Кардиоваскулярная патология — основная причина заболеваемости и смертности населения во всём мире. Важной задачей современной кардиологии является поиск и изучение новых биологических маркёров. Интерес учёных активно сосредоточен на изучении интерлейкина (IL) 38. IL-38 — противовоспалительный цитокин, член семейства IL-1. Целью нашей работы было проанализировать данные литературы, посвящённые изучению IL-38 в роли сердечно-сосудистого биологического маркёра. Проведён анализ источников литературы, включавший все релевантные публикации в базах данных и электронных библиотеках PubMed (MEDLINE), eLibrary (РИНЦ), Google Scholar, Science Direct. Глубина поиска составила 9 лет. Известно, что IL-38 обнаруживается в коже, сердце, плаценте, печени плода, селезёнке, тимусе и активированных В-клетках миндалин. Белок IL-38 идентифицируется в плазме и сыворотке крови и клеточных культурах человека методом иммуноферментного анализа. IL-38 регулирует иммунные и воспалительные реакции, связываясь со своими рецепторами и активируя нисходящие сигналы. Дефицит IL-38 связан с усилением системного воспаления при старении, сердечно-сосудистой патологии и метаболических заболеваниях. В настоящее время накоплено не так много клинических и экспериментальных данных в отношении влияния IL-38 на сердечно-сосудистую систему, но ожидается, что дальнейшие исследования продемонстрируют возможность его использования в качестве дополнительного лабораторного инструмента диагностики и оценки прогноза у пациентов кардиологического профиля. Регуляция концентрации и экспрессии IL-38, вероятно, окажется многообещающей стратегией для лечения сердечно-сосудистых заболеваний.
Cardiovascular pathology is a leading cause of morbidity and mortality. An important task of modern cardiology is the search and study of new biological markers. Scientists’ interest is actively focused on the study of interleukin-38. Interleukin-38 is an anti-inflammatory cytokine and a member of the interleukin-1 family. This study aimed to analyze literature sources devoted to the study of interleukin-38 as a cardiovascular biological marker. Literature sources, including all relevant publications in PubMed (MEDLINE), RSCI, Google Scholar, and Science Direct, were analyzed. The search depth was 9 years. Interleukin-38 is found in the skin, heart, placenta, fetal liver, spleen, thymus, and activated B cells of the tonsils. Interleukin-38 protein is detected in human plasma, serum, and cell cultures by enzyme-linked immunosorbent assay. Interleukin-38 regulates immune and inflammatory responses by binding to its receptors and activating downstream signals. Its deficiency is associated with increased systemic inflammation in aging, cardiovascular diseases, and metabolic diseases. Currently, not much clinical and experimental data have been accumulated regarding the effect of interleukin-38 on the cardiovascular system; however, further studies are expected to demonstrate the possibility of its use as an additional laboratory tool for diagnosis and assessment of prognosis in patients with cardiac problems. Regulating the concentration and expression of interleukin-38 is a promising strategy for the treatment of cardiovascular diseases.
1. Шляхто Е.В., Баранова Е.И. Основные направления снижения сердечно-сосудистой смертности: что можно изменить уже сегодня? // Российский кардиологический журнал. 2020. Т. 25, № 7. С. 3983. doi: 10.15829/1560-4071-2020-3983
2. Алиева А.М., Голухова Е.З., Пинчук Т.В. Вариабельность сердечного ритма при хронической сердечной недостаточности (литературный обзор) // Архивъ внутренней медицины. 2013. № 6. С. 47–52. doi: 10.20514/2226-6704-2013-0-6-47-52
3. Кожевникова М.В., Беленков Ю.Н. Биомаркеры сердечной недостаточности: настоящее и будущее // Кардиология. 2021. Т. 61, № 5. С. 4–16.
doi: 10.18087/cardio.2021.5.n1530
4. Жаткина М.В., Метельская В.А., Гаврилова Н.Е., и др. Биохимические маркеры коронарного атеросклероза: построение моделей и оценка их прогностической значимости для верификации выраженности поражения // Российский кардиологический журнал. 2021. Т. 26, № 6. С. 4559. doi: 10.15829/1560-4071-2021-4559
5. Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний // Клиническая медицина. 2020. Т. 98, № 3. С. 203–209. doi: 10.30629/0023-2149-2020-98-3-203-209
6. Алиева А.М., Пинчук Т.В., Воронкова К.В., и др. Неоптерин — биомаркер хронической сердечной недостаточности (обзор современной литературы) // Consilium Medicum. 2021. Т. 23, № 10. С. 756–759. doi: 10.26442/20751753.2021.10.201113
7. Haghshenas M.R., Zamir M.R., Sadeghi M., et al. Clinical relevance and therapeutic potential of IL-38 in immune and non-immune-related disorders // Eur Cytokine Netw. 2022. Vol. 33, N 3. P. 54–69. doi: 10.1684/ecn.2022.0480
8. de Graaf D.M., Teufel L.U., Joosten L.A.B., Dinarello C.A. Interleukin-38 in Health and Disease // Cytokine. 2022. N 152. P. 155824. doi: 10.1016/j.cyto.2022.155824
9. Chen W., Xi S., Ke Y., Lei Y. The emerging role of IL-38 in diseases: A comprehensive review // Immun Inflamm Dis. 2023. Vol. 11, N 8. P. e991. doi: 10.1002/iid3.991
10. Алиева А.М., Кисляков В.А., Воронкова К.В., и др. Интерлейкин 1 — биологический маркер при сердечной недостаточности // Архивъ внутренней медицины. 2022. Т. 12, № 6. С. 422–429. doi: 10.20514/2226-6704-2022-12-6-422-429
11. Lin H., Ho A.S., Haley-Vicente D., et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member // J Biol Chem. 2001. Vol. 276, N 23. P. 20597–20602.
doi: 10.1074/jbc.M010095200
12. Xia H.S., Liu Y., Fu Y., et al. Biology of interleukin-38 and its role in chronic inflammatory diseases // Int Immunopharmacol. 2021. N 95. P. 107528. doi: 10.1016/j.intimp.2021.107528
13. Li Z., Ding Y., Peng Y., et al. Effects of IL-38 on Macrophages and Myocardial Ischemic Injury // Front Immunol. 2022. N 13. P. 894002. doi: 10.3389/fimmu.2022.894002
14. Mora J., Schlemmer A., Wittig I., et al. Interleukin-38 is released fr om apoptotic cells to lim it inflammatory macrophage responses // J Mol Cell Biol. 2016. Vol. 8, N 5. P. 426–438. doi: 10.1093/jmcb/mjw006
15. Teufel L.U., de Graaf D.M., Netea M.G., et al. Circulating interleukin-38 concentrations in healthy adults // Front Immunol. 2022. N 13. P. 964365. doi: 10.3389/fimmu.2022.964365
16. de Graaf D.M., Teufel L.U., van de Veerdonk F.L., et al. IL‑38 prevents induction of trained immunity by inhibition of mTOR signaling // J Leukoc Biol. 2021. Vol. 110, N 5. P. 907–915. doi: 10.1002/JLB.3A0220-143RRR
17. van de Veerdonk F.L., Stoeckman A.K., Wu G., et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist // Proc Natl Acad Sci U S A. 2012. Vol. 109, N 8. P. 3001–3005. doi: 10.1073/pnas.1121534109
18. Юань С.Л., Ли Ю., Пань С.Х. и др. Продукция рекомбинантного интерлейкина-38 человека и его ингибиторное действие на экспрессию провоспалительных цитокинов в клетках ТНР-1 // Молекулярная биология. 2016. Т. 50, № 3. С. 466–473. doi: 10.7868/S0026898416030137
19. Han Y., Mora J., Huard A., et al. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδ T Cells // Cell Rep. 2019. Vol. 27, N 3. P. 835.e5–846.e5.
doi: 10.1016/j.celrep.2019.03.082
20. Zarrabi M., Nazarinia M., Rahimi Jaberi A., et al. Elevated IL-38 Serum Levels in Newly Diagnosed Multiple Sclerosis and Systemic Sclerosis Patients // Med Princ Pract. 2021. Vol. 30, N 2. P. 146–153. doi: 10.1159/000510915
21. Ge Y., Huang M., Wu Y., et al. Interleukin-38 protects against sepsis by augmenting immunosuppressive activity of CD4+ CD25+ regulatory T cells // J Cell Mol Med. 2020. Vol. 24, N 2. P. 2027–2039. doi: 10.1111/jcmm.14902
22. Wei Y., Lan Y., Zhong Y., et al. Interleukin-38 alleviates cardiac remodelling after myocardial infarction // J Cell Mol Med. 2020. Vol. 24, N 1. P. 371–384. doi: 10.1111/jcmm.14741
23. Sun X., Hou T., Cheung E., et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma // Cell Mol Immunol. 2020. Vol. 17, N 6. P. 631–646.
doi: 10.1038/s41423-019-0300-7
24. de Graaf D.M., Maas R.J.A., Smeekens S.P., et al. Human recombinant interleukin-38 suppresses inflammation in mouse models of local and systemic disease // Cytokine. 2021.
N 137. P. 155334. doi: 10.1016/j.cyto.2020.155334
25. Ge Y., Chen J., Hu Y., et al. IL-38 Alleviates Inflammation in Sepsis in Mice by Inhibiting Macrophage Apoptosis and Activation of the NLRP3 Inflammasome // Mediators Inflamm. 2021. N 2021. P. 6370911. doi: 10.1155/2021/6370911
26. de Graaf D.M., Jaeger M., van den Munckhof I.C.L., et al. Reduced concentrations of the B cell cytokine interleukin 38 are associated with cardiovascular disease risk in overweight subjects // Eur J Immunol. 2021. Vol. 51, N 3. P. 662–671. doi: 10.1002/eji.201948390
27. Mainieri F., La Bella S., Chiarelli F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents // Biomedicines. 2023. Vol. 11, N 3. P. 809.
doi: 10.3390/biomedicines11030809
28. Cao J., Hua L., Zhang S., et al. Serum interleukin-38 levels correlated with insulin resistance, liver injury and lipids in non-alcoholic fatty liver disease // Lipids Health Dis. 2022. Vol. 21, N 1. P. 70. doi: 10.1186/s12944-022-01676-0
29. Yang N., Song Y., Dong B., et al. Elevated interleukin-38 level associates with clinical response to atorvastatin in patients with hyperlipidemia // Cell Physiol Biochem. 2018. Vol. 49,
N 2. P. 653–661. doi: 10.1159/000493029
30. Юдаева А.Д., Стафеев Ю.С., Мичурина С.С., и др. Взаимодействие воспаления и инсулиновой резистентности: молекулярные механизмы в инсулинопродуцирующих и инсулинозависимых тканях // Сахарный диабет. 2023. Т. 26, № 1. С. 75–81. doi: 10.14341/DM12981
31. Jin X., Qiu T., Li L., et al. Pathophysiology of obesity and its associated diseases // Acta Pharm Sin B. 2023. Vol. 13, N 6. P. 2403–2424. doi: 10.1016/j.apsb.2023.01.012
32. Huang G., Li M., Tian X., et al. The Emerging Roles of IL-36, IL-37, and IL-38 in Diabetes Mellitus and its Complications // Endocr Metab Immune Disord Drug Targets. 2022. Vol. 22,
N 10. P. 997–1008. doi: 10.2174/1871530322666220113142533
33. Xu K., Sun J., Chen S., et al. Hydrodynamic delivery of IL-38 gene alleviates obesity-induced inflammation and insulin resistance // Biochem Biophys Res Commun. 2019. Vol. 508,
N 1. P. 198–202. doi: 10.1016/j.bbrc.2018.11.114
34. Li Y., Chen S., Sun J., et al. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes // Cell Biol Int. 2020. Vol. 44, N 11. P. 2357–2362.
doi: 10.1002/cbin.11428
35. Бочкарева Л.А., Недосугова Л.В., Петунина Н.А., и др. Некоторые механизмы развития воспаления при сахарном диабете 2 типа // Сахарный диабет. 2021. Т. 24, № 4.
С. 334–341. doi: 10.14341/DM12746
36. Gurau F., Silvestrini A., Matacchione G., et al. Plasma levels of interleukin-38 in healthy aging and in type 2 diabetes // Diabetes Res Clin Pract. 2021. N 171. P. 108585.
doi: 10.1016/j.diabres.2020.108585
37. Liu Y., Chen T., Zhou F., et al. Interleukin-38 increases the insulin sensitivity in children with the type 2 diabetes // Int Immunopharmacol. 2020. N 82. P. 106264.
doi: 10.1016/j.intimp.2020.106264
38. Kong P., Cui Z.Y., Huang X.F., et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention // Signal Transduct Target Ther. 2022. Vol. 7, N 1. P. 131.
doi: 10.1038/s41392-022-00955-7
39. Zhang X.H., Li Y., Zhou L., Tian G.P. Interleukin-38 in atherosclerosis // Clin Chim Acta. 2022. N 536. P. 86–93. doi: 10.1016/j.cca.2022.09.017
40. Esmaeilzadeh A., Pouyan S., Erfanmanesh M. Is Interleukin-38 a key player cytokine in atherosclerosis immune gene therapy? // Med Hypotheses. 2019. N 125. P. 139–143.
doi: 10.1016/j.mehy.2019.02.048
41. Li T., Yan Z., Fan Y., et al. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated // Front Cardiovasc Med. 2023. N 9. P. 1077290.
doi: 10.3389/fcvm.2022.1077290
42. Zhong Y., Yu K., Wang X., et al. Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment // Mediators Inflamm. 2015. N 2015. P. 490120. doi: 10.1155/2015/490120
43. Ягудин Т.А., Шабанова А.Т., Хонг-Ю Лиу. Новые аспекты в механизмах ишемического и реперфузионного повреждения миокарда // Креативная хирургия и онкология. 2018. Т. 8, № 3. С. 216–224. doi: 10.24060/2076-3093-2018-8-3-216-224
44. Wei Y, Xing J, Su X, et al. IL-38 attenuates myocardial ischemia-reperfusion injury by inhibiting macrophage inflammation // Immun Inflamm Dis. 2023. Vol. 11, N 6. P. e898.
doi: 10.1002/iid3.898
45. Yu Chen H., Dina C., Small A.M., et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study // Eur Heart J. 2023. Vol. 44, N 21.
P. 1927–1939. doi: 10.1093/eurheartj/ehad142
46. The E., de Graaf D.M., Zhai Y., et al. Interleukin 38 alleviates aortic valve calcification by inhibition of NLRP3 // Proc Natl Acad Sci U S A. 2022. Vol. 119, N 36. P. e2202577119.
doi: 10.1073/pnas.2202577119
47. Ma J., Wu N., Yuan Z., et al. Prognostic value of interleukin-34 and interleukin-38 in patients with newly diagnosed atrial fibrillation // Front Cardiovasc Med. 2023. N 9. P. 1072164. doi: 10.3389/fcvm.2022.1072164
48. Wu Z., Luo C., Zheng B. Progress of Research into the Interleukin-1 Family in Cardiovascular Disease // J Inflamm Res. 2022. N 15. P. 6683–6694. doi: 10.2147/JIR.S390915
49. Kurose S., Matsubara Y., Yoshino S., et al. Interleukin-38 suppresses abdominal aortic aneurysm formation in mice by regulating macrophages in an IL1RL2-p38 pathway-dependent manner // Physiol Rep. 2023. Vol. 11, N 2. P. e15581. doi: 10.14814/phy2.15581
50. Xu F., Lin S., Yan X., et al. Interleukin 38 Protects Against Lethal Sepsis // J Infect Dis. 2018. Vol. 218, N 7. P. 1175–1184. doi: 10.1093/infdis/jiy289
________________________________________________
1. Shlyakhto EV, Baranova EI. Central directions for reducing cardiovascular mortality: what can be changed today? Russian Journal of Cardiology. 2020;25(7):3983. (In Russ).
doi: 10.15829/1560-4071-2020-3983
2. Alieva AM, Golukhova EZ, Pinchuk TV. Heart rate variability in chronic heart failure (literature review). The Russian Archives of Internal Medicine. 2013;(6):47–52. (In Russ).
doi: 10.20514/2226-6704-2013-0-6-47-52
3. Kozhevnikova MV, Belenkov YuN. Biomarkers in Heart Failure: Current and Future. Kardiologiia. 2021;61(5):4–16. (In Russ). doi: 10.18087/cardio.2021.5.n1530
4. Zhatkina MV, Metelskaya VA, Gavrilova NE, et al. Biochemical markers of coronary atherosclerosis: building models and assessing their prognostic value regarding the lesion severity. Russian Journal of Cardiology. 2021;26(6):4559. (In Russ). doi: 10.15829/1560-4071-2021-4559
5. Aliyevа AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209
6. Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ).
doi: 10.26442/20751753.2021.10.201113
7. Haghshenas MR, Zamir MR, Sadeghi M, et al. Clinical relevance and therapeutic potential of IL-38 in immune and non-immune-related disorders. Eur Cytokine Netw.
2022;33(3):54–69. doi: 10.1684/ecn.2022.0480
8. de Graaf DM, Teufel LU, Joosten LAB, Dinarello CA. Interleukin-38 in Health and Disease. Cytokine. 2022;(152):155824. doi: 10.1016/j.cyto.2022.155824
9. Chen W, Xi S, Ke Y, Lei Y. The emerging role of IL-38 in diseases: A comprehensive review. Immun Inflamm Dis. 2023;11(8):e991. doi: 10.1002/iid3.991
10. Alieva AM, Kislyakov VA, Voronkova KV, et al. Interleukin-1 is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2022;12(6):422–429. (In Russ).
doi: 10.20514/2226-6704-2022-12-6-422-429
11. Lin H, Ho AS, Haley-Vicente D, et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J Biol Chem. 2001;276(23):20597–20602.
doi: 10.1074/jbc.M010095200
12. Xia HS, Liu Y, Fu Y, et al. Biology of interleukin-38 and its role in chronic inflammatory diseases. Int Immunopharmacol. 2021;(95):107528. doi: 10.1016/j.intimp.2021.107528
13. Li Z, Ding Y, Peng Y, et al. Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Front Immunol. 2022;(13):894002. doi: 10.3389/fimmu.2022.894002
14. Mora J, Schlemmer A, Wittig I, et al. Interleukin-38 is released fr om apoptotic cells to lim it inflammatory macrophage responses. J Mol Cell Biol. 2016;8(5):426–438.
doi: 10.1093/jmcb/mjw006
15. Teufel LU, de Graaf DM, Netea MG, et al. Circulating interleukin-38 concentrations in healthy adults. Front Immunol. 2022;(13):964365. doi: 10.3389/fimmu.2022.964365
16. de Graaf DM, Teufel LU, van de Veerdonk FL, et al. IL-38 prevents induction of trained immunity by inhibition of mTOR signaling. J Leukoc Biol. 2021;110(5):907–915.
doi: 10.1002/JLB.3A0220-143RRR
17. van de Veerdonk FL, Stoeckman AK, Wu G, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci U S A. 2012;109(8):3001–3005. doi: 10.1073/pnas.1121534109
18. Yuan XL, Li Y, Pan XH, et al. Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells. Mol Biol (Mosk). 2016;50(3):466–473. (In Russ). doi: 10.7868/S0026898416030137
19. Han Y, Mora J, Huard A, et al. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδ T Cells. Cell Rep. 2019;27(3):835.e5–846.e5.
doi: 10.1016/j.celrep.2019.03.082
20. Zarrabi M, Nazarinia M, Rahimi Jaberi A, et al. Elevated IL-38 Serum Levels in Newly Diagnosed Multiple Sclerosis and Systemic Sclerosis Patients. Med Princ Pract.
2021;30(2):146–153. doi: 10.1159/000510915
21. Ge Y, Huang M, Wu Y, et al. Interleukin-38 protects against sepsis by augmenting immunosuppressive activity of CD4+ CD25+ regulatory T cells. J Cell Mol Med.
2020;24(2):2027–2039. doi: 10.1111/jcmm.14902
22. Wei Y, Lan Y, Zhong Y, et al. Interleukin-38 alleviates cardiac remodelling after myocardial infarction. J Cell Mol Med. 2020;24(1):371–384. doi: 10.1111/jcmm.14741
23. Sun X, Hou T, Cheung E, et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol. 2020;17(6):631–-646.
doi: 10.1038/s41423-019-0300-7
24. de Graaf DM, Maas RJA, Smeekens SP, et al. Human recombinant interleukin-38 suppresses inflammation in mouse models of local and systemic disease. Cytokine.
2021;(137):155334. doi: 10.1016/j.cyto.2020.155334
25. Ge Y, Chen J, Hu Y, et al. IL-38 Alleviates Inflammation in Sepsis in Mice by Inhibiting Macrophage Apoptosis and Activation of the NLRP3 Inflammasome. Mediators Inflamm.
2021;(2021):6370911. doi: 10.1155/2021/6370911
26. de Graaf DM, Jaeger M, van den Munckhof ICL, et al. Reduced concentrations of the B cell cytokine interleukin 38 are associated with cardiovascular disease risk in overweight subjects. Eur J Immunol. 2021;51(3):662–671. doi: 10.1002/eji.201948390
27. Mainieri F, La Bella S, Chiarelli F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents. Biomedicines. 2023;11(3):809. doi: 10.3390/biomedicines11030809
28. Cao J, Hua L, Zhang S, et al. Serum interleukin-38 levels correlated with insulin resistance, liver injury and lipids in non-alcoholic fatty liver disease. Lipids Health Dis. 2022;21(1):70. doi: 10.1186/s12944-022-01676-0
29. Yang N, Song Y, Dong B, et al. Elevated Interleukin-38 Level Associates with Clinical Response to Atorvastatin in Patients with Hyperlipidemia. Cell Physiol Biochem.
2018;49(2):653–661. doi: 10.1159/000493029
30. Yudaeva AD, Stafeev IS, Michurina SS, et al. The interactions between inflammation and insulin resistance: molecular mechanisms in insulin-producing and insulin-dependent tissues. Diabetes mellitus. 2023;26(1):75–81. (In Russ). doi: 10.14341/DM12981
31. Jin X, Qiu T, Li L, et al. Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 2023;13(6):2403–2424. doi: 10.1016/j.apsb.2023.01.012
32. Huang G, Li M, Tian X, et al. The Emerging Roles of IL-36, IL‑37, and IL-38 in Diabetes Mellitus and its Complications. Endocr Metab Immune Disord Drug Targets.
2022;22(10):997–1008. doi: 10.2174/1871530322666220113142533
33. Xu K, Sun J, Chen S, et al. Hydrodynamic delivery of IL‑38 gene alleviates obesity-induced inflammation and insulin resistance. Biochem Biophys Res Commun.
2019;508(1):198–202. doi: 10.1016/j.bbrc.2018.11.114
34. Li Y, Chen S, Sun J, et al. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes. Cell Biol Int. 2020;44(11):2357–2362.
doi: 10.1002/cbin.11428
35. Bochkareva LA, Nedosugova LV, Petunina NA, et al. Some mechanisms of inflammation development in type 2 diabetes mellitus. Diabetes mellitus. 2021;24(4):334–341. (In Russ). doi: 10.14341/DM12746
36. Gurau F, Silvestrini A, Matacchione G, et al. Plasma levels of interleukin-38 in healthy aging and in type 2 diabetes. Diabetes Res Clin Pract. 2021;(171):108585.
doi: 10.1016/j.diabres.2020.108585
37. Liu Y, Chen T, Zhou F, et al. Interleukin-38 increases the insulin sensitivity in children with the type 2 diabetes. Int Immunopharmacol. 2020;(82):106264.
doi: 10.1016/j.intimp.2020.106264
38. Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131.
doi: 10.1038/s41392-022-00955-7
39. Zhang XH, Li Y, Zhou L, Tian GP. Interleukin-38 in atherosclerosis. Clin Chim Acta. 2022;(536):86–93. doi: 10.1016/j.cca.2022.09.017
40. Esmaeilzadeh A, Pouyan S, Erfanmanesh M. Is Interleukin-38 a key player cytokine in atherosclerosis immune gene therapy? Med Hypotheses. 2019;(125):139–143.
doi: 10.1016/j.mehy.2019.02.048
41. Li T, Yan Z, Fan Y, et al. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated. Front Cardiovasc Med. 2023;(9):1077290.
doi: 10.3389/fcvm.2022.107729
42. Zhong Y, Yu K, Wang X, et al. Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment. Mediators Inflamm. 2015;(2015):490120. doi: 10.1155/2015/490120
43. Yagudin TA, Shabanova AT, Liu H. Novel Aspects of Cardiac Ischemia and Reperfusion Injury Mechanisms. Creative surgery and oncology. 2018;8(3):216–224. (In Russ).
doi: 10.24060/2076-3093-2018-8-3-216-224
44. Wei Y, Xing J, Su X, et al. IL-38 attenuates myocardial ischemia-reperfusion injury by inhibiting macrophage inflammation. Immun Inflamm Dis. 2023;11(6):e898. doi: 10.1002/iid3.898
45. Yu Chen H, Dina C, Small AM, et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur Heart J. 2023;44(21):1927–1939.
doi: 10.1093/eurheartj/ehad142
46. The E, de Graaf DM, Zhai Y, et al. Interleukin 38 alleviates aortic valve calcification by inhibition of NLRP3. Proc Natl Acad Sci U S A. 2022;119(36):e2202577119.
doi: 10.1073/pnas.2202577119
47. Ma J, Wu N, Yuan Z, et al. Prognostic value of interleukin-34 and interleukin-38 in patients with newly diagnosed atrial fibrillation. Front Cardiovasc Med. 2023;(9):1072164.
doi: 10.3389/fcvm.2022.1072164
48. Wu Z, Luo C, Zheng B. Progress of Research into the Interleukin-1 Family in Cardiovascular Disease. J Inflamm Res. 2022;(15):6683–6694. doi: 10.2147/JIR.S390915
49. Kurose S, Matsubara Y, Yoshino S, et al. Interleukin-38 suppresses abdominal aortic aneurysm formation in mice by regulating macrophages in an IL1RL2-p38 pathway-dependent manner. Physiol Rep. 2023;11(2):e15581. doi: 10.14814/phy2.15581
50. Xu F, Lin S, Yan X, et al. Interleukin 38 Protects Against Lethal Sepsis. J Infect Dis. 2018;218(7):1175–1184. doi: 10.1093/infdis/jiy289