В обзоре представлены современные данные об исследованиях, изучающих влияние генетических полиморфизмов на эффективность и безопасность терапии новыми пероральными антикоагулянтами. Установлено, что печёночная карбоксилэстераза, кодируемая геном CES1, и P-гликопротеин, кодируемый геном ABCB1, оказывают существенное влияние на фармакокинетику дабигатрана. Роль генов, кодирующих ферменты глюкуронизации (UGT2B15, UGT1A9, UGT2B7), участвующих в метаболизме активного дабигатрана, изучена недостаточно. У пациентов с полиморфизмом rs4148738 гена ABCB1 отмечено повышение пиковой концентрации апиксабана. Полиморфизмы rs776746 и rs77674 гена CYP3A5 оказывают большое влияние на концентрацию апиксабана у пациентов азиатской популяции, увеличивая риск развития кровотечений. Влияние распространённых генетических вариантов гена сульфотрансферазы SULT1A1 на метаболизм апиксабана ещё не исследовано. Исследование белка BCRP, кодируемого геном ABCG2, на фармакокинетику апиксабана – малоизученное и многообещающее направление. ABCB1 и CYP3A4 системы цитохрома Р450 оказывают влияние на метаболизм ривароксабана, однако число исследований, посвящённых изучению влияния полиморфизмов этих генов на фармакокинетику ривароксабана, ограничено. Таким образом, целесообразно проведение масштабных популяционных исследований для уточнения клинической значимости генотипирования целевых пациентов, принимающих новые пероральные антикоагулянты.
The review presents modern studies the effect of genetic polymorphisms on the efficienty and safety of therapy with new oral anticoagulants. Hepatic carboxylesterase encoded by the CES1 gene and P-glycoprotein encoded by the ABCB1 gene affect dabigatran pharmacokinetics. The role of glucuronidation enzymes (UGT2B15, UGT1A9, UGT2B7) involved in active dabigatran metabolism is poorly understood. An increase in the peak apixaban concentration was noted in patients with the rs4148738 polymorphism of the ABCB1 gene. Polymorphisms rs776746 and rs77674 of the CYP3A5 gene affect concentration of apixaban in Asian patients and thus increased the bleeding risk. The effect SULT1A1 sulfotransferase on the metabolism of apixaban has yet to be studied. The BCRP protein encoded by the ABCG2 gene is a poorly studied but promising direction for the pharmacokinetics of apixaban. ABCB1 and CYP3A4 of the cytochrome P450 system affect the rivaroxaban metabolism, however, the number of studies devoted to examining the effect of polymorphisms of these genes on the rivaroxaban pharmacokinetics limited. Thus, large studies are needed to clarify the clinical relevance of genotyping in target patients taking new oral anticoagulants.
1. Савинова А.В., Добродеева В.С., Петрова М.М., и др. Фармакокинетика и фармакогенетика дабигатрана // Рациональная Фармакотерапия в Кардиологии. 2021. Т. 17, № 1. С. 146–152. doi: 10.20996/1819-6446-2021-01-04
2. Савинова А.В., Петрова М.М., Шнайдер Н.А., и др. Фармакокинетика и фармакогенетика апиксабана // Рациональная Фармакотерапия в Кардиологии. 2020. Т. 16, № 5. С. 852–860. doi: 10.20996/1819-6446-2020-10-1
3. Schulman S., Kearon C., Kakkar A.K., et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism // N Engl J Med. 2009. Vol. 361, N 24. P. 2342–2352.
doi: 10.1056/NEJMoa0906598
4. Ross S., Pare G. Pharmacogenetics of antiplatelets and anticoagulants: a report on clopidogrel, warfarin and dabigatran // Pharmacogenomics. 2013. Vol. 14, N 13. P. 1565–1572.
doi: 10.2217/pgs.13.149
5. Мирзаев К.Б., Иващенко Д.В., Володин И.В., и др. Новые фармакогенетические маркеры риска кровотечений на фоне применения прямых оральных антикоагулянтов // Рациональная Фармакотерапия в Кардиологии. 2020. Т. 16, № 5. С. 670–677. doi: 10.20996/1819-6446-2020-10-05
6. Alfirevic A., Downing J., Daras K., et al. Has the introduction of direct oral anticoagulants (DOACs) in England increased emergency admissions for bleeding conditions? A longitudinal ecological study // BMJ Open. 2020. Vol. 10, N 5. P. e033357. doi: 10.1136/bmjopen-2019-033357
7. Абдуллаев Ш.П., Мирзаев К.Б., Маммаев С.Н., и др. Распространенность полиморфного маркера rs2244613 гена карбоксилэстеразы 1 типа (CES1), ассоциированного с низким риском кровотечений при применении дабигатрана, у русских и в трех этнических группах Республики Дагестан // Клиническая фармакология и терапия. 2018. № 4. С. 87–90.
8. Крюков А.В., Сычев Д.А., Терещенко О.В. Фармакогенетические аспекты применения новых оральных антикоагулянтов // Рациональная фармакотерапия в кардиологии. 2017. Т. 13, № 3. С. 416–421. doi: 10.20996/1819-6446-2017-13-3-416-421
9. Ebner T., Wagner K., Wienen W. Dabigatran acylglucuronide, the major human metabolite of dabigatran: in vitro formation, stability, and pharmacological activity // Drug Metab Dispos. 2010. Vol. 38, N 9. P. 1567–1575. doi: 10.1124/dmd.110.033696
10. Carlini E.J., Raftogianis R.B., Wood T.C., et al. Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects // Pharmacogenetics. 2001. Vol. 11, N 1. P. 57–68. doi: 10.1097/00008571-200102000-00007
11. Ragia G., Manolopoulos V.G. Pharmacogenomics of anticoagulation therapy: the last 10 years // Pharmacogenomics. 2019. Vol. 20, N 16. P. 1113–1117. doi: 10.2217/pgs-2019-0149
12. Paré G., Eriksson N., Lehr T., et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding // Circulation. 2013. Vol. 127, N 13. P. 1404–1412.
doi: 10.1161/CIRCULATIONAHA
13. Dimatteo C., D'Andrea G., Vecchione G., et al. Pharmacogenetics of dabigatran etexilate interindividual variability // Thromb Res. 2016. N 144. P. 1–5.
doi: 10.1016/j.thromres.2016.05.025
14. Ji Q., Zhang C., Xu Q., et al. The impact of ABCB1 and CES1 polymorphisms on dabigatran pharmacokinetics and pharmacodynamics in patients with atrial fibrillation // Br J Clin Pharmacol. 2020. Vol. 87, N 5. P. 2247–2255. doi: 10.1111/bcp.14646
15. Gouin-Thibault I., Delavenne X., Blanchard A., et al. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin // J Thromb Haemost. 2017. Vol. 15, N 2. P. 273–283. doi: 10.1111/bcp.14646
16. Сычев Д.А., Леванов А.Н., Шелехова Т.В., и др. Влияние полиморфизма генов АBCB1 и CES1 на уровни равновесных концентраций дабигатрана у пациентов после эндопротезирования коленного сустава // Атеротромбоз. 2018. № 1. С. 122–130. doi: 10.21518/2307-1109-2018-1-122-130
17. Xie Q., Xiang Q., Mu G., et al. Effect of ABCB1 Genotypes on the Pharmacokinetics and Clinical Outcomes of New Oral Anticoagulants: A Systematic Review and Meta-analysis // Curr Pharm Des. 2018. Vol. 24, N 30. P. 3558–3565. doi: 10.2174/1381612824666181018153641
18. Raymond J., Imbert L., Cousin T., et al. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review // J Pers Med. 2021. Vol. 11, N 1. P. 37. doi: 10.3390/jpm11010037
19. He X., Hesse L.M., Hazarika S., et al. Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion // Br J Clin Pharmacol. 2009. Vol. 68, N 5. P. 721–730. doi: 10.1111/j.1365-2125.2009.03519.x
20. Dimatteo C., D’Andrea G., Vecchione G., et al. ABCB1 SNP rs4148738 modulation of apixaban interindividual variability // Thromb Res. 2016. N 145. P. 24–26.
doi: 10.1016/j.thromres.2016.07.005
21. Крюков А.В., Сычев Д.А., Андреев Д.А., и др. Особенности фармакокинетики апиксабана у больных в острый период кардиоэмболического инсульта // Рациональная Фармакотерапия в Кардиологии. 2016. Т. 12, № 3. С. 253–259. doi: 10.20996/1819-6446-2016-12-3-253-259
22. Ueshima S., Hira D., Fujii R., et al. Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation // Pharm Genom. 2017. Vol. 27, N 9. P. 329–336. doi: 10.1097/FPC.0000000000000294
23. Nagar S., Walther S., Blanchard R.L. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation // Mol Pharmacol. 2006. Vol. 69, N 6. P. 2084–2092. doi: 10.1124/mol.105.019240
24. Wang L., Raghavan N., He K., et al. Sulfation of o-demethyl apixaban: enzyme identification and species comparison // Drug Metab Dispos. 2009. Vol. 37, N 4. P. 802–808.
doi: 10.1124/dmd.108.025593
25. Cusatis G., Sparreboom A. Pharmacogenomic importance of ABCG2 // Pharmacogenomics. 2008. Vol. 9, N 8. P. 1005–1009. doi: 10.2217/14622416.9.8.1005
26. Gulilat M., Keller D., Linton B., et al. Drug interactions and pharmacogenetic factors contribute to variation in apixaban concentration in atrial fibrillation patients in routine care // J Thromb Thrombolysis. 2020. Vol. 49, N 2. P. 294–303. doi: 10.1007/s11239-019-01962-2
27. Ing Lorenzini K., Daali Y., Fontana P., et al. Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect // Front Pharmacol. 2016. N 7. P. 494.
doi: 10.3389/fphar.2016.00494
28. Sennesael A.L., Larock A.S., Douxfils J., et al. Rivaroxaban plasma levels in patients admitted for bleeding events: Insights from a prospective study // Thromb J. 2018. N 16. P. 28.
doi: 10.1186/s12959-018-0183-3
29. Sychev D., Minnigulov R., Bochkov P., et al. Effect of CYP3A4, CYP3A5, ABCB1 gene polymorphisms on rivaroxaban pharmacokinetics in patients undergoing total hip and knee replacement surgery // High Blood Press Cardiovasc Prev. 2019. Vol. 26, N 5. P. 413–420.
doi: 10.1007/s40292-019-00342-4
30. Sweezy T., Mousa S.A. Genotype-guided use of oral antithrombotic therapy: A pharmacoeconomic perspective // Per Med. 2014. Vol. 11, N 2. P. 223–235. doi: 10.2217/pme.13.106
________________________________________________
1. Savinova AV, Dobrodeeva VS, Petrova MM, et al. Pharmacokinetics and Pharmacogenetics of Dabigatran. Rational Pharmacotherapy in Cardiology. 2021;17(1):146–152. (In Russ).
doi: 10.20996/1819-6446-2021-01-04
2. Savinova AV, Petrova MM, Shnayder NA, et al. Pharmacokinetics and Pharmacogenetics of Apixaban. Rational Pharmacotherapy in Cardiology. 2020;16(5):852–860. (In Russ).
doi: 10.20996/1819-6446-2020-10-1
3. Schulman S, Kearon C, Kakkar AK, et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med. 2009;361(24):2342–2352.
doi: 10.1056/NEJMoa0906598
4. Ross S, Pare G. Pharmacogenetics of antiplatelets and anticoagulants: a report on clopidogrel, warfarin and dabigatran. Pharmacogenomics. 2013;14(13):1565–1572.
doi: 10.2217/pgs.13.149
5. Mirzaev KB, Ivashchenko DV, Volodin IV, et al. New Pharmacogenetic Markers to Predict the Risk of Bleeding During Taking of Direct Oral Anticoagulants. Rational Pharmacotherapy in Cardiology. 2020;16(5):670–677. (In Russ). doi: 10.20996/1819-6446-2020-10-05
6. Alfirevic A, Downing J, Daras K, et al. Has the introduction of direct oral anticoagulants (DOACs) in England increased emergency admissions for bleeding conditions? A longitudinal ecological study. BMJ Open. 2020;10(5):e033357. doi: 10.1136/bmjopen-2019-033357
7. Abdullaev ShP, Mirzayev KB, Mammaev SN, et al. The prevalence of the polymorphic marker rs2244613 of the CES1 gene associated with a lower risk of bleeding in patients using dabigatran in russians and in the three ethnic groups of the republic of Dagestan. Clinical Pharmacology and Therapy. 2018;4:87–90. (In Russ).
8. Kryukov AV, Sychev DA, Tereshchenko OV. Pharmacogenetic Aspects of New Oral Anticoagulants Application. Rational Pharmacotherapy in Cardiology. 2017;13(3):416–421. (In Russ).
doi: 10.20996/1819-6446-2017-13-3-416-421
9. Ebner T, Wagner K, Wienen W. Dabigatran acylglucuronide, the major human metabolite of dabigatran: in vitro formation, stability, and pharmacological activity. Drug Metab Dispos. 2010;38(9):1567–1575. doi: 10.1124/dmd.110.033696
10. Carlini EJ, Raftogianis RB, Wood TC, et al. Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. Pharmacogenetics. 2001;11(1):57–68. doi: 10.1097/00008571-200102000-00007
11. Ragia G, Manolopoulos VG. Pharmacogenomics of anticoagulation therapy: the last 10 years. Pharmacogenomics. 2019;20(16):1113–1117. doi: 10.2217/pgs-2019-0149
12. Paré G, Eriksson N, Lehr T, et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation. 2013;127(13):1404–1412.
doi: 10.1161/CIRCULATIONAHA
13. Dimatteo C, D'Andrea G, Vecchione G, et al. Pharmacogenetics of dabigatran etexilate interindividual variability. Thromb Res. 2016;144:1–5. doi: 10.1016/j.thromres.2016.05.025
14. Ji Q, Zhang C, Xu Q, et al. The impact of ABCB1 and CES1 polymorphisms on dabigatran pharmacokinetics and pharmacodynamics in patients with atrial fibrillation. Br J Clin Pharmacol. 2020;87(5):2247–2255. doi: 10.1111/bcp.14646
15. Gouin-Thibault I, Delavenne X, Blanchard A, et al. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost. 2017;15(2):273–283. doi: 10.1111/bcp.14646
16. Sychev DA, Levanov AN, Shelehova TV, et al. Impact of ABCB1 and CES1 genetic polymorphisms on trough steady-state dabigatran concentrations in patients after endoprosthesis of knife join. Atherothrombosis. 2018;(1):122–130. (In Russ). doi: 10.21518/2307-1109-2018-1-122-130
17. Xie Q, Xiang Q, Mu G, et al. Effect of ABCB1 Genotypes on the Pharmacokinetics and Clinical Outcomes of New Oral Anticoagulants: A Systematic Review and Meta-analysis. Curr Pharm Des. 2018;24(30):3558–3565. doi: 10.2174/1381612824666181018153641
18. Raymond J, Imbert L, Cousin T, et al. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J Pers Med. 2021;11(1):37. doi: 10.3390/jpm11010037
19. He X, Hesse LM, Hazarika S, et al. Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion. Br J Clin Pharmacol. 2009;68(5):721–730. doi: 10.1111/j.1365-2125.2009.03519.x
20. Dimatteo C, D’Andrea G, Vecchione G, et al. ABCB1 SNP rs4148738 modulation of apixaban interindividual variability. Thromb Res. 2016;145:24–26.
doi: 10.1016/j.thromres.2016.07.005
21. Kryukov AV, Sychev DA, Andreev DA, et al. The pharmacokinetics of apixaban in patients with cardioembolic stroke in acute phase. Rational Pharmacotherapy in Cardiology. 2016;12(3):253–259 (In Russ). doi: 10.20996/1819-6446-2016-12-3-253-259
22. Ueshima S, Hira D, Fujii R, et al. Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation. Pharm Genom. 2017;27(9):329–336. doi: 10.1097/FPC.0000000000000294
23. Nagar S, Walther S, Blanchard RL. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol. 2006;69(6):2084–2092. doi: 10.1124/mol.105.019240
24. Wang L, Raghavan N, He K, et al. Sulfation of o-demethyl apixaban: enzyme identification and species comparison. Drug Metab Dispos. 2009;37(4):802–808.
doi: 10.1124/dmd.108.025593
25. Cusatis G, Sparreboom A. Pharmacogenomic importance of ABCG2. Pharmacogenomics. 2008;9(8):1005–1009. doi: 10.2217/14622416.9.8.1005
26. Gulilat M, Keller D, Linton B, et al. Drug interactions and pharmacogenetic factors contribute to variation in apixaban concentration in atrial fibrillation patients in routine care. J Thromb Thrombolysis. 2020;49(2):294–303. doi: 10.1007/s11239-019-01962-2
27. Ing Lorenzini K, Daali Y, Fontana P, et al. Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect. Front Pharmacol. 2016;7:494. doi: 10.3389/fphar.2016.00494
28. Sennesael AL, Larock AS, Douxfils J, et al. Rivaroxaban plasma levels in patients admitted for bleeding events: Insights from a prospective study. Thromb J. 2018;16:28.
doi: 10.1186/s12959-018-0183-3
29. Sychev D, Minnigulov R, Bochkov P, et al. Effect of CYP3A4, CYP3A5, ABCB1 gene polymorphisms on rivaroxaban pharmacokinetics in patients undergoing total hip and knee replacement surgery. High Blood Press Cardiovasc Prev. 2019;26(5):413–420. doi: 10.1007/s40292-019-00342-4
30. Sweezy T, Mousa SA. Genotype-guided use of oral antithrombotic therapy: A pharmacoeconomic perspective. Per Med. 2014;11(2):223–235. doi: 10.2217/pme.13.106
Авторы
Б.А. Азимова*1,2, К.Ю. Николаев2,3, А.С. Воробьёв1,2, И.А. Урванцева1,2
1 БУ ХМАО-Югры «Окружной кардиологический диспансер “Центр диагностики и сердечно-сосудистой хирургии”», Сургут, Россия;
2 БУ ВО ХМАО-Югры «Сургутский государственный университет», Сургут, Россия;
3 НИИ терапии и профилактической медицины – филиал ФГБНУ «Федеральный исследовательский центр – Институт цитологии и генетики СО РАН», Новосибирск, Россия
*bella_azimova_surgut@mail.ru
________________________________________________
Bella A. Azimova*1,2, Konstantin Yu. Nikolayev2,3, Anton S. Vorobyov1,2, Irina A. Urvantseva1,2
1 District Cardiological Dispensary Center for Diagnostics and Cardiovascular Surgery, Surgut, Russia;
2 Surgut State University, Surgut, Russia;
3 Research Institute of Therapy and Preventive Medicine – Branch of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
*bella_azimova_surgut@mail.ru