Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Интерлейкин-38 и сердечно-сосудистая патология: обзор литературы - Научно-практический журнал Cardioсоматика Том 14, №4 (2023)
Интерлейкин-38 и сердечно-сосудистая патология: обзор литературы
Алиева А.М., Байкова И.Е., Пинчук Т.В., Котикова И.А., Никитин И.Г. Интерлейкин-38 и сердечно-сосудистая патология: обзор литературы // CardioСоматика. 2023. Т 14, № 4. С. 283–293.
DOI: https://doi.org/10.17816/CS623020
DOI: https://doi.org/10.17816/CS623020
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Кардиоваскулярная патология — основная причина заболеваемости и смертности населения во всём мире. Важной задачей современной кардиологии является поиск и изучение новых биологических маркёров. Интерес учёных активно сосредоточен на изучении интерлейкина (IL) 38. IL-38 — противовоспалительный цитокин, член семейства IL-1. Целью нашей работы было проанализировать данные литературы, посвящённые изучению IL-38 в роли сердечно-сосудистого биологического маркёра. Проведён анализ источников литературы, включавший все релевантные публикации в базах данных и электронных библиотеках PubMed (MEDLINE), eLibrary (РИНЦ), Google Scholar, Science Direct. Глубина поиска составила 9 лет. Известно, что IL-38 обнаруживается в коже, сердце, плаценте, печени плода, селезёнке, тимусе и активированных В-клетках миндалин. Белок IL-38 идентифицируется в плазме и сыворотке крови и клеточных культурах человека методом иммуноферментного анализа. IL-38 регулирует иммунные и воспалительные реакции, связываясь со своими рецепторами и активируя нисходящие сигналы. Дефицит IL-38 связан с усилением системного воспаления при старении, сердечно-сосудистой патологии и метаболических заболеваниях. В настоящее время накоплено не так много клинических и экспериментальных данных в отношении влияния IL-38 на сердечно-сосудистую систему, но ожидается, что дальнейшие исследования продемонстрируют возможность его использования в качестве дополнительного лабораторного инструмента диагностики и оценки прогноза у пациентов кардиологического профиля. Регуляция концентрации и экспрессии IL-38, вероятно, окажется многообещающей стратегией для лечения сердечно-сосудистых заболеваний.
Ключевые слова: сердечно-сосудистые заболевания, биологические маркёры, интерлейкин-38
Keywords: cardiovascular diseases, biological markers, interleukin-38
Ключевые слова: сердечно-сосудистые заболевания, биологические маркёры, интерлейкин-38
________________________________________________
Keywords: cardiovascular diseases, biological markers, interleukin-38
Полный текст
Список литературы
1. Шляхто Е.В., Баранова Е.И. Основные направления снижения сердечно-сосудистой смертности: что можно изменить уже сегодня? // Российский кардиологический журнал. 2020. Т. 25, № 7. С. 3983. doi: 10.15829/1560-4071-2020-3983
2. Алиева А.М., Голухова Е.З., Пинчук Т.В. Вариабельность сердечного ритма при хронической сердечной недостаточности (литературный обзор) // Архивъ внутренней медицины. 2013. № 6. С. 47–52. doi: 10.20514/2226-6704-2013-0-6-47-52
3. Кожевникова М.В., Беленков Ю.Н. Биомаркеры сердечной недостаточности: настоящее и будущее // Кардиология. 2021. Т. 61, № 5. С. 4–16.
doi: 10.18087/cardio.2021.5.n1530
4. Жаткина М.В., Метельская В.А., Гаврилова Н.Е., и др. Биохимические маркеры коронарного атеросклероза: построение моделей и оценка их прогностической значимости для верификации выраженности поражения // Российский кардиологический журнал. 2021. Т. 26, № 6. С. 4559. doi: 10.15829/1560-4071-2021-4559
5. Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний // Клиническая медицина. 2020. Т. 98, № 3. С. 203–209. doi: 10.30629/0023-2149-2020-98-3-203-209
6. Алиева А.М., Пинчук Т.В., Воронкова К.В., и др. Неоптерин — биомаркер хронической сердечной недостаточности (обзор современной литературы) // Consilium Medicum. 2021. Т. 23, № 10. С. 756–759. doi: 10.26442/20751753.2021.10.201113
7. Haghshenas M.R., Zamir M.R., Sadeghi M., et al. Clinical relevance and therapeutic potential of IL-38 in immune and non-immune-related disorders // Eur Cytokine Netw. 2022. Vol. 33, N 3. P. 54–69. doi: 10.1684/ecn.2022.0480
8. de Graaf D.M., Teufel L.U., Joosten L.A.B., Dinarello C.A. Interleukin-38 in Health and Disease // Cytokine. 2022. N 152. P. 155824. doi: 10.1016/j.cyto.2022.155824
9. Chen W., Xi S., Ke Y., Lei Y. The emerging role of IL-38 in diseases: A comprehensive review // Immun Inflamm Dis. 2023. Vol. 11, N 8. P. e991. doi: 10.1002/iid3.991
10. Алиева А.М., Кисляков В.А., Воронкова К.В., и др. Интерлейкин 1 — биологический маркер при сердечной недостаточности // Архивъ внутренней медицины. 2022. Т. 12, № 6. С. 422–429. doi: 10.20514/2226-6704-2022-12-6-422-429
11. Lin H., Ho A.S., Haley-Vicente D., et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member // J Biol Chem. 2001. Vol. 276, N 23. P. 20597–20602.
doi: 10.1074/jbc.M010095200
12. Xia H.S., Liu Y., Fu Y., et al. Biology of interleukin-38 and its role in chronic inflammatory diseases // Int Immunopharmacol. 2021. N 95. P. 107528. doi: 10.1016/j.intimp.2021.107528
13. Li Z., Ding Y., Peng Y., et al. Effects of IL-38 on Macrophages and Myocardial Ischemic Injury // Front Immunol. 2022. N 13. P. 894002. doi: 10.3389/fimmu.2022.894002
14. Mora J., Schlemmer A., Wittig I., et al. Interleukin-38 is released fr om apoptotic cells to lim it inflammatory macrophage responses // J Mol Cell Biol. 2016. Vol. 8, N 5. P. 426–438. doi: 10.1093/jmcb/mjw006
15. Teufel L.U., de Graaf D.M., Netea M.G., et al. Circulating interleukin-38 concentrations in healthy adults // Front Immunol. 2022. N 13. P. 964365. doi: 10.3389/fimmu.2022.964365
16. de Graaf D.M., Teufel L.U., van de Veerdonk F.L., et al. IL‑38 prevents induction of trained immunity by inhibition of mTOR signaling // J Leukoc Biol. 2021. Vol. 110, N 5. P. 907–915. doi: 10.1002/JLB.3A0220-143RRR
17. van de Veerdonk F.L., Stoeckman A.K., Wu G., et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist // Proc Natl Acad Sci U S A. 2012. Vol. 109, N 8. P. 3001–3005. doi: 10.1073/pnas.1121534109
18. Юань С.Л., Ли Ю., Пань С.Х. и др. Продукция рекомбинантного интерлейкина-38 человека и его ингибиторное действие на экспрессию провоспалительных цитокинов в клетках ТНР-1 // Молекулярная биология. 2016. Т. 50, № 3. С. 466–473. doi: 10.7868/S0026898416030137
19. Han Y., Mora J., Huard A., et al. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδ T Cells // Cell Rep. 2019. Vol. 27, N 3. P. 835.e5–846.e5.
doi: 10.1016/j.celrep.2019.03.082
20. Zarrabi M., Nazarinia M., Rahimi Jaberi A., et al. Elevated IL-38 Serum Levels in Newly Diagnosed Multiple Sclerosis and Systemic Sclerosis Patients // Med Princ Pract. 2021. Vol. 30, N 2. P. 146–153. doi: 10.1159/000510915
21. Ge Y., Huang M., Wu Y., et al. Interleukin-38 protects against sepsis by augmenting immunosuppressive activity of CD4+ CD25+ regulatory T cells // J Cell Mol Med. 2020. Vol. 24, N 2. P. 2027–2039. doi: 10.1111/jcmm.14902
22. Wei Y., Lan Y., Zhong Y., et al. Interleukin-38 alleviates cardiac remodelling after myocardial infarction // J Cell Mol Med. 2020. Vol. 24, N 1. P. 371–384. doi: 10.1111/jcmm.14741
23. Sun X., Hou T., Cheung E., et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma // Cell Mol Immunol. 2020. Vol. 17, N 6. P. 631–646.
doi: 10.1038/s41423-019-0300-7
24. de Graaf D.M., Maas R.J.A., Smeekens S.P., et al. Human recombinant interleukin-38 suppresses inflammation in mouse models of local and systemic disease // Cytokine. 2021.
N 137. P. 155334. doi: 10.1016/j.cyto.2020.155334
25. Ge Y., Chen J., Hu Y., et al. IL-38 Alleviates Inflammation in Sepsis in Mice by Inhibiting Macrophage Apoptosis and Activation of the NLRP3 Inflammasome // Mediators Inflamm. 2021. N 2021. P. 6370911. doi: 10.1155/2021/6370911
26. de Graaf D.M., Jaeger M., van den Munckhof I.C.L., et al. Reduced concentrations of the B cell cytokine interleukin 38 are associated with cardiovascular disease risk in overweight subjects // Eur J Immunol. 2021. Vol. 51, N 3. P. 662–671. doi: 10.1002/eji.201948390
27. Mainieri F., La Bella S., Chiarelli F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents // Biomedicines. 2023. Vol. 11, N 3. P. 809.
doi: 10.3390/biomedicines11030809
28. Cao J., Hua L., Zhang S., et al. Serum interleukin-38 levels correlated with insulin resistance, liver injury and lipids in non-alcoholic fatty liver disease // Lipids Health Dis. 2022. Vol. 21, N 1. P. 70. doi: 10.1186/s12944-022-01676-0
29. Yang N., Song Y., Dong B., et al. Elevated interleukin-38 level associates with clinical response to atorvastatin in patients with hyperlipidemia // Cell Physiol Biochem. 2018. Vol. 49,
N 2. P. 653–661. doi: 10.1159/000493029
30. Юдаева А.Д., Стафеев Ю.С., Мичурина С.С., и др. Взаимодействие воспаления и инсулиновой резистентности: молекулярные механизмы в инсулинопродуцирующих и инсулинозависимых тканях // Сахарный диабет. 2023. Т. 26, № 1. С. 75–81. doi: 10.14341/DM12981
31. Jin X., Qiu T., Li L., et al. Pathophysiology of obesity and its associated diseases // Acta Pharm Sin B. 2023. Vol. 13, N 6. P. 2403–2424. doi: 10.1016/j.apsb.2023.01.012
32. Huang G., Li M., Tian X., et al. The Emerging Roles of IL-36, IL-37, and IL-38 in Diabetes Mellitus and its Complications // Endocr Metab Immune Disord Drug Targets. 2022. Vol. 22,
N 10. P. 997–1008. doi: 10.2174/1871530322666220113142533
33. Xu K., Sun J., Chen S., et al. Hydrodynamic delivery of IL-38 gene alleviates obesity-induced inflammation and insulin resistance // Biochem Biophys Res Commun. 2019. Vol. 508,
N 1. P. 198–202. doi: 10.1016/j.bbrc.2018.11.114
34. Li Y., Chen S., Sun J., et al. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes // Cell Biol Int. 2020. Vol. 44, N 11. P. 2357–2362.
doi: 10.1002/cbin.11428
35. Бочкарева Л.А., Недосугова Л.В., Петунина Н.А., и др. Некоторые механизмы развития воспаления при сахарном диабете 2 типа // Сахарный диабет. 2021. Т. 24, № 4.
С. 334–341. doi: 10.14341/DM12746
36. Gurau F., Silvestrini A., Matacchione G., et al. Plasma levels of interleukin-38 in healthy aging and in type 2 diabetes // Diabetes Res Clin Pract. 2021. N 171. P. 108585.
doi: 10.1016/j.diabres.2020.108585
37. Liu Y., Chen T., Zhou F., et al. Interleukin-38 increases the insulin sensitivity in children with the type 2 diabetes // Int Immunopharmacol. 2020. N 82. P. 106264.
doi: 10.1016/j.intimp.2020.106264
38. Kong P., Cui Z.Y., Huang X.F., et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention // Signal Transduct Target Ther. 2022. Vol. 7, N 1. P. 131.
doi: 10.1038/s41392-022-00955-7
39. Zhang X.H., Li Y., Zhou L., Tian G.P. Interleukin-38 in atherosclerosis // Clin Chim Acta. 2022. N 536. P. 86–93. doi: 10.1016/j.cca.2022.09.017
40. Esmaeilzadeh A., Pouyan S., Erfanmanesh M. Is Interleukin-38 a key player cytokine in atherosclerosis immune gene therapy? // Med Hypotheses. 2019. N 125. P. 139–143.
doi: 10.1016/j.mehy.2019.02.048
41. Li T., Yan Z., Fan Y., et al. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated // Front Cardiovasc Med. 2023. N 9. P. 1077290.
doi: 10.3389/fcvm.2022.1077290
42. Zhong Y., Yu K., Wang X., et al. Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment // Mediators Inflamm. 2015. N 2015. P. 490120. doi: 10.1155/2015/490120
43. Ягудин Т.А., Шабанова А.Т., Хонг-Ю Лиу. Новые аспекты в механизмах ишемического и реперфузионного повреждения миокарда // Креативная хирургия и онкология. 2018. Т. 8, № 3. С. 216–224. doi: 10.24060/2076-3093-2018-8-3-216-224
44. Wei Y, Xing J, Su X, et al. IL-38 attenuates myocardial ischemia-reperfusion injury by inhibiting macrophage inflammation // Immun Inflamm Dis. 2023. Vol. 11, N 6. P. e898.
doi: 10.1002/iid3.898
45. Yu Chen H., Dina C., Small A.M., et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study // Eur Heart J. 2023. Vol. 44, N 21.
P. 1927–1939. doi: 10.1093/eurheartj/ehad142
46. The E., de Graaf D.M., Zhai Y., et al. Interleukin 38 alleviates aortic valve calcification by inhibition of NLRP3 // Proc Natl Acad Sci U S A. 2022. Vol. 119, N 36. P. e2202577119.
doi: 10.1073/pnas.2202577119
47. Ma J., Wu N., Yuan Z., et al. Prognostic value of interleukin-34 and interleukin-38 in patients with newly diagnosed atrial fibrillation // Front Cardiovasc Med. 2023. N 9. P. 1072164. doi: 10.3389/fcvm.2022.1072164
48. Wu Z., Luo C., Zheng B. Progress of Research into the Interleukin-1 Family in Cardiovascular Disease // J Inflamm Res. 2022. N 15. P. 6683–6694. doi: 10.2147/JIR.S390915
49. Kurose S., Matsubara Y., Yoshino S., et al. Interleukin-38 suppresses abdominal aortic aneurysm formation in mice by regulating macrophages in an IL1RL2-p38 pathway-dependent manner // Physiol Rep. 2023. Vol. 11, N 2. P. e15581. doi: 10.14814/phy2.15581
50. Xu F., Lin S., Yan X., et al. Interleukin 38 Protects Against Lethal Sepsis // J Infect Dis. 2018. Vol. 218, N 7. P. 1175–1184. doi: 10.1093/infdis/jiy289
doi: 10.15829/1560-4071-2020-3983
2. Alieva AM, Golukhova EZ, Pinchuk TV. Heart rate variability in chronic heart failure (literature review). The Russian Archives of Internal Medicine. 2013;(6):47–52. (In Russ).
doi: 10.20514/2226-6704-2013-0-6-47-52
3. Kozhevnikova MV, Belenkov YuN. Biomarkers in Heart Failure: Current and Future. Kardiologiia. 2021;61(5):4–16. (In Russ). doi: 10.18087/cardio.2021.5.n1530
4. Zhatkina MV, Metelskaya VA, Gavrilova NE, et al. Biochemical markers of coronary atherosclerosis: building models and assessing their prognostic value regarding the lesion severity. Russian Journal of Cardiology. 2021;26(6):4559. (In Russ). doi: 10.15829/1560-4071-2021-4559
5. Aliyevа AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209
6. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ).
doi: 10.26442/20751753.2021.10.201113
7. Haghshenas MR, Zamir MR, Sadeghi M, et al. Clinical relevance and therapeutic potential of IL-38 in immune and non-immune-related disorders. Eur Cytokine Netw.
2022;33(3):54–69. doi: 10.1684/ecn.2022.0480
8. de Graaf DM, Teufel LU, Joosten LAB, Dinarello CA. Interleukin-38 in Health and Disease. Cytokine. 2022;(152):155824. doi: 10.1016/j.cyto.2022.155824
9. Chen W, Xi S, Ke Y, Lei Y. The emerging role of IL-38 in diseases: A comprehensive review. Immun Inflamm Dis. 2023;11(8):e991. doi: 10.1002/iid3.991
10. Alieva AM, Kislyakov VA, Voronkova KV, et al. Interleukin-1 is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2022;12(6):422–429. (In Russ).
doi: 10.20514/2226-6704-2022-12-6-422-429
11. Lin H, Ho AS, Haley-Vicente D, et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J Biol Chem. 2001;276(23):20597–20602.
doi: 10.1074/jbc.M010095200
12. Xia HS, Liu Y, Fu Y, et al. Biology of interleukin-38 and its role in chronic inflammatory diseases. Int Immunopharmacol. 2021;(95):107528. doi: 10.1016/j.intimp.2021.107528
13. Li Z, Ding Y, Peng Y, et al. Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Front Immunol. 2022;(13):894002. doi: 10.3389/fimmu.2022.894002
14. Mora J, Schlemmer A, Wittig I, et al. Interleukin-38 is released fr om apoptotic cells to lim it inflammatory macrophage responses. J Mol Cell Biol. 2016;8(5):426–438.
doi: 10.1093/jmcb/mjw006
15. Teufel LU, de Graaf DM, Netea MG, et al. Circulating interleukin-38 concentrations in healthy adults. Front Immunol. 2022;(13):964365. doi: 10.3389/fimmu.2022.964365
16. de Graaf DM, Teufel LU, van de Veerdonk FL, et al. IL-38 prevents induction of trained immunity by inhibition of mTOR signaling. J Leukoc Biol. 2021;110(5):907–915.
doi: 10.1002/JLB.3A0220-143RRR
17. van de Veerdonk FL, Stoeckman AK, Wu G, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci U S A. 2012;109(8):3001–3005. doi: 10.1073/pnas.1121534109
18. Yuan XL, Li Y, Pan XH, et al. Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells. Mol Biol (Mosk). 2016;50(3):466–473. (In Russ). doi: 10.7868/S0026898416030137
19. Han Y, Mora J, Huard A, et al. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδ T Cells. Cell Rep. 2019;27(3):835.e5–846.e5.
doi: 10.1016/j.celrep.2019.03.082
20. Zarrabi M, Nazarinia M, Rahimi Jaberi A, et al. Elevated IL-38 Serum Levels in Newly Diagnosed Multiple Sclerosis and Systemic Sclerosis Patients. Med Princ Pract.
2021;30(2):146–153. doi: 10.1159/000510915
21. Ge Y, Huang M, Wu Y, et al. Interleukin-38 protects against sepsis by augmenting immunosuppressive activity of CD4+ CD25+ regulatory T cells. J Cell Mol Med.
2020;24(2):2027–2039. doi: 10.1111/jcmm.14902
22. Wei Y, Lan Y, Zhong Y, et al. Interleukin-38 alleviates cardiac remodelling after myocardial infarction. J Cell Mol Med. 2020;24(1):371–384. doi: 10.1111/jcmm.14741
23. Sun X, Hou T, Cheung E, et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol. 2020;17(6):631–-646.
doi: 10.1038/s41423-019-0300-7
24. de Graaf DM, Maas RJA, Smeekens SP, et al. Human recombinant interleukin-38 suppresses inflammation in mouse models of local and systemic disease. Cytokine.
2021;(137):155334. doi: 10.1016/j.cyto.2020.155334
25. Ge Y, Chen J, Hu Y, et al. IL-38 Alleviates Inflammation in Sepsis in Mice by Inhibiting Macrophage Apoptosis and Activation of the NLRP3 Inflammasome. Mediators Inflamm.
2021;(2021):6370911. doi: 10.1155/2021/6370911
26. de Graaf DM, Jaeger M, van den Munckhof ICL, et al. Reduced concentrations of the B cell cytokine interleukin 38 are associated with cardiovascular disease risk in overweight subjects. Eur J Immunol. 2021;51(3):662–671. doi: 10.1002/eji.201948390
27. Mainieri F, La Bella S, Chiarelli F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents. Biomedicines. 2023;11(3):809. doi: 10.3390/biomedicines11030809
28. Cao J, Hua L, Zhang S, et al. Serum interleukin-38 levels correlated with insulin resistance, liver injury and lipids in non-alcoholic fatty liver disease. Lipids Health Dis. 2022;21(1):70. doi: 10.1186/s12944-022-01676-0
29. Yang N, Song Y, Dong B, et al. Elevated Interleukin-38 Level Associates with Clinical Response to Atorvastatin in Patients with Hyperlipidemia. Cell Physiol Biochem.
2018;49(2):653–661. doi: 10.1159/000493029
30. Yudaeva AD, Stafeev IS, Michurina SS, et al. The interactions between inflammation and insulin resistance: molecular mechanisms in insulin-producing and insulin-dependent tissues. Diabetes mellitus. 2023;26(1):75–81. (In Russ). doi: 10.14341/DM12981
31. Jin X, Qiu T, Li L, et al. Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 2023;13(6):2403–2424. doi: 10.1016/j.apsb.2023.01.012
32. Huang G, Li M, Tian X, et al. The Emerging Roles of IL-36, IL‑37, and IL-38 in Diabetes Mellitus and its Complications. Endocr Metab Immune Disord Drug Targets.
2022;22(10):997–1008. doi: 10.2174/1871530322666220113142533
33. Xu K, Sun J, Chen S, et al. Hydrodynamic delivery of IL‑38 gene alleviates obesity-induced inflammation and insulin resistance. Biochem Biophys Res Commun.
2019;508(1):198–202. doi: 10.1016/j.bbrc.2018.11.114
34. Li Y, Chen S, Sun J, et al. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes. Cell Biol Int. 2020;44(11):2357–2362.
doi: 10.1002/cbin.11428
35. Bochkareva LA, Nedosugova LV, Petunina NA, et al. Some mechanisms of inflammation development in type 2 diabetes mellitus. Diabetes mellitus. 2021;24(4):334–341. (In Russ). doi: 10.14341/DM12746
36. Gurau F, Silvestrini A, Matacchione G, et al. Plasma levels of interleukin-38 in healthy aging and in type 2 diabetes. Diabetes Res Clin Pract. 2021;(171):108585.
doi: 10.1016/j.diabres.2020.108585
37. Liu Y, Chen T, Zhou F, et al. Interleukin-38 increases the insulin sensitivity in children with the type 2 diabetes. Int Immunopharmacol. 2020;(82):106264.
doi: 10.1016/j.intimp.2020.106264
38. Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131.
doi: 10.1038/s41392-022-00955-7
39. Zhang XH, Li Y, Zhou L, Tian GP. Interleukin-38 in atherosclerosis. Clin Chim Acta. 2022;(536):86–93. doi: 10.1016/j.cca.2022.09.017
40. Esmaeilzadeh A, Pouyan S, Erfanmanesh M. Is Interleukin-38 a key player cytokine in atherosclerosis immune gene therapy? Med Hypotheses. 2019;(125):139–143.
doi: 10.1016/j.mehy.2019.02.048
41. Li T, Yan Z, Fan Y, et al. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated. Front Cardiovasc Med. 2023;(9):1077290.
doi: 10.3389/fcvm.2022.107729
42. Zhong Y, Yu K, Wang X, et al. Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment. Mediators Inflamm. 2015;(2015):490120. doi: 10.1155/2015/490120
43. Yagudin TA, Shabanova AT, Liu H. Novel Aspects of Cardiac Ischemia and Reperfusion Injury Mechanisms. Creative surgery and oncology. 2018;8(3):216–224. (In Russ).
doi: 10.24060/2076-3093-2018-8-3-216-224
44. Wei Y, Xing J, Su X, et al. IL-38 attenuates myocardial ischemia-reperfusion injury by inhibiting macrophage inflammation. Immun Inflamm Dis. 2023;11(6):e898. doi: 10.1002/iid3.898
45. Yu Chen H, Dina C, Small AM, et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur Heart J. 2023;44(21):1927–1939.
doi: 10.1093/eurheartj/ehad142
46. The E, de Graaf DM, Zhai Y, et al. Interleukin 38 alleviates aortic valve calcification by inhibition of NLRP3. Proc Natl Acad Sci U S A. 2022;119(36):e2202577119.
doi: 10.1073/pnas.2202577119
47. Ma J, Wu N, Yuan Z, et al. Prognostic value of interleukin-34 and interleukin-38 in patients with newly diagnosed atrial fibrillation. Front Cardiovasc Med. 2023;(9):1072164.
doi: 10.3389/fcvm.2022.1072164
48. Wu Z, Luo C, Zheng B. Progress of Research into the Interleukin-1 Family in Cardiovascular Disease. J Inflamm Res. 2022;(15):6683–6694. doi: 10.2147/JIR.S390915
49. Kurose S, Matsubara Y, Yoshino S, et al. Interleukin-38 suppresses abdominal aortic aneurysm formation in mice by regulating macrophages in an IL1RL2-p38 pathway-dependent manner. Physiol Rep. 2023;11(2):e15581. doi: 10.14814/phy2.15581
50. Xu F, Lin S, Yan X, et al. Interleukin 38 Protects Against Lethal Sepsis. J Infect Dis. 2018;218(7):1175–1184. doi: 10.1093/infdis/jiy289
2. Алиева А.М., Голухова Е.З., Пинчук Т.В. Вариабельность сердечного ритма при хронической сердечной недостаточности (литературный обзор) // Архивъ внутренней медицины. 2013. № 6. С. 47–52. doi: 10.20514/2226-6704-2013-0-6-47-52
3. Кожевникова М.В., Беленков Ю.Н. Биомаркеры сердечной недостаточности: настоящее и будущее // Кардиология. 2021. Т. 61, № 5. С. 4–16.
doi: 10.18087/cardio.2021.5.n1530
4. Жаткина М.В., Метельская В.А., Гаврилова Н.Е., и др. Биохимические маркеры коронарного атеросклероза: построение моделей и оценка их прогностической значимости для верификации выраженности поражения // Российский кардиологический журнал. 2021. Т. 26, № 6. С. 4559. doi: 10.15829/1560-4071-2021-4559
5. Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний // Клиническая медицина. 2020. Т. 98, № 3. С. 203–209. doi: 10.30629/0023-2149-2020-98-3-203-209
6. Алиева А.М., Пинчук Т.В., Воронкова К.В., и др. Неоптерин — биомаркер хронической сердечной недостаточности (обзор современной литературы) // Consilium Medicum. 2021. Т. 23, № 10. С. 756–759. doi: 10.26442/20751753.2021.10.201113
7. Haghshenas M.R., Zamir M.R., Sadeghi M., et al. Clinical relevance and therapeutic potential of IL-38 in immune and non-immune-related disorders // Eur Cytokine Netw. 2022. Vol. 33, N 3. P. 54–69. doi: 10.1684/ecn.2022.0480
8. de Graaf D.M., Teufel L.U., Joosten L.A.B., Dinarello C.A. Interleukin-38 in Health and Disease // Cytokine. 2022. N 152. P. 155824. doi: 10.1016/j.cyto.2022.155824
9. Chen W., Xi S., Ke Y., Lei Y. The emerging role of IL-38 in diseases: A comprehensive review // Immun Inflamm Dis. 2023. Vol. 11, N 8. P. e991. doi: 10.1002/iid3.991
10. Алиева А.М., Кисляков В.А., Воронкова К.В., и др. Интерлейкин 1 — биологический маркер при сердечной недостаточности // Архивъ внутренней медицины. 2022. Т. 12, № 6. С. 422–429. doi: 10.20514/2226-6704-2022-12-6-422-429
11. Lin H., Ho A.S., Haley-Vicente D., et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member // J Biol Chem. 2001. Vol. 276, N 23. P. 20597–20602.
doi: 10.1074/jbc.M010095200
12. Xia H.S., Liu Y., Fu Y., et al. Biology of interleukin-38 and its role in chronic inflammatory diseases // Int Immunopharmacol. 2021. N 95. P. 107528. doi: 10.1016/j.intimp.2021.107528
13. Li Z., Ding Y., Peng Y., et al. Effects of IL-38 on Macrophages and Myocardial Ischemic Injury // Front Immunol. 2022. N 13. P. 894002. doi: 10.3389/fimmu.2022.894002
14. Mora J., Schlemmer A., Wittig I., et al. Interleukin-38 is released fr om apoptotic cells to lim it inflammatory macrophage responses // J Mol Cell Biol. 2016. Vol. 8, N 5. P. 426–438. doi: 10.1093/jmcb/mjw006
15. Teufel L.U., de Graaf D.M., Netea M.G., et al. Circulating interleukin-38 concentrations in healthy adults // Front Immunol. 2022. N 13. P. 964365. doi: 10.3389/fimmu.2022.964365
16. de Graaf D.M., Teufel L.U., van de Veerdonk F.L., et al. IL‑38 prevents induction of trained immunity by inhibition of mTOR signaling // J Leukoc Biol. 2021. Vol. 110, N 5. P. 907–915. doi: 10.1002/JLB.3A0220-143RRR
17. van de Veerdonk F.L., Stoeckman A.K., Wu G., et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist // Proc Natl Acad Sci U S A. 2012. Vol. 109, N 8. P. 3001–3005. doi: 10.1073/pnas.1121534109
18. Юань С.Л., Ли Ю., Пань С.Х. и др. Продукция рекомбинантного интерлейкина-38 человека и его ингибиторное действие на экспрессию провоспалительных цитокинов в клетках ТНР-1 // Молекулярная биология. 2016. Т. 50, № 3. С. 466–473. doi: 10.7868/S0026898416030137
19. Han Y., Mora J., Huard A., et al. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδ T Cells // Cell Rep. 2019. Vol. 27, N 3. P. 835.e5–846.e5.
doi: 10.1016/j.celrep.2019.03.082
20. Zarrabi M., Nazarinia M., Rahimi Jaberi A., et al. Elevated IL-38 Serum Levels in Newly Diagnosed Multiple Sclerosis and Systemic Sclerosis Patients // Med Princ Pract. 2021. Vol. 30, N 2. P. 146–153. doi: 10.1159/000510915
21. Ge Y., Huang M., Wu Y., et al. Interleukin-38 protects against sepsis by augmenting immunosuppressive activity of CD4+ CD25+ regulatory T cells // J Cell Mol Med. 2020. Vol. 24, N 2. P. 2027–2039. doi: 10.1111/jcmm.14902
22. Wei Y., Lan Y., Zhong Y., et al. Interleukin-38 alleviates cardiac remodelling after myocardial infarction // J Cell Mol Med. 2020. Vol. 24, N 1. P. 371–384. doi: 10.1111/jcmm.14741
23. Sun X., Hou T., Cheung E., et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma // Cell Mol Immunol. 2020. Vol. 17, N 6. P. 631–646.
doi: 10.1038/s41423-019-0300-7
24. de Graaf D.M., Maas R.J.A., Smeekens S.P., et al. Human recombinant interleukin-38 suppresses inflammation in mouse models of local and systemic disease // Cytokine. 2021.
N 137. P. 155334. doi: 10.1016/j.cyto.2020.155334
25. Ge Y., Chen J., Hu Y., et al. IL-38 Alleviates Inflammation in Sepsis in Mice by Inhibiting Macrophage Apoptosis and Activation of the NLRP3 Inflammasome // Mediators Inflamm. 2021. N 2021. P. 6370911. doi: 10.1155/2021/6370911
26. de Graaf D.M., Jaeger M., van den Munckhof I.C.L., et al. Reduced concentrations of the B cell cytokine interleukin 38 are associated with cardiovascular disease risk in overweight subjects // Eur J Immunol. 2021. Vol. 51, N 3. P. 662–671. doi: 10.1002/eji.201948390
27. Mainieri F., La Bella S., Chiarelli F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents // Biomedicines. 2023. Vol. 11, N 3. P. 809.
doi: 10.3390/biomedicines11030809
28. Cao J., Hua L., Zhang S., et al. Serum interleukin-38 levels correlated with insulin resistance, liver injury and lipids in non-alcoholic fatty liver disease // Lipids Health Dis. 2022. Vol. 21, N 1. P. 70. doi: 10.1186/s12944-022-01676-0
29. Yang N., Song Y., Dong B., et al. Elevated interleukin-38 level associates with clinical response to atorvastatin in patients with hyperlipidemia // Cell Physiol Biochem. 2018. Vol. 49,
N 2. P. 653–661. doi: 10.1159/000493029
30. Юдаева А.Д., Стафеев Ю.С., Мичурина С.С., и др. Взаимодействие воспаления и инсулиновой резистентности: молекулярные механизмы в инсулинопродуцирующих и инсулинозависимых тканях // Сахарный диабет. 2023. Т. 26, № 1. С. 75–81. doi: 10.14341/DM12981
31. Jin X., Qiu T., Li L., et al. Pathophysiology of obesity and its associated diseases // Acta Pharm Sin B. 2023. Vol. 13, N 6. P. 2403–2424. doi: 10.1016/j.apsb.2023.01.012
32. Huang G., Li M., Tian X., et al. The Emerging Roles of IL-36, IL-37, and IL-38 in Diabetes Mellitus and its Complications // Endocr Metab Immune Disord Drug Targets. 2022. Vol. 22,
N 10. P. 997–1008. doi: 10.2174/1871530322666220113142533
33. Xu K., Sun J., Chen S., et al. Hydrodynamic delivery of IL-38 gene alleviates obesity-induced inflammation and insulin resistance // Biochem Biophys Res Commun. 2019. Vol. 508,
N 1. P. 198–202. doi: 10.1016/j.bbrc.2018.11.114
34. Li Y., Chen S., Sun J., et al. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes // Cell Biol Int. 2020. Vol. 44, N 11. P. 2357–2362.
doi: 10.1002/cbin.11428
35. Бочкарева Л.А., Недосугова Л.В., Петунина Н.А., и др. Некоторые механизмы развития воспаления при сахарном диабете 2 типа // Сахарный диабет. 2021. Т. 24, № 4.
С. 334–341. doi: 10.14341/DM12746
36. Gurau F., Silvestrini A., Matacchione G., et al. Plasma levels of interleukin-38 in healthy aging and in type 2 diabetes // Diabetes Res Clin Pract. 2021. N 171. P. 108585.
doi: 10.1016/j.diabres.2020.108585
37. Liu Y., Chen T., Zhou F., et al. Interleukin-38 increases the insulin sensitivity in children with the type 2 diabetes // Int Immunopharmacol. 2020. N 82. P. 106264.
doi: 10.1016/j.intimp.2020.106264
38. Kong P., Cui Z.Y., Huang X.F., et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention // Signal Transduct Target Ther. 2022. Vol. 7, N 1. P. 131.
doi: 10.1038/s41392-022-00955-7
39. Zhang X.H., Li Y., Zhou L., Tian G.P. Interleukin-38 in atherosclerosis // Clin Chim Acta. 2022. N 536. P. 86–93. doi: 10.1016/j.cca.2022.09.017
40. Esmaeilzadeh A., Pouyan S., Erfanmanesh M. Is Interleukin-38 a key player cytokine in atherosclerosis immune gene therapy? // Med Hypotheses. 2019. N 125. P. 139–143.
doi: 10.1016/j.mehy.2019.02.048
41. Li T., Yan Z., Fan Y., et al. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated // Front Cardiovasc Med. 2023. N 9. P. 1077290.
doi: 10.3389/fcvm.2022.1077290
42. Zhong Y., Yu K., Wang X., et al. Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment // Mediators Inflamm. 2015. N 2015. P. 490120. doi: 10.1155/2015/490120
43. Ягудин Т.А., Шабанова А.Т., Хонг-Ю Лиу. Новые аспекты в механизмах ишемического и реперфузионного повреждения миокарда // Креативная хирургия и онкология. 2018. Т. 8, № 3. С. 216–224. doi: 10.24060/2076-3093-2018-8-3-216-224
44. Wei Y, Xing J, Su X, et al. IL-38 attenuates myocardial ischemia-reperfusion injury by inhibiting macrophage inflammation // Immun Inflamm Dis. 2023. Vol. 11, N 6. P. e898.
doi: 10.1002/iid3.898
45. Yu Chen H., Dina C., Small A.M., et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study // Eur Heart J. 2023. Vol. 44, N 21.
P. 1927–1939. doi: 10.1093/eurheartj/ehad142
46. The E., de Graaf D.M., Zhai Y., et al. Interleukin 38 alleviates aortic valve calcification by inhibition of NLRP3 // Proc Natl Acad Sci U S A. 2022. Vol. 119, N 36. P. e2202577119.
doi: 10.1073/pnas.2202577119
47. Ma J., Wu N., Yuan Z., et al. Prognostic value of interleukin-34 and interleukin-38 in patients with newly diagnosed atrial fibrillation // Front Cardiovasc Med. 2023. N 9. P. 1072164. doi: 10.3389/fcvm.2022.1072164
48. Wu Z., Luo C., Zheng B. Progress of Research into the Interleukin-1 Family in Cardiovascular Disease // J Inflamm Res. 2022. N 15. P. 6683–6694. doi: 10.2147/JIR.S390915
49. Kurose S., Matsubara Y., Yoshino S., et al. Interleukin-38 suppresses abdominal aortic aneurysm formation in mice by regulating macrophages in an IL1RL2-p38 pathway-dependent manner // Physiol Rep. 2023. Vol. 11, N 2. P. e15581. doi: 10.14814/phy2.15581
50. Xu F., Lin S., Yan X., et al. Interleukin 38 Protects Against Lethal Sepsis // J Infect Dis. 2018. Vol. 218, N 7. P. 1175–1184. doi: 10.1093/infdis/jiy289
________________________________________________
doi: 10.15829/1560-4071-2020-3983
2. Alieva AM, Golukhova EZ, Pinchuk TV. Heart rate variability in chronic heart failure (literature review). The Russian Archives of Internal Medicine. 2013;(6):47–52. (In Russ).
doi: 10.20514/2226-6704-2013-0-6-47-52
3. Kozhevnikova MV, Belenkov YuN. Biomarkers in Heart Failure: Current and Future. Kardiologiia. 2021;61(5):4–16. (In Russ). doi: 10.18087/cardio.2021.5.n1530
4. Zhatkina MV, Metelskaya VA, Gavrilova NE, et al. Biochemical markers of coronary atherosclerosis: building models and assessing their prognostic value regarding the lesion severity. Russian Journal of Cardiology. 2021;26(6):4559. (In Russ). doi: 10.15829/1560-4071-2021-4559
5. Aliyevа AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209
6. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ).
doi: 10.26442/20751753.2021.10.201113
7. Haghshenas MR, Zamir MR, Sadeghi M, et al. Clinical relevance and therapeutic potential of IL-38 in immune and non-immune-related disorders. Eur Cytokine Netw.
2022;33(3):54–69. doi: 10.1684/ecn.2022.0480
8. de Graaf DM, Teufel LU, Joosten LAB, Dinarello CA. Interleukin-38 in Health and Disease. Cytokine. 2022;(152):155824. doi: 10.1016/j.cyto.2022.155824
9. Chen W, Xi S, Ke Y, Lei Y. The emerging role of IL-38 in diseases: A comprehensive review. Immun Inflamm Dis. 2023;11(8):e991. doi: 10.1002/iid3.991
10. Alieva AM, Kislyakov VA, Voronkova KV, et al. Interleukin-1 is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2022;12(6):422–429. (In Russ).
doi: 10.20514/2226-6704-2022-12-6-422-429
11. Lin H, Ho AS, Haley-Vicente D, et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J Biol Chem. 2001;276(23):20597–20602.
doi: 10.1074/jbc.M010095200
12. Xia HS, Liu Y, Fu Y, et al. Biology of interleukin-38 and its role in chronic inflammatory diseases. Int Immunopharmacol. 2021;(95):107528. doi: 10.1016/j.intimp.2021.107528
13. Li Z, Ding Y, Peng Y, et al. Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Front Immunol. 2022;(13):894002. doi: 10.3389/fimmu.2022.894002
14. Mora J, Schlemmer A, Wittig I, et al. Interleukin-38 is released fr om apoptotic cells to lim it inflammatory macrophage responses. J Mol Cell Biol. 2016;8(5):426–438.
doi: 10.1093/jmcb/mjw006
15. Teufel LU, de Graaf DM, Netea MG, et al. Circulating interleukin-38 concentrations in healthy adults. Front Immunol. 2022;(13):964365. doi: 10.3389/fimmu.2022.964365
16. de Graaf DM, Teufel LU, van de Veerdonk FL, et al. IL-38 prevents induction of trained immunity by inhibition of mTOR signaling. J Leukoc Biol. 2021;110(5):907–915.
doi: 10.1002/JLB.3A0220-143RRR
17. van de Veerdonk FL, Stoeckman AK, Wu G, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci U S A. 2012;109(8):3001–3005. doi: 10.1073/pnas.1121534109
18. Yuan XL, Li Y, Pan XH, et al. Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells. Mol Biol (Mosk). 2016;50(3):466–473. (In Russ). doi: 10.7868/S0026898416030137
19. Han Y, Mora J, Huard A, et al. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδ T Cells. Cell Rep. 2019;27(3):835.e5–846.e5.
doi: 10.1016/j.celrep.2019.03.082
20. Zarrabi M, Nazarinia M, Rahimi Jaberi A, et al. Elevated IL-38 Serum Levels in Newly Diagnosed Multiple Sclerosis and Systemic Sclerosis Patients. Med Princ Pract.
2021;30(2):146–153. doi: 10.1159/000510915
21. Ge Y, Huang M, Wu Y, et al. Interleukin-38 protects against sepsis by augmenting immunosuppressive activity of CD4+ CD25+ regulatory T cells. J Cell Mol Med.
2020;24(2):2027–2039. doi: 10.1111/jcmm.14902
22. Wei Y, Lan Y, Zhong Y, et al. Interleukin-38 alleviates cardiac remodelling after myocardial infarction. J Cell Mol Med. 2020;24(1):371–384. doi: 10.1111/jcmm.14741
23. Sun X, Hou T, Cheung E, et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol. 2020;17(6):631–-646.
doi: 10.1038/s41423-019-0300-7
24. de Graaf DM, Maas RJA, Smeekens SP, et al. Human recombinant interleukin-38 suppresses inflammation in mouse models of local and systemic disease. Cytokine.
2021;(137):155334. doi: 10.1016/j.cyto.2020.155334
25. Ge Y, Chen J, Hu Y, et al. IL-38 Alleviates Inflammation in Sepsis in Mice by Inhibiting Macrophage Apoptosis and Activation of the NLRP3 Inflammasome. Mediators Inflamm.
2021;(2021):6370911. doi: 10.1155/2021/6370911
26. de Graaf DM, Jaeger M, van den Munckhof ICL, et al. Reduced concentrations of the B cell cytokine interleukin 38 are associated with cardiovascular disease risk in overweight subjects. Eur J Immunol. 2021;51(3):662–671. doi: 10.1002/eji.201948390
27. Mainieri F, La Bella S, Chiarelli F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents. Biomedicines. 2023;11(3):809. doi: 10.3390/biomedicines11030809
28. Cao J, Hua L, Zhang S, et al. Serum interleukin-38 levels correlated with insulin resistance, liver injury and lipids in non-alcoholic fatty liver disease. Lipids Health Dis. 2022;21(1):70. doi: 10.1186/s12944-022-01676-0
29. Yang N, Song Y, Dong B, et al. Elevated Interleukin-38 Level Associates with Clinical Response to Atorvastatin in Patients with Hyperlipidemia. Cell Physiol Biochem.
2018;49(2):653–661. doi: 10.1159/000493029
30. Yudaeva AD, Stafeev IS, Michurina SS, et al. The interactions between inflammation and insulin resistance: molecular mechanisms in insulin-producing and insulin-dependent tissues. Diabetes mellitus. 2023;26(1):75–81. (In Russ). doi: 10.14341/DM12981
31. Jin X, Qiu T, Li L, et al. Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 2023;13(6):2403–2424. doi: 10.1016/j.apsb.2023.01.012
32. Huang G, Li M, Tian X, et al. The Emerging Roles of IL-36, IL‑37, and IL-38 in Diabetes Mellitus and its Complications. Endocr Metab Immune Disord Drug Targets.
2022;22(10):997–1008. doi: 10.2174/1871530322666220113142533
33. Xu K, Sun J, Chen S, et al. Hydrodynamic delivery of IL‑38 gene alleviates obesity-induced inflammation and insulin resistance. Biochem Biophys Res Commun.
2019;508(1):198–202. doi: 10.1016/j.bbrc.2018.11.114
34. Li Y, Chen S, Sun J, et al. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes. Cell Biol Int. 2020;44(11):2357–2362.
doi: 10.1002/cbin.11428
35. Bochkareva LA, Nedosugova LV, Petunina NA, et al. Some mechanisms of inflammation development in type 2 diabetes mellitus. Diabetes mellitus. 2021;24(4):334–341. (In Russ). doi: 10.14341/DM12746
36. Gurau F, Silvestrini A, Matacchione G, et al. Plasma levels of interleukin-38 in healthy aging and in type 2 diabetes. Diabetes Res Clin Pract. 2021;(171):108585.
doi: 10.1016/j.diabres.2020.108585
37. Liu Y, Chen T, Zhou F, et al. Interleukin-38 increases the insulin sensitivity in children with the type 2 diabetes. Int Immunopharmacol. 2020;(82):106264.
doi: 10.1016/j.intimp.2020.106264
38. Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131.
doi: 10.1038/s41392-022-00955-7
39. Zhang XH, Li Y, Zhou L, Tian GP. Interleukin-38 in atherosclerosis. Clin Chim Acta. 2022;(536):86–93. doi: 10.1016/j.cca.2022.09.017
40. Esmaeilzadeh A, Pouyan S, Erfanmanesh M. Is Interleukin-38 a key player cytokine in atherosclerosis immune gene therapy? Med Hypotheses. 2019;(125):139–143.
doi: 10.1016/j.mehy.2019.02.048
41. Li T, Yan Z, Fan Y, et al. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated. Front Cardiovasc Med. 2023;(9):1077290.
doi: 10.3389/fcvm.2022.107729
42. Zhong Y, Yu K, Wang X, et al. Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment. Mediators Inflamm. 2015;(2015):490120. doi: 10.1155/2015/490120
43. Yagudin TA, Shabanova AT, Liu H. Novel Aspects of Cardiac Ischemia and Reperfusion Injury Mechanisms. Creative surgery and oncology. 2018;8(3):216–224. (In Russ).
doi: 10.24060/2076-3093-2018-8-3-216-224
44. Wei Y, Xing J, Su X, et al. IL-38 attenuates myocardial ischemia-reperfusion injury by inhibiting macrophage inflammation. Immun Inflamm Dis. 2023;11(6):e898. doi: 10.1002/iid3.898
45. Yu Chen H, Dina C, Small AM, et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur Heart J. 2023;44(21):1927–1939.
doi: 10.1093/eurheartj/ehad142
46. The E, de Graaf DM, Zhai Y, et al. Interleukin 38 alleviates aortic valve calcification by inhibition of NLRP3. Proc Natl Acad Sci U S A. 2022;119(36):e2202577119.
doi: 10.1073/pnas.2202577119
47. Ma J, Wu N, Yuan Z, et al. Prognostic value of interleukin-34 and interleukin-38 in patients with newly diagnosed atrial fibrillation. Front Cardiovasc Med. 2023;(9):1072164.
doi: 10.3389/fcvm.2022.1072164
48. Wu Z, Luo C, Zheng B. Progress of Research into the Interleukin-1 Family in Cardiovascular Disease. J Inflamm Res. 2022;(15):6683–6694. doi: 10.2147/JIR.S390915
49. Kurose S, Matsubara Y, Yoshino S, et al. Interleukin-38 suppresses abdominal aortic aneurysm formation in mice by regulating macrophages in an IL1RL2-p38 pathway-dependent manner. Physiol Rep. 2023;11(2):e15581. doi: 10.14814/phy2.15581
50. Xu F, Lin S, Yan X, et al. Interleukin 38 Protects Against Lethal Sepsis. J Infect Dis. 2018;218(7):1175–1184. doi: 10.1093/infdis/jiy289
Авторы
А.М. Алиева*, И.Е. Байкова, Т.В. Пинчук, И.А. Котикова, И.Г. Никитин
Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия
*amisha_alieva@mail.ru
Pirogov Russian National Research Medical University, Moscow, Russia
*amisha_alieva@mail.ru
Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия
*amisha_alieva@mail.ru
________________________________________________
Pirogov Russian National Research Medical University, Moscow, Russia
*amisha_alieva@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
