1.841; p=0.018), the combination of occlusion and borderline stenosis with composite shunting increases the chance of reducing the volumetric blood flow velocity by 3.91 times (OR=3.91; p=0.041), an increase in the diameter of the bypassed artery by 1.0 mm reduces the chance of a decrease in blood flow volume velocity by 53.7% (OR=0.423; p=0.05). Conclusion. The following factors influence the peripheral resistance index: coronary artery diameter (OR=0.21; p=0.001), degree of artery proximal stenosis (OR=0.987; p=0.034), the vascular wall condition (OR=2.25; p=0.05), type of conduit used (OR=0.298; p=0.002), and shunting method (OR=1.699; p=0.017). The following factors influence the mean volumetric blood flow velocity value: bypass method (OR=1.841; p=0.018), a combination of occlusion and borderline stenosis in composite bypass grafting (OR=3.91; p=0.041), and the bypassed artery diameter (OR=0.423; p=0.423; p=0.05).
1. Desai N.D., Miwa S., Kodama D., et al. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts // J Thorac Cardiovasc Surg. 2006. Vol. 132, N 3. Р. 585–594. doi: 10.1016/j.jtcvs.2005.09.061
2. Singh S.K., Desai N.D., Chikazawa G., et al. The Graft Imaging to Improve Patency (GRIIP) clinical trial results // J Thorac Cardiovasc Surg. 2010. Vol. 139, N 2. Р. 294–301.
doi: 10.1016/j.jtcvs.2009.09.048
3. Di Giammarco G., Canosa C., Foschi M., et al. Intraoperative graft verification in coronary surgery: increased diagnostic accuracy adding highresolution epicardial ultrasonography to transit-time flow measurement // Eur J Cardiothorac Surg. 2014. Vol. 45, N 3. Р. e41–45. doi: 10.1093/ejcts/ezt580
4. Handa T., Orihashi K., Nishimori H., et al. Maximal blood flow acceleration analysis in the early diastolic phase for in situ internal thoracic artery bypass grafts: a new transit-time flow measurement predictor of graft failure following coronary artery bypass grafting // Interact Cardiovasc Thorac Surg. 2015. Vol. 20, N 4. Р. 449–457. doi: 10.1093/icvts/ivu448
5. Hiraoka A., Fukushima S., Miyagawa S., et al. Quantity and quality of graft flow in coronary artery bypass grafting is associated with cardiac computed tomography study-based anatomical and functional parameters // Eur J Cardiothorac Surg. 2017. Vol. 52, N 5. Р. 909–916. doi: 10.1093/ejcts/ezx210
6. De Leon M., Stanham R., Soca G., Dayan V. Do flow and pulsatility index within the accepted ranges predict long-term outcomes after coronary artery bypass grafting? // Thorac Cardiovasc Surg. 2020. Vol. 68, N 2. P. 162–168. doi: 10.1055/s-0037-1600116
7. Thuijsa D.J.F.M., Bekkera M.W.A., Taggart D.P., et al. Improving coronary artery bypass grafting: a systematic review and meta-analysis on the impact of adopting transit-time flow measurement // Eur J Cardiothorac Surg. 2019. Vol. 56, N 4. Р. 654–663. doi: 10.1093/ejcts/ezz075
8. Oshima H., Tokuda Y., Araki Y., et al. Predictors of early graft failure after coronary artery bypass grafting for chronic total occlusion // Interact Cardiovasc Thorac Surg. 2016. Vol. 23, N 1. Р. 142–149. doi: 10.1093/icvts/ivw084
9. Harahsheh B. Transit time flowmetry in coronary artery bypass grafting- experience at Queen Alia Heart Institute, Jordan // Oman Med J. 2012. Vol. 27, N 6. Р. 475–477.
doi: 10.5001/omj.2012.113
10. Onorati F., Santarpino G., Lerose M.A., et al. Intraoperative behavior of arterial grafts in the elderly and the young: a flowmetric systematic analysis // Heart Vessels. 2008. Vol. 23, N 5. Р. 316–324. doi: 10.1007/s00380-008-1055-8
11. Santarpino G., Onorati F., Scalas C., et al. Radial artery achieves better flowmetric results than saphenous vein in the elderly // Heart Vessels. 2009. Vol. 24, N 2. Р. 108–115.
doi: 10.1007/s00380-008-1095-0
12. Cerqueira Neto F.M., Guedes M.A., Soares L.E., et al. Flowmetry of left internal thoracic artery graft to left anterior descending artery: comparison between on-pump and off- pump surgery // Rev Bras Cir Cardiovasc. 2012. Vol. 27, N 2. Р. 283–289. doi: 10.5935/1678-9741.20120045
13. Gao G., Zheng Z., Pi Y., et al. Aspirin plus clopidogrel therapy increases early venous graft patency after coronary artery bypass surgery a single-center, randomized, controlled trial // J Am Coll Cardiol. 2010. Vol. 56, N 20. Р. 1639–1643. doi: 10.1016/j.jacc.2010.03.104
14. Genoni M., Odavic D., Loblein H., Dzemali O. Use of the eSVS Mesh: external vein support does not negatively impact early graft patency // Innovations (Phila). 2013. Vol. 8, N 3. Р. 211–214. doi: 10.1097/IMI.0b013e3182a326ed
15. Hatada A., Yoshimasu T., Kaneko M., et al. Relation of waveform of transit-time flow measurement and graft patency in coronary artery bypass grafting // J Thorac Cardiovasc Surg. 2007. Vol. 134, N 3. Р. 789–791. doi: 10.1016/j.jtcvs.2007.04.054
16. Jelenc M., Jelenc B., Klokocovnik T., et al. Understanding coronary artery bypass transit time flow curves: role of bypass graft compliance // Interact Cardiovasc Thorac Surg. 2014. Vol. 18, N 2. Р. 164–168. doi: 10.1093/icvts/ivt457
17. Kim H.J., Lee T.Y., Kim J.B., et al. The impact of sequential versus single anastomoses on flow characteristics and mid- term patency of saphenous vein grafts in coronary bypass grafting // J Thorac Cardiovasc Surg. 2011. Vol. 141, N 3. Р. 750–754. doi: 10.1016/j.jtcvs.2010.05.037
18. Di Giammarco G., Marinelli D. Intraoperative graft assessment and imaging of native coronary arteries // Indian J Thorac Cardiovasc Surg. 2018. Vol. 34, Suppl. 3. Р. 297–301.
doi: 10.1007/s12055-018-0697-0
19. Ohmes L.B., Di Franco A., Di Giammarco G., et al. Techniques for intraoperative graft assessment in coronary artery bypass surgery // J Thorac Dis. 2017. Vol. 9, Suppl. 4. Р. S327–S332. doi: 10.21037/jtd.2017.03.77
________________________________________________
1. Desai ND, Miwa S, Kodama D, et al. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts. J Thorac Cardiovasc Surg. 2006;132(3):585–594. doi: 10.1016/j.jtcvs.2005.09.061
2. Singh SK, Desai ND, Chikazawa G, et al. The Graft Imaging to Improve Patency (GRIIP) clinical trial results. J Thorac Cardiovasc Surg. 2010;139(2):294–301.
doi: 10.1016/j.jtcvs.2009.09.048
3. Di Giammarco G, Canosa C, Foschi M, et al. Intraoperative graft verification in coronary surgery: increased diagnostic accuracy adding highresolution epicardial ultrasonography to transit-time flow measurement. Eur J Cardiothorac Surg. 2014;45(3):e41–45. doi: 10.1093/ejcts/ezt580
4. Handa T, Orihashi K, Nishimori H, et al. Maximal blood flow acceleration analysis in the early diastolic phase for in situ internal thoracic artery bypass grafts: a new transit-time flow measurement predictor of graft failure following coronary artery bypass grafting. Interact Cardiovasc Thorac Surg. 2015;20(4):449–457. doi: 10.1093/icvts/ivu448
5. Hiraoka A, Fukushima S, Miyagawa S, et al. Quantity and quality of graft flow in coronary artery bypass grafting is associated with cardiac computed tomography study-based anatomical and functional parameters. Eur J Cardiothorac Surg. 2017;52(5):909–916. doi: 10.1093/ejcts/ezx210
6. De Leon M, Stanham R, Soca G, Dayan V. Do flow and pulsatility index within the accepted ranges predict long-term outcomes after coronary artery bypass grafting? Thorac Cardiovasc Surg. 2020;68(2):162–168. doi: 10.1055/s-0037-1600116
7. Thuijsa DJFM, Bekkera MWA, Taggart DP, et al. Improving coronary artery bypass grafting: a systematic review and meta-analysis on the impact of adopting transit-time flow measurement. Eur J Cardiothorac Surg. 2019;56(4):654–663. doi: 10.1093/ejcts/ezz075
8. Oshima H, Tokuda Y, Araki Y, et al. Predictors of early graft failure after coronary artery bypass grafting for chronic total occlusion. Interact Cardiovasc Thorac Surg. 2016;23(1):142–149. doi: 10.1093/icvts/ivw084
9. Harahsheh B. Transit time flowmetry in coronary artery bypass grafting- experience at Queen Alia Heart Institute, Jordan. Oman Med J. 2012;27(6):475–477.
doi: 10.5001/omj.2012.113
10. Onorati F, Santarpino G, Lerose MA, et al. Intraoperative behavior of arterial grafts in the elderly and the young: a flowmetric systematic analysis. Heart Vessels. 2008;23(5):316–324. doi: 10.1007/s00380-008-1055-8
11. Santarpino G, Onorati F, Scalas C, et al. Radial artery achieves better flowmetric results than saphenous vein in the elderly. Heart Vessels. 2009;24(2):108–115.
doi: 10.1007/s00380-008-1095-0
12. Cerqueira Neto FM, Guedes MA, Soares LE, et al. Flowmetry of left internal thoracic artery graft to left anterior descending artery: comparison between on-pump and off- pump surgery. Rev Bras Cir Cardiovasc. 2012;27(2):283–289. doi: 10.5935/1678-9741.20120045
13. Gao G, Zheng Z, Pi Y, et al. Aspirin plus clopidogrel therapy increases early venous graft patency after coronary artery bypass surgery a single-center, randomized, controlled trial. J Am Coll Cardiol. 2010;56(20):1639–1643. doi: 10.1016/j.jacc.2010.03.104
14. Genoni M, Odavic D, Loblein H, Dzemali O. Use of the eSVS Mesh: external vein support does not negatively impact early graft patency. Innovations (Phila). 2013;8(3):211–214.
doi: 10.1097/IMI.0b013e3182a326ed
15. Hatada A, Yoshimasu T, Kaneko M, et al. Relation of waveform of transit-time flow measurement and graft patency in coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2007;134(3):789–791. doi: 10.1016/j.jtcvs.2007.04.054
16. Jelenc M, Jelenc B, Klokocovnik T, et al. Understanding coronary artery bypass transit time flow curves: role of bypass graft compliance. Interact Cardiovasc Thorac Surg. 2014;18(2):164–168. doi: 10.1093/icvts/ivt457
17. Kim HJ, Lee TY, Kim JB, et al. The impact of sequential versus single anastomoses on flow characteristics and mid- term patency of saphenous vein grafts in coronary bypass grafting. J Thorac Cardiovasc Surg. 2011;141(3):750–754. doi: 10.1016/j.jtcvs.2010.05.037
18. Di Giammarco G, Marinelli D. Intraoperative graft assessment and imaging of native coronary arteries. Indian J Thorac Cardiovasc Surg. 2018;34(Suppl 3):297–301.
doi: 10.1007/s12055-018-0697-0
19. Ohmes LB, Di Franco A, Di Giammarco G, et al. Techniques for intraoperative graft assessment in coronary artery bypass surgery. J Thorac Dis. 2017;9(Suppl 4):S327–S332.
doi: 10.21037/jtd.2017.03.77
Авторы
В.В. Базылев, Д.С. Тунгусов, И.Я. Сенжапов*, Д.Н. Гаранян, А.И. Микуляк
ФГБУ «Федеральный центр сердечно-сосудистой хирургии» Минздрава России, Пенза, Россия
*senzhapov1991@yandex.ru
________________________________________________
Vladlen V. Bazylev, Dmitry S. Tungusov, Ilgiz Ya. Senzhapov*, David N. Garanyan, Artur I. Mikulyak