Москва 125252, ул. Алабяна 13, корпус 1
+7 (495) 098-03-59
Заказать звонок
  • О портале
  • Контакты
  • ...
    Omnidoctor
    Библиотека
    • Издания для врачей
      • Consilium Medicum
      • Педиатрия.Consilium Medicum
      • Современная Онкология
      • Гинекология
      • Терапевтический архив
      • Газета «Участковый терапевт»
      • Газета «Женская консультация»
      • Газета «Участковый педиатр»
      • Справочник поликлинического врача
      • Cardioсоматика
      • Системные гипертензии
    • Издания для провизоров и фармацевтов
      • Газета «Первостольник»
      • Справочник провизора
    • Online-издания
      • Женская консультация
      • Участковый педиатр
      • Участковый терапевт
    Медиатека
    Мероприятия
    Спецпроекты
    • ИммуноГалактика (NEW!)
    • Гормональный оркестр
    • CardioSPACE
    • NeuroFusion (NEW!)
    • Современная Онкология
    • Урологика
    Пресс-центр
    Практикум
      Библиотека
      Медиатека
      Мероприятия
      Спецпроекты
      ИммуноГалактика (NEW!)
      Гормональный оркестр
      CardioSPACE
      NeuroFusion (NEW!)
      Современная Онкология
      Урологика
      Пресс-центр
      Практикум
      Omnidoctor
      Библиотека
      • Издания для врачей
        • Consilium Medicum
        • Педиатрия.Consilium Medicum
        • Современная Онкология
        • Гинекология
        • Терапевтический архив
        • Газета «Участковый терапевт»
        • Газета «Женская консультация»
        • Газета «Участковый педиатр»
        • Справочник поликлинического врача
        • Cardioсоматика
        • Системные гипертензии
      • Издания для провизоров и фармацевтов
        • Газета «Первостольник»
        • Справочник провизора
      • Online-издания
        • Женская консультация
        • Участковый педиатр
        • Участковый терапевт
      Медиатека
      Мероприятия
      Спецпроекты
      • ИммуноГалактика (NEW!)
      • Гормональный оркестр
      • CardioSPACE
      • NeuroFusion (NEW!)
      • Современная Онкология
      • Урологика
      Пресс-центр
      Практикум
        Omnidoctor
        • Библиотека
          • Назад
          • Библиотека
          • Издания для врачей
            • Назад
            • Издания для врачей
            • Consilium Medicum
            • Педиатрия.Consilium Medicum
            • Современная Онкология
            • Гинекология
            • Терапевтический архив
            • Газета «Участковый терапевт»
            • Газета «Женская консультация»
            • Газета «Участковый педиатр»
            • Справочник поликлинического врача
            • Cardioсоматика
            • Системные гипертензии
          • Издания для провизоров и фармацевтов
            • Назад
            • Издания для провизоров и фармацевтов
            • Газета «Первостольник»
            • Справочник провизора
          • Online-издания
            • Назад
            • Online-издания
            • Женская консультация
            • Участковый педиатр
            • Участковый терапевт
        • Медиатека
        • Мероприятия
        • Спецпроекты
          • Назад
          • Спецпроекты
          • ИммуноГалактика (NEW!)
          • Гормональный оркестр
          • CardioSPACE
          • NeuroFusion (NEW!)
          • Современная Онкология
          • Урологика
        • Пресс-центр
        • Практикум
        • Мой кабинет
        • +7 (495) 098-03-59
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        • Вконтакте
        • Telegram
        • YouTube
        • Главная
        • Библиотека
        • Издания для врачей
        • Cardioсоматика
        • Научно-практический журнал Cardioсоматика 2024
        • Научно-практический журнал Cardioсоматика Том 15, №1 (2024)
        • Белок Klotho, фактор роста фибробластов 23 и склеростин при хронической сердечной недостаточности: обзор литературы - Научно-практический журнал Cardioсоматика Том 15, №1 (2024)

        Белок Klotho, фактор роста фибробластов 23 и склеростин при хронической сердечной недостаточности: обзор литературы - Научно-практический журнал Cardioсоматика Том 15, №1 (2024)

        Алиева А.М., Резник Е.В., Котикова И.А., Никитин И.Г. Белок Klotho, фактор роста фибробластов 23 и склеростин при хронической сердечной недостаточности: oбзор литературы. CardioСоматика // 2024.
        Т. 15, № 1. С. 41–53. DOI: https://doi.org/10.17816/CS625473

        ________________________________________________

        Alieva AM, Reznik EV, Kotikova IA, Nikitin IG. Klotho protein, fibroblast growth factor 23, and sclerostin in chronic heart failure: literature review. CardioSomatics. 2024;15(1):41–53. DOI: https://doi.org/10.17816/CS625473

        Белок Klotho, фактор роста фибробластов 23 и склеростин при хронической сердечной недостаточности: обзор литературы

        Алиева А.М., Резник Е.В., Котикова И.А., Никитин И.Г. Белок Klotho, фактор роста фибробластов 23 и склеростин при хронической сердечной недостаточности: oбзор литературы. CardioСоматика // 2024.
        Т. 15, № 1. С. 41–53. DOI: https://doi.org/10.17816/CS625473

        ________________________________________________

        Alieva AM, Reznik EV, Kotikova IA, Nikitin IG. Klotho protein, fibroblast growth factor 23, and sclerostin in chronic heart failure: literature review. CardioSomatics. 2024;15(1):41–53. DOI: https://doi.org/10.17816/CS625473

        • Читать PDF
          Белок Klotho, фактор роста фибробластов 23 и склеростин при хронической сердечной недостаточности: обзор литературы

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        • Аннотация
        • Полный текст
        • Список литературы
        • Авторы
        Аннотация
        Хроническая сердечная недостаточность (ХСН) является глобальной медицинской, социальной и экономической проблемой. ХСН — это синдром, обусловленный дисбалансом нейрогуморальной регуляции сердечно-сосудистой системы, который сопровождается нарушением систолической и/или диастолической функции сердца. В настоящее время продолжаются поиск и изучение новых биологических маркёров, способных обеспечить раннюю диагностику ХСН, служить лабораторным инструментом для оценки эффективности проводящегося лечения или использоваться в качестве прогностических маркёров и критериев стратификации риска. Интерес исследователей сосредоточен на изучении роли белка Klotho, фактора роста фибробластов 23 (FGF23) и склеростина у пациентов с ХСН. Интенсивность экспрессии Klotho уменьшается по мере старения организма, дефекты его выработки были зарегистрированы при различных заболеваниях, ассоциированных со старением. Ось FGF23 / Klotho играет ключевую регуляторную роль при кардиоваскулярной патологии. Триангуляция данных лабораторных, клинических и генетических исследований позволяет предположить, что склеростин связан с заболеваниями сердца, хотя полученные к настоящему времени данные не вполне согласуются друг с другом. Проведённые клинические исследования, посвящённые изучению белка Klotho, FGF-23 и склеростина, указывают на потенциально важную диагностическую и прогностическую значимость их анализа у пациентов с ХСН. Вопросы, связанные с серийным тестированием этих биологических маркёров, в том числе и в аспекте мультибиомаркёрной модели, нуждаются в дальнейшем изучении.

        Ключевые слова: биологические маркёры, сердечно-сосудистые заболевания, белок Klotho, фактор роста фибробластов 23, склеростин

        ________________________________________________

        Chronic heart failure (CHF) is a global medical, social, and economic problem. It is a syndrome caused by imbalanced neurohumoral regulation of the cardiovascular system, which is accompanied by impaired systolic and/or diastolic function of the heart. Currently, the search and study of new biological markers that can help in the early diagnosis of CHF, serve as a laboratory tool for assessing treatment effectiveness, or be used as prognostic markers and risk stratification criteria are ongoing. Researchers focused on studying the role of Klotho protein, fibroblast growth factor 23 (FGF23), and sclerostin in patients with CHF. Klotho expression decreases as the body ages, and impaired production has been reported in various aging-related diseases. The FGF23 / Klotho axis plays a key regulatory role in cardiovascular pathology. Laboratory, clinical, and genetic studies have suggested that sclerostin is associated with heart disease, although available data are not entirely consistent. Clinical work conducted on the study of the Klotho protein, FGF-23, and sclerostin indicates the potentially important diagnostic and prognostic significance of their analysis in patients with CHF. Thus, more studies of the issues related to serial testing of these biological markers, including in the aspect of the multibiomarker model, are needed.

        Keywords: biological markers, cardiovascular diseases, Klotho protein, fibroblast growth factor 23, sclerostin

        Полный текст

        Материалы доступны только для специалистов сферы здравоохранения.
        Чтобы посмотреть материал полностью Авторизуйтесь или зарегистрируйтесь.

        Список литературы
        1. Riccardi M., Sammartino A., Piepoli M., et al. Heart failure: an update from the last years and a look at the near future // ESC Heart Fail. 2022. Vol. 9, N 6. P. 3667–3693.
        doi: 10.1002/ehf2.14257. Erratum in: ESC Heart Fail. 2023. Vol. 10, N 3. P. 2143.
        2. Голухова Е.З., Алиева А.М. Клиническое значение определения натрийуретических пептидов у больных с хронической сердечной недостаточностью // Кардиология и сердечнососудистая хирургия. 2007. № 1. С. 45–51. EDN: HGTYXS
        3. Bozkurt B., Coats A., Tsutsui H., et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure// J Card Fail. 2021. S1071‑9164(21)00050-6.
        doi: 10.1016/j.cardfail.2021.01.022. Epub ahead of print.
        4. Szlagor M., Dybiec J., Młynarska E., et al. Chronic Kidney Disease as a Comorbidity in Heart Failure // Int J Mol Sci. 2023. Vol. 24, N 3. P. 2988. doi: 10.3390/ijms24032988
        5. Голухова Е.З., Теряева Н.Б., Алиева А.М. Натрийуретические пептиды — маркеры и факторы прогноза при хронической сердечной недостаточности // Креативная кардиология. 2007. № 1–2. C. 126–136. EDN: KAOPTV
        6. Kuro-o M., Matsumura Y., Aizawa H., et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing // Nature. 1997. Vol. 390, N 6655. P. 45–51. doi: 10.1038/36285
        7. Алиева А.М., Резник Е.В., Теплова Н.В., и др. Белок Klotho и атеросклеротические сердечно-сосудистые заболевания: продлевая нить жизни // Российский медицинский журнал. 2022. Т. 28, № 5. С. 365–380. doi: 10.17816/medjrf110823
        8. Liu Y., Chen M. Emerging role of α-Klotho in energy metabolism and cardiometabolic diseases // Diabetes Metab Syndr. 2023. Vol. 17, N 10. P. 102854. doi: 10.1016/j.dsx.2023.102854
        9. Prud'homme G., Kurt M., Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations // Front Aging. 2022. N 3. P. 931331. doi: 10.3389/fragi.2022.931331
        10. Tobias J. Sclerostin and Cardiovascular Disease // Curr Osteoporos Rep. 2023. Vol. 21, N 5. P. 519–526. doi: 10.1007/s11914-023-00810-w
        11. Olejnik A., Franczak A., Krzywonos-Zawadzka A., et al. The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases // Biomed Res Int. 2018. N 2018.
        P. 5171945. doi: 10.1155/2018/5171945. Erratum in: Biomed Res Int. 2020. N 2020. P. 1463925.
        12. Алиева А.М., Пинчук Т.В., Кисляков В.А., и др. Фактор роста фибробластов (FGF23) — новый биологический маркер при сердечной недостаточности // Кремлевская медицина. Клинический вестник. 2022. № 1. С. 59–65. doi: 10.26269/pygh-k050
        13. Kuro-O M. The Klotho proteins in health and disease // Nat Rev Nephrol. 2019. Vol. 15, N 1. P. 27–44. doi: 10.1038/s41581-018-0078-3
        14. Thomas S., Li Q., Faul C. Fibroblast growth factor 23, klotho and heparin // Curr Opin Nephrol Hypertens. 2023. Vol. 32, N 4. P. 313–323.  doi: 10.1097/MNH.0000000000000895
        15. Chen G., Liu Y., Goetz R., et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signaling // Nature. 2018. Vol. 553, N 7689. P. 461–466. doi: 10.1038/nature25451
        16. Ranjbar N., Raeisi M., Barzegar M., et al. The possible anti-seizure properties of Klotho // Brain Res. 2023. N 1820. P. 148555. doi: 10.1016/j.brainres.2023.148555
        17. Masuda H., Chikuda H., Suga T., et al. Regulation of multiple ageing-like phenotypes by inducible klotho gene expression in klotho mutant mice // Mech Ageing Dev. 2005. Vol. 126,
        N 12. P. 1274–1283. doi: 10.1016/j.mad.2005.07.007
        18. Espuch-Oliver A., Vazquez-Lorente H., Jurado-Fasoli L., et al. References Values of Soluble α-Klotho Serum Levels Using an Enzyme-Linked Immunosorbent Assay in Healthy Adults Aged 18–85 Years // J Clin Med. 2022. Vol. 11, N 9. P. 2415. doi: 10.3390/jcm11092415
        19. Kresovich J., Bulka C. Low serum klotho associated with all-cause mortality among a nationally representative sample of American adults // J Gerontol A Biol Sci Med Sci. 2022.
        Vol. 3, N 3. P. 452–456. doi: 10.1093/gerona/glab308
        20. Li L., Liu W., Mao Q., et al. Klotho Ameliorates Vascular Calcification via Promoting Autophagy // Oxid Med Cell Longev. 2022. N 2022. P. 7192507. doi: 10.1155/2022/7192507
        21. Mencke R., Hillebrands J; NIGRAM consortium. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology// Ageing Res Rev. 2017. N 35. P. 124–146.
        doi: 10.1016/j.arr.2016.09.001
        22. Wang Y., Wang K., Bao Y., et al. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway // Tissue Cell. 2022. N 76. P. 101812. doi: 10.1016/j.tice.2022.101812
        23. Li X., Zhai Y., Yao Q., et al. Up-regulation of Myocardial Klotho Expression to Promote Cardiac Functional Recovery in Old Mice following Endotoxemia // Res Sq [Preprint]. 2023. rs.3.rs-2949854. doi: 10.21203/rs.3.rs-2949854/v1
        24. Ding J., Tang Q., Luo B., et al. Klotho inhibits angiotensin II‑induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway// Eur J Pharmacol. 2019. N 859. P. 172549. doi: 10.1016/j.ejphar.2019.172549
        25. Wang K., Li Z., Li Y., et al. Cardioprotection of Klotho against myocardial infarction-induced heart failure through inducing autophagy// Mech Ageing Dev. 2022. N 207. P. 111714.
        doi: 10.1016/j.mad.2022.111714
        26. Kamel S., Baky N., Karkeet R., et al. Astaxanthin extenuates the inhibition of aldehyde dehydrogenase and Klotho protein expression in cyclophosphamide-induced acute cardiomyopathic rat model // Clin Exp Pharmacol Physiol. 2022. Vol. 49, N 2. P. 291–301. doi: 10.1111/1440-1681.13598
        27. Zhuang X., Sun X., Zhou H., et al. Klotho attenuated Doxorubicin-induced cardiomyopathy by alleviating Dynamin-related protein 1-mediated mitochondrial dysfunction // Mech Ageing Dev. 2021. N 195. P. 111442. doi: 10.1016/j.mad.2021.111442
        28. Chen W. Soluble Alpha-Klotho Alleviates Cardiac Fibrosis without Altering Cardiomyocytes Renewal // Int J Mol Sci. 2020. Vol. 21, N 6. P. 2186. doi: 10.3390/ijms21062186
        29. Xiong X., Wang G., Wang Y., et al. Klotho protects against aged myocardial cells by attenuating ferroptosis // Exp Gerontol. 2023. N 175. P. 112157. doi: 10.1016/j.exger.2023.112157
        30. Cai J., Zhang L., Chen C., et al. Association between serum Klotho concentration and heart failure in adults, a cross-sectional study from NHANES 2007-2016 // Int J Cardiol. 2023.
        N 370. P. 236–243. doi: 10.1016/j.ijcard.2022.11.010
        31. Luo W., Wei N., Sun Z., Gong Y. Association between serum α-klotho level and the prevalence of heart failure in the general population // Cardiovasc J Afr. 2023. N 34. P. 1–6.
        doi: 10.5830/CVJA-2023-042. Epub ahead of print.
        32. Mora-Fernandez C., Perez A., Mollar A., et al. Short-term changes in klotho and FGF23 in heart failure with reduced ejection fraction-a substudy of the DAPA-VO2 study // Front Cardiovasc Med. 2023. N 10. P. 1242108. doi: 10.3389/fcvm.2023.1242108
        33. Nakano T., Kishimoto H., Tokumoto M. Direct and indirect effects of fibroblast growth factor 23 on the heart // Front Endocrinol (Lausanne). 2023. N 14. P. 1059179.
        doi: 10.3389/fendo.2023.1059179
        34. Agoro R., White K. Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions // Nat Rev Nephrol. 2023. Vol. 19, N 3. P. 185–193.
        doi: 10.1038/s41581-022-00665-x
        35. Garcia-Fernandez N., Lavilla J., Martín P., et al. Increased fibroblast growth factor 23 in heart failure: biomarker, mechanism, or both? // Am J Hypertens. 2019. Vol. 32, N 1. P. 15–17. doi: 10.1093/ajh/hpy153
        36. Ho B., Bergwitz C. FGF23 signalling and physiology // J Mol Endocrinol. 2022. Vol. 66, N 2. P. R23–R32. doi: 10.1530/JME-20-0178
        37. Suzuki Y., Kuzina E., An S., et al. FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with α-Klotho // Proc Natl Acad Sci U S A. 2020. Vol. 117, N 50.
        P. 31800–31807. doi: 10.1073/pnas.2018554117
        38. Cipriani C., Minisola S., Colangelo L., et al. FGF23 functions and disease // Minerva Endocrinol (Torino). 2022. Vol. 47, N 4. P. 437–448. doi: 10.23736/S2724-6507.21.03378-2
        39. Dastghaib S., Koohpeyma F., Shams M., et al. New concepts in regulation and function of the FGF23 // Clin Exp Med. 2023. Vol. 23, N 4. P. 1055–1066.
        doi: 10.1007/s10238-022-00844-x
        40. Leifheit-Nestler M., Haffner D. Paracrine Effects of FGF23 on the Heart // Front Endocrinol (Lausanne). 2018. N 9. P. 278.  doi: 10.3389/fendo.2018.00278
        41. Grabner A., Amaral A., Schramm K., et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy // Cell Metab. 2015. Vol. 22, N 6.
        P. 1020–1032. doi: 10.1016/j.cmet.2015.09.002
        42. Liu M., Xia P., Tan Z., et al. Fibroblast growth factor-23 and the risk of cardiovascular diseases and mortality in the general population: A systematic review and dose-response meta-analysis // Front Cardiovasc Med. 2022. N 9. P. 989574. doi: 10.3389/fcvm.2022.989574
        43. Vergaro G., Del Franco A., Aimo A., et al. Intact fibroblast growth factor 23 in heart failure with reduced and mildly reduced ejection fraction // BMC Cardiovasc Disord. 2023. Vol. 23, N 1. P. 433. doi: 10.1186/s12872-023-03441-2
        44. von Jeinsen B., Sopova K., Palapies L., et al. Bone marrow and plasma FGF-23 in heart failure patients: novel insights into the heart-bone axis // ESC Heart Fail. 2019. Vol. 6, N 3.
        P. 536–544. doi: 10.1002/ehf2.12416
        45. Elzayat R., Bahbah W., Elzaiat R., Elgazzar B. Fibroblast growth factor 23 in children with or without heart failure: a prospective study // BMJ Paediatr Open. 2023. Vol. 7, N 1.
        P. e001753. doi: 10.1136/bmjpo-2022-001753
        46. Roy C., Lejeune S., Slimani A., et al. Fibroblast growth factor 23: a biomarker of fibrosis and prognosis in heart failure with preserved ejection fraction // ESC Heart Fail. 2020. Vol. 7,
        N 5. P. 2494–2507. doi: 10.1002/ehf2.12816
        47. Hofer F., Hammer A., Pailer U., et al. Relationship of Fibroblast Growth Factor 23 With Hospitalization for Heart Failure and Cardiovascular Outcomes in Patients Undergoing Cardiac Surgery // J Am Heart Assoc. 2023. Vol. 12, N 5. P. 027875. doi: 10.1161/JAHA.122.027875
        48. Binnenmars S., Hoogslag G., Yeung S., et al. Fibroblast Growth Factor 23 and Risk of New Onset Heart Failure with Preserved or Reduced Ejection Fraction: The PREVEND Study // J Am Heart Assoc. 2022. Vol. 11, N 15. P. e024952. doi: 10.1161/JAHA.121.024952
        49. Oniszczuk A., Kaczmarek A., Kaczmarek M., et al. Sclerostin as a biomarker of physical exercise in osteoporosis: A narrative review // Front Endocrinol (Lausanne). 2022. N 13.
        P. 954895.  doi: 10.3389/fendo.2022.954895
        50. Jaśkiewicz Ł., Chmielewski G., Kuna J., et al. The Role of Sclerostin in Rheumatic Diseases: A Review // J Clin Med. 2023. Vol. 12, N 19. P. 6248. doi: 10.3390/jcm12196248
        51. Sanabria-de la Torre R., González-Salvatierra S., Garcia-Fontana C., et al. Exploring the Role of Sclerostin as a Biomarker of Cardiovascular Disease and Mortality: A Scoping Review // Int J Environ Res Public Health. 2022. Vol. 19, N 23. P. 15981. doi: 10.3390/ijerph192315981
        52. Vasiliadis E., Evangelopoulos D., Kaspiris A., et al. Sclerostin and Its Involvement in the Pathogenesis of Idiopathic Scoliosis // J Clin Med. 2021. Vol. 10, N 22. P. 5286.
        doi: 10.3390/jcm10225286
        53. Maeda K., Kobayashi Y., Koide M., et al. The Regulation of Bone Metabolism and Disorders by Wnt Signaling // Int J Mol Sci. 2019. Vol. 20, N 22. P. 5525. doi: 10.3390/ijms20225525
        54. Tu X., Delgado-Calle J., Condon K.W., et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone // Proc Natl Acad Sci U S A. 2015. Vol. 112, N 5.
        P. E478–E486.  doi: 10.1073/pnas.1409857112
        55. Daniele G., Winnier D., Mari A., et al. Sclerostin and Insulin Resistance in Prediabetes: Evidence of a Cross Talk Between Bone and Glucose Metabolism // Diabetes Care. 2015.
        Vol. 38, N 8. P. 1509–1517. doi: 10.2337/dc14-2989
        56. Matsui S., Yasui T., Kasai K., et al. Increase in Circulating Sclerostin at the Early Stage of Menopausal Transition in Japanese Women // Maturitas. 2016. N 83. P. 72–77.
        doi: 10.1016/j.maturitas.2015.10.001
        57. Mackey R., Venkitachalam L., Sutton-Tyrrell K. Calcifications, Arterial Stiffness and Atherosclerosis// Adv Cardiol. 2007. N 44. P. 234–244. doi: 10.1159/000096744
        58. Sabancilar I., Unsal V., Demir F., et al. Does oxidative status affect serum sclerostin levels in patients with type 2 diabetes mellitus? // Folia Med (Plovdiv). 2023. Vol. 65, N 1. P. 46–52. doi: 10.3897/folmed.65.e72953
        59. Golledge J., Thanigaimani S. Role of sclerostin in cardiovascular disease // Arterioscler Thromb Vasc Biol. 2022. Vol. 42, N 7. P. e187–e202.  doi: 10.1161/ATVBAHA.122.317635
        60. Frysz M., Gergei I., Scharnagl H., et al. Circulating Sclerostin Levels Are Positively Related to Coronary Artery Disease Severity and Related Risk Factors // J Bone Miner Res. 2022. Vol. 37, N 2. P. 273–284. doi: 10.1002/jbmr.4467

        ________________________________________________

        1. Riccardi M, Sammartino AM, Piepoli M, et al. Heart failure: an update from the last years and a look at the near future. ESC Heart Fail. 2022;9(6):3667–3693. doi: 10.1002/ehf2.14257. Erratum in: ESC Heart Fail. 2023;10(3):2143.
        2. Golukhova EZ, Alieva AM. Clinical value of natriuretic peptides detection at the patients with chronic heart failure. Kardiologiya i Serdechno-Sosudistaya Khirurgiya. 2007;(1):45–51. EDN: HGTYXS
        3. Bozkurt B, Coats AJ, Tsutsui H, et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021:S1071‑9164(21)00050-6.
        doi: 10.1016/j.cardfail.2021.01.022. Epub ahead of print.
        4. Szlagor M, Dybiec J, Młynarska E, et al. Chronic Kidney Disease as a Comorbidity in Heart Failure. Int J Mol Sci. 2023;24(3):2988. doi: 10.3390/ijms24032988
        5. Golukhova EZ, Teryaeva NB, Alieva AM. Natriuretic peptides — markers and prognosis factors in chronic heart failure. Creative Cardiology. 2007;(1–2):126–136. (In Russ.) EDN: KAOPTV
        6. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51. doi: 10.1038/36285
        7. Alieva AM, Reznik EV, Teplova NV, et al. Klotho protein and atherosclerotic cardiovascular diseases: prolonging the thread of life. Russian Medicine. 2022;28(5):365–380.
        doi: 10.17816/medjrf110823
        8. Liu Y, Chen M. Emerging role of α-Klotho in energy metabolism and cardiometabolic diseases. Diabetes Metab Syndr. 2023;17(10):102854. doi: 10.1016/j.dsx.2023.102854
        9. Prud'homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. Front Aging. 2022;(3):931331. doi: 10.3389/fragi.2022.931331
        10. Tobias JH. Sclerostin and Cardiovascular Disease. Curr Osteoporos Rep. 2023;21(5):519–526. doi: 10.1007/s11914-023-00810-w
        11. Olejnik A, Franczak A, Krzywonos-Zawadzka A, et al. The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases. Biomed Res Int. 2018;(2018):5171945.
        doi: 10.1155/2018/5171945. Erratum in: Biomed Res Int. 2020;(2020):1463925.
        12. Alieva AM, Pinchuk TV, Kislyakov VA, et al. Fibroblast growth factor-23 (fgf23) is a novel biological marker in heart failure. KMJ. 2022;(1):59–65. doi: 10.26269/pygh-k050
        13. Kuro-O M. The Klotho proteins in health and disease. Nat Rev Nephrol. 2019;15(1):27–44. doi: 10.1038/s41581-018-0078-3
        14. Thomas SM, Li Q, Faul C. Fibroblast growth factor 23, klotho and heparin. Curr Opin Nephrol Hypertens. 2023;32(4):313–323. doi: 10.1097/MNH.0000000000000895
        15. Chen G, Liu Y, Goetz R, et al. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature. 2018;553(7689):461–466. doi: 10.1038/nature25451
        16. Ranjbar N, Raeisi M, Barzegar M, et al. The possible anti-seizure properties of Klotho. Brain Res. 2023;(1820):148555.  doi: 10.1016/j.brainres.2023.148555
        17. Masuda H, Chikuda H, Suga T, et al. Regulation of multiple ageing-like phenotypes by inducible klotho gene expression in klotho mutant mice. Mech Ageing Dev.
        2005;126(12):1274–1283. doi: 10.1016/j.mad.2005.07.007
        18. Espuch-Oliver A, Vázquez-Lorente H, Jurado-Fasoli L, et al. References Values of Soluble α-Klotho Serum Levels Using an Enzyme-Linked Immunosorbent Assay in Healthy Adults Aged 18–85 Years. J Clin Med. 2022;11(9):2415. doi: 10.3390/jcm11092415
        19. Kresovich JK, Bulka CM. Low Serum Klotho Associated With All-cause Mortality Among a Nationally Representative Sample of American Adults. J Gerontol A Biol Sci Med Sci. 2022;77(3):452–456. doi: 10.1093/gerona/glab308
        20. Li L, Liu W, Mao Q, et al. Klotho Ameliorates Vascular Calcification via Promoting Autophagy. Oxid Med Cell Longev. 2022;(2022):7192507. doi: 10.1155/2022/7192507
        21. Mencke R, Hillebrands JL; NIGRAM consortium. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev. 2017;(35):124–146.
        doi: 10.1016/j.arr.2016.09.001
        22. Wang Y, Wang K, Bao Y, et al. The serum soluble Klotho alleviates cardiac aging and regulates M2a/M2c macrophage polarization via inhibiting TLR4/Myd88/NF-κB pathway. Tissue Cell. 2022;(76):101812. doi: 10.1016/j.tice.2022.101812
        23. Li X, Zhai Y, Yao Q, et al. Up-regulation of Myocardial Klotho Expression to Promote Cardiac Functional Recovery in Old Mice following Endotoxemia. Res Sq [Preprint].
        2023:rs.3.rs-2949854. doi: 10.21203/rs.3.rs-2949854/v1
        24. Ding J, Tang Q, Luo B, et al. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway. Eur J Pharmacol. 2019;(859):172549. doi: 10.1016/j.ejphar.2019.172549
        25. Wang K, Li Z, Li Y, et al. Cardioprotection of Klotho against myocardial infarction-induced heart failure through inducing autophagy. Mech Ageing Dev. 2022;(207):111714.
        doi: 10.1016/j.mad.2022.111714
        26. Kamel SS, Baky NAA, Karkeet RM, et al. Astaxanthin extenuates the inhibition of aldehyde dehydrogenase and Klotho protein expression in cyclophosphamide-induced acute cardiomyopathic rat model. Clin Exp Pharmacol Physiol. 2022;49(2):291–301. doi: 10.1111/1440-1681.13598
        27. Zhuang X, Sun X, Zhou H, et al. Klotho attenuated Doxorubicin-induced cardiomyopathy by alleviating Dynamin-related protein 1-mediated mitochondrial dysfunction. Mech Ageing Dev. 2021;(195):111442. doi: 10.1016/j.mad.2021.111442
        28. Chen WY. Soluble Alpha-Klotho Alleviates Cardiac Fibrosis without Altering Cardiomyocytes Renewal. Int J Mol Sci. 2020;21(6):2186. doi: 10.3390/ijms21062186
        29. Xiong X, Wang G, Wang Y, et al. Klotho protects against aged myocardial cells by attenuating ferroptosis. Exp Gerontol. 2023;(175):112157. doi: 10.1016/j.exger.2023.112157
        30. Cai J, Zhang L, Chen C, et al. Association between serum Klotho concentration and heart failure in adults, a cross-sectional study from NHANES 2007-2016. Int J Cardiol.
        2023;(370):236–243.  doi: 10.1016/j.ijcard.2022.11.010
        31. Luo W, Wei N, Sun Z, Gong Y. Association between serum α-klotho level and the prevalence of heart failure in the general population. Cardiovasc J Afr. 2023;(34):1–6.
        doi: 10.5830/CVJA-2023-042.  Epub ahead of print.
        32. Mora-Fernández C, Pérez A, Mollar A, et al. Short-term changes in klotho and FGF23 in heart failure with reduced ejection fraction-a substudy of the DAPA-VO2 study. Front Cardiovasc Med. 2023;(10):1242108. doi: 10.3389/fcvm.2023.1242108
        33. Nakano T, Kishimoto H, Tokumoto M. Direct and indirect effects of fibroblast growth factor 23 on the heart. Front Endocrinol (Lausanne). 2023;(14):1059179.
        doi: 10.3389/fendo.2023.1059179
        34. Agoro R, White KE. Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions. Nat Rev Nephrol. 2023;19(3):185–193.
        doi: 10.1038/s41581-022-00665-x
        35. Garcia-Fernandez N, Lavilla J, Martín PL, et al. Increased Fibroblast Growth Factor 23 in Heart Failure: Biomarker, Mechanism, or Both? Am J Hypertens. 2019;32(1):15–17.
        doi: 10.1093/ajh/hpy153
        36. Ho BB, Bergwitz C. FGF23 signalling and physiology. J Mol Endocrinol. 2021;66(2):R23–R32. doi: 10.1530/JME-20-0178
        37. Suzuki Y, Kuzina E, An SJ, et al. FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with α-Klotho. Proc Natl Acad Sci U S A.
        2020;117(50):31800–31807.  doi: 10.1073/pnas.2018554117
        38. Cipriani C, Minisola S, Colangelo L, et al. FGF23 functions and disease. Minerva Endocrinol (Torino). 2022;47(4):437–448. doi: 10.23736/S2724-6507.21.03378-2
        39. Dastghaib S, Koohpeyma F, Shams M, et al. New concepts in regulation and function of the FGF23. Clin Exp Med.  2023;23(4):1055–1066. doi: 10.1007/s10238-022-00844-x
        40. Leifheit-Nestler M, Haffner D. Paracrine Effects of FGF23 on the Heart. Front Endocrinol (Lausanne). 2018;(9):278. doi: 10.3389/fendo.2018.00278
        41. Grabner A, Amaral AP, Schramm K, et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metab. 2015;22(6):1020–1032.
        doi: 10.1016/j.cmet.2015.09.002
        42. Liu M, Xia P, Tan Z, et al. Fibroblast growth factor-23 and the risk of cardiovascular diseases and mortality in the general population: A systematic review and dose-response meta-analysis. Front Cardiovasc Med. 2022;(9):989574. doi: 10.3389/fcvm.2022.989574
        43. Vergaro G, Del Franco A, Aimo A, et al. Intact fibroblast growth factor 23 in heart failure with reduced and mildly reduced ejection fraction. BMC Cardiovasc Disord. 2023;23(1):433. doi: 10.1186/s12872-023-03441-2
        44. von Jeinsen B, Sopova K, Palapies L, et al. Bone marrow and plasma FGF-23 in heart failure patients: novel insights into the heart-bone axis. ESC Heart Fail. 2019;6(3):536–544.
        doi: 10.1002/ehf2.12416
        45. Elzayat RS, Bahbah WA, Elzaiat RS, Elgazzar BA. Fibroblast growth factor 23 in children with or without heart failure: a prospective study. BMJ Paediatr Open. 2023;7(1):e001753.
        doi: 10.1136/bmjpo-2022-001753
        46. Roy C, Lejeune S, Slimani A, et al. Fibroblast growth factor 23: a biomarker of fibrosis and prognosis in heart failure with preserved ejection fraction. ESC Heart Fail.
        2020;7(5):2494–2507.  doi: 10.1002/ehf2.12816
        47. Hofer F, Hammer A, Pailer U, et al. Relationship of Fibroblast Growth Factor 23 With Hospitalization for Heart Failure and Cardiovascular Outcomes in Patients Undergoing Cardiac Surgery. J Am Heart Assoc. 2023;12(5):e027875. doi: 10.1161/JAHA.122.027875
        48. Binnenmars SH, Hoogslag GE, Yeung SMH, et al. Fibroblast Growth Factor 23 and Risk of New Onset Heart Failure With Preserved or Reduced Ejection Fraction: The PREVEND Study. J Am Heart Assoc. 2022;11(15):e024952. doi: 10.1161/JAHA.121.024952
        49. Oniszczuk A, Kaczmarek A, Kaczmarek M, et al. Sclerostin as a biomarker of physical exercise in osteoporosis: A narrative review. Front Endocrinol (Lausanne). 2022;(13):954895. doi: 10.3389/fendo.2022.954895
        50. Jaśkiewicz Ł, Chmielewski G, Kuna J, et al. The Role of Sclerostin in Rheumatic Diseases: A Review. J Clin Med. 2023;12(19):6248. doi: 10.3390/jcm12196248
        51. Sanabria-de la Torre R, González-Salvatierra S, García-Fontana C, et al. Exploring the Role of Sclerostin as a Biomarker of Cardiovascular Disease and Mortality: A Scoping Review. Int J Environ Res Public Health. 2022;19(23):15981. doi: 10.3390/ijerph192315981
        52. Vasiliadis ES, Evangelopoulos DS, Kaspiris A, et al. Sclerostin and Its Involvement in the Pathogenesis of Idiopathic Scoliosis. J Clin Med. 2021;10(22):5286.
        doi: 10.3390/jcm10225286
        53. Maeda K, Kobayashi Y, Koide M, et al. The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci. 2019;20(22):5525. doi: 10.3390/ijms20225525
        54. Tu X, Delgado-Calle J, Condon KW, et al. Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone. Proc Natl Acad Sci U S A. 2015;112(5):E478–E486. doi: 10.1073/pnas.1409857112
        55. Daniele G, Winnier D, Mari A, et al. Sclerostin and Insulin Resistance in Prediabetes: Evidence of a Cross Talk Between Bone and Glucose Metabolism. Diabetes Care. 2015;38(8):1509–1517. doi: 10.2337/dc14-2989
        56. Matsui S, Yasui T, Kasai K, et al. Increase in circulating sclerostin at the early stage of menopausal transition in Japanese women. Maturitas. 2016;(83):72–77.
        doi: 10.1016/j.maturitas.2015.10.001
        57. Mackey RH, Venkitachalam L, Sutton-Tyrrell K. Calcifications, arterial stiffness and atherosclerosis. Adv Cardiol. 2007;(44):234–244. doi: 10.1159/000096744
        58. Sabancilar I, Unsal V, Demir F, et al. Does oxidative status affect serum sclerostin levels in patients with type 2 diabetes mellitus? Folia Med (Plovdiv). 2023;65(1):46–52.
        doi: 10.3897/folmed.65.e72953
        59. Golledge J, Thanigaimani S. Role of Sclerostin in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2022;42(7):e187–e202. doi: 10.1161/ATVBAHA.122.317635
        60. Frysz M, Gergei I, Scharnagl H, et al. Circulating Sclerostin Levels Are Positively Related to Coronary Artery Disease Severity and Related Risk Factors. J Bone Miner Res. 2022;37(2):273–284. doi: 10.1002/jbmr.4467

        Авторы
        А.М. Алиева*, Е.В. Резник, И.А. Котикова, И.Г. Никитин

        Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия
        *amisha_alieva@mail.ru

        ________________________________________________

        Amina M. Alieva*, Elena V. Reznik, Irina A. Kotikova, Igor G. Nikitin

        Pirogov Russian National Research Medical University, Moscow, Russia
        *amisha_alieva@mail.ru


        Поделиться
        Назад к списку
        Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.

        Ключевые слова

        артериальная гипертензия дети артериальная гипертония лечение сахарный диабет COVID-19 ишемическая болезнь сердца диагностика беременность ожирение сердечно-сосудистые заболевания хроническая сердечная недостаточность рак молочной железы факторы риска метаболический синдром хроническая болезнь почек хроническая обструктивная болезнь легких качество жизни профилактика сахарный диабет 2-го типа фибрилляция предсердий инфаркт миокарда бесплодие антигипертензивная терапия прогноз сердечная недостаточность химиотерапия атеросклероз бронхиальная астма неалкогольная жировая болезнь печени таргетная терапия эффективность амлодипин нестероидные противовоспалительные препараты витамин D бактериальный вагиноз ревматоидный артрит гастроэзофагеальная рефлюксная болезнь реабилитация вирус папилломы человека безопасность коморбидность болезнь Крона атопический дерматит эндометриоз пробиотики язвенный колит инсулинорезистентность эндотелиальная дисфункция комбинированные оральные контрацептивы
        Узнавайте первым
        Подпишитесь, чтобы получать информацию о самых интересных событиях, последних новостях.
        Рассылка
        Новости
        Мероприятия
        Актуальные вебинары, конференции, семинары и т.д.
        Медиатека
        Записи вебинаров, подкасты, статьи и интервью.
        Библиотека
        Материалы для врачей-клиницистов:
        — Электронная...
        Наши контакты
        +7 (495) 098-03-59
        Заказать звонок
        Москва 125252, ул. Алабяна 13, корпус 1
        info@omnidoctor.ru
        Портал
        О портале
        История
        Лицензии
        Партнеры
        Реквизиты
        Об издательстве "Консилиум Медикум"
        Политика обработки ПД
        Пресс-центр
        Медиатека
        Библиотека
        Издания для врачей
        Издания для провизоров и фармацевтов
        Online-издания
        Мероприятия
        © 2025 Все права защищены.
        Подождите секунду, мы ищем Расширенный поиск
        Мы используем инструмент веб-аналитики Яндекс Метрика, который посредством обработки файлов «cookie» позволяет анализировать данные о посещаемости сайта, что помогает нам улучшить работу сайта, повысить его удобство и производительность. Соответственно, продолжая пользоваться сайтом, вы соглашаетесь на использование файлов «cookie» и их дальнейшую обработку сервисом Яндекс Метрика. Вы можете блокировать и (или) удалять файлы «cookie» в настройках своего веб-браузера.
        Я согласен(-на)