В настоящее время появляется всё больше данных о том, что у лиц с сердечно-сосудистыми заболеваниями, включая ишемическую болезнь сердца, присутствует более высокая вероятность развития такой патологии, как саркопения, остеопения, остеосаркопения, саркопеническое и остеосаркопеническое ожирение, что, в свою очередь, связано с повышенным риском смертности. Изменения в опорно-двигательном аппарате и жировой ткани оказывают значительное влияние на качество жизни пациентов и, кроме того, являются важной клинической проблемой. Предполагается, что между вышеописанными нарушениями и ишемической болезнью сердца существует патогенетическая связь с возможностью взаимного отягощения. В связи с этим поиск актуальных и точных маркёров, отражающих тяжесть и характеризующих прогноз комплекса патологических состояний, необходим на фоне увеличения доли коморбидных пациентов в общей популяции. В статье рассмотрены основные понятия возрастных нарушений состава тела и молекулярные маркёры с акцентом на новые и потенциально перспективные, которые могли бы помочь в выявлении, оценке степени тяжести и прогнозировании атеросклероза, включая ишемическую болезнь сердца, и различных нарушений костно-мышечного гомеостаза, отражающих общность их патогенеза.
Currently, increasing evidence shows that people with cardiovascular diseases, including coronary heart disease, have a higher risk of developing pathologies such as sarcopenia, osteopenia, osteosarcopenia, sarcopenic, and osteosarcopenic obesity, which is associated with increased mortality risk. Musculoskeletal and adipose tissue changes have significantly affected the quality of life of patients and are important clinical problems. It is assumed that between the aforementioned disorders and coronary heart disease, a pathogenetic connection with the possibility of mutual aggravation exists. Accordingly, the search for relevant and accurate markers that reflect the severity and characterize the prognosis of a complex of pathological conditions is necessary given the increased proportion of patients in the general population with comorbidities. The article reviews the basic concepts of age-related disorders of body composition and molecular markers and emphasizes on new and potentially promising ones. The results can help in identifying and assessing the severity and prognosis of atherosclerosis, including coronary heart disease, and various disorders of musculoskeletal homeostasis, which reflects the commonality of their pathogenesis.
1. Casati M., Costa A.S., Capitanio D., et al. The Biological Foundations of Sarcopenia: Established and Promising Markers // Front Med (Lausanne). 2019. N 6. P. 184.
doi: 10.3389/fmed.2019.00184
2. Lee K. Association of osteosarcopenic obesity and its components: osteoporosis, sarcopenia and obesity with insulin resistance // J Bone Miner Metab. 2020. Vol. 38, N 5.
P. 695–701. doi: 10.1007/s00774-020-01104-2
3. Keramidaki K., Tsagari A., Hiona M., Risvas G. Osteosarcopenic obesity, the coexistence of osteoporosis, sarcopenia and obesity and consequences in the quality of life in older adults ≥65 years-old in Greece // J Frailty Sarcopenia Falls. 2019. Vol. 4, N 4. P. 91–101. doi: 10.22540/JFSF-04-091
4. Zhang N., Zhu W.L., Liu X.H., et al. Prevalence and prognostic implications of sarcopenia in older patients with coronary heart disease // J Geriatr Cardiol. 2019. Vol. 16, N 10.
P. 756–763. doi: 10.11909/j.issn.1671-5411.2019.10.002
5. Hong S.-H., Choi K.M. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences // Int J Mol Sci. 2020. Vol. 21, N 2. P. 494.
doi: 10.3390/ijms21020494
6. Cruz-Jentoft A.J., Bahat G., Bauer J., et al. Sarcopenia: revised European consensus on definition and diagnosis // Age and Ageing. 2019. Vol. 48, N 1. P. 16–31.
doi: 10.1093/ageing/afy169. Erratum in: Age Ageing. 2019. Vol. 48, N 4. P. 601.
7. Uchida S., Kamiya K., Hamazaki N., et al. Association between sarcopenia and atherosclerosis in elderly patients with ischemic heart disease // Heart Vessels. 2020. Vol. 35, N 6.
P. 769–775. doi: 10.1007/s00380-020-01554-8
8. He N., Zhang Y., Zhang L., et al. Relationship Between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview // Front Cardiovasc Med. 2021. N 8. P. 743710.
doi: 10.3389/fcvm.2021.743710
9. Xia N., Cai Y., Wang W., et al. Association of bone-related biomarkers with femoral neck bone strength // BMC Musculoskelet Disord. 2022. Vol. 23, N 1. P. 482.
doi: 10.1186/s12891-022-05427-1
10. Khandkar C., Vaidya K., Karimi Galougahi K., Patel S. Low bone mineral density and coronary artery disease: A systematic review and meta-analysis // Int J Cardiol Heart Vasc. 2021. N 37. P. 100891. doi: 10.1016/j.ijcha.2021.100891
11. den Uyl D., Nurmohamed M., van Tuyl L., et al. (Sub)clinical cardiovascular disease is associated with increased bone loss and fracture risk; a systematic review of the association between cardiovascular disease and osteoporosis // Arthritis Res Ther. 2011. Vol. 13, N 1. P. R5. doi: 10.1186/ar3224
12. Гребенникова Т.А., Цориев Т.Т., Воробьёва Ю.Р., Белая З.Е. Остеосаркопения: патогенез, диагностика и возможности терапии // Вестник РАМН. 2020. Т. 75, № 3.
C. 240–249. doi: 10.15690/vramn1243
13. Fahimfar N., Parsaiyan H., Khalagi K., et al. The Association of Cardiovascular Diseases Risk Scores and Osteosarcopenia Among Older Adult Populations: The Results of Bushehr Elderly Health (BEH) Program // Calcif Tissue Int. 2023. Vol. 112, N 4. P. 422–429. doi: 10.1007/s00223-022-01059-8
14. Caffarelli C., Al Refaie A., Baldassini L., et al. Bone fragility, sarcopenia and cardiac calcifications in an elderly population: a preliminary study // Aging Clin Exp Res. 2023. Vol. 35.
P. 1097–1105. doi: 10.1007/s40520-023-02393-z
15. Park C.H., Lee Y.T., Yoon K.J. Association between osteosarcopenia and coronary artery calcification in asymptomatic individuals // Sci Rep. 2022. Vol. 12, N 1. P. 2231.
doi: 10.1038/s41598-021-02640-1
16. Бернс С.А., Шептулина А.Ф., Мамутова Э.М., и др. Саркопеническое ожирение: эпидемиология, патогенез и особенности диагностики // Кардиоваскулярная терапия и профилактика. 2023. Т. 22, № 6. С. 78–85. doi: 10.15829/1728-8800-2023-3576
17. Santana N.M., Mendes R.M.L., Silva N.F., Pinho C.P.S. Sarcopenia and sarcopenic obesity as prognostic predictors in hospitalized elderly patients with acute myocardial infarction // Einstein (Sao Paulo). 2019. Vol. 17, N 4. P. eAO4632. doi: 10.31744/einstein_journal/2019AO4632
18. Sato R., Okada K., Akiyama E., et al. "Impact of sarcopenic obesity on long-term clinical outcomes after ST-segment elevation myocardial infarction" // Atherosclerosis. 2021. N 335. P. 135–141. doi: 10.1016/j.atherosclerosis.2021.08.038
19. Silveira E.A., da Silva Filho R.R., Spexoto M.C.B., et al. The Role of Sarcopenic Obesity in Cancer and Cardiovascular Disease: A Synthesis of the Evidence on Pathophysiological Aspects and Clinical Implications // Int J Mol Sci. 2021. Vol. 22, N 9. P. 4339. doi: 10.3390/ijms22094339
20. Li F., Bai T., Ren Y., et al. A systematic review and meta-analysis of the association between sarcopenia and myocardial infarction // BMC Geriatr. 2023. Vol. 23, N 1. P. 11.
doi: 10.1186/s12877-022-03712-1
21. Hu K., Deya Edelen E., Zhuo W., et al. Understanding the Consequences of Fatty Bone and Fatty Muscle: How the Osteosarcopenic Adiposity Phenotype Uncovers the Deterioration of Body Composition // Metabolites. 2023. Vol. 13, N 10. P. 1056. doi: 10.3390/metabo13101056
22. Cardoso A.L., Fernandes A., Aguilar-Pimentel J.A., et al. Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases // Ageing Res Rev. 2018. N 47. P. 214–277. doi: 10.1016/j.arr.2018.07.004
23. Sato R., Vatic M., da Fonseca G.W.P., von Haehling S. Sarcopenia and Frailty in Heart Failure: Is There a Biomarker Signature? // Curr Heart Fail Rep. 2022. Vol. 19, N 6. P. 400–411. doi: 10.1007/s11897-022-00575-w
24. Macari S., Madeira M.F.M., Lima I.L.A., et al. ST2 regulates bone loss in a site-dependent and estrogen-dependent manner // J Cell Biochem. 2018. Vol. 119, N 10. Р. 8511–8521.
doi: 10.1002/jcb.27080
25. Hughes M.F., Appelbaum S., Havulinna A.S., et al. ST2 may not be a useful predictor for incident cardiovascular events, heart failure and mortality // Heart. 2014. Vol. 100, N 21.
Р. 1715–1721. doi: 10.1136/heartjnl-2014-305968
26. Demyanets S., Speidl W.S., Tentzeris I., et al. Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome // PLoS One. 2014.
Vol. 9, N 4. Р. e95055. doi: 10.1371/journal.pone.0095055
27. Zhang J., Chen Z., Ma M., He Y. Soluble ST2 in coronary artery disease: Clinical biomarkers and treatment guidance // Front Cardiovasc Med. 2022. N 9. Р. 924461.
doi: 10.3389/fcvm.2022.924461
28. Alcalde-Estévez E., Asenjo-Bueno A., Sosa P., et al. Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts. A potential mechanism of aging-related sarcopenia // Aging (Albany NY). 2020. Vol. 12, N 12. Р. 11200–11223. doi: 10.18632/aging.103450
29. Dhaun N., Webb D.J. Endothelins in cardiovascular biology and therapeutics // Nat Rev Cardiol. 2019. Vol. 16, N 8. P. 491–502. doi: 10.1038/s41569-019-0176-3
30. Goudhaman L., Raja Jagadeesan A., Sundaramoorthi S., et al. Association of Serum Asymmetric Dimethylarginine with the Severity of Coronary Artery Disease: A Pilot Study // Rep Biochem Mol Biol. 2021. Vol. 10, N 2. Р. 302–306. doi: 10.52547/rbmb.10.2.302
31. Xie Z., Hou L., Shen S., et al. Mechanical force promotes dimethylarginine dimethylaminohydrolase 1-mediated hydrolysis of the metabolite asymmetric dimethylarginine to enhance bone formation // Nat Commun. 2022. Vol. 13, N 1, Р. 50. doi: 10.1038/s41467-021-27629-2
32. Yokoro M., Otaki N., Yano M., et al. Association between asymmetric dimethylarginine and sarcopenia in community-dwelling older women // Sci Rep. 2023. Vol. 13, N 1, P. 5510.
doi: 10.1038/s41598-023-32046-0
33. Petermann-Rocha F., Gray S.R., Pell J.P., et al. Biomarkers Profile of People With Sarcopenia: A Cross-sectional Analysis From UK Biobank // J Am Med Dir Assoc. 2020. Vol. 21, N 12. Р. 2017.e1–2017.e9. doi: 10.1016/j.jamda.2020.05.005
34. Shin H.E., Walston J.D., Kim M., Won C.W. Sex-Specific Differences in the Effect of Free Testosterone on Sarcopenia Components in Older Adults // Front Endocrinol (Lausanne). 2021. N 12, P. 695614. doi: 10.3389/fendo.2021.695614. Erratum in: Front Endocrinol (Lausanne). 2022. N 13. P. 876640.
35. Kirby M., Hackett G., Ramachandran S. Testosterone and the Heart // Eur Cardiol. 2019. Vol. 14, N 2. Р. 103–110. doi: 10.15420/ecr.2019.13.1
36. Elagizi A., Köhler T.S., Lavie C.J. Testosterone and Cardiovascular Health // Mayo Clin Proc. 2018. Vol. 93, N 1. P. 83–100. doi: 10.1016/j.mayocp.2017.11.006
37. Islam R.M., Bell R.J., Handelsman D.J., et al. Associations between blood sex steroid concentrations and risk of major adverse cardiovascular events in healthy older women in Australia: a prospective cohort substudy of the ASPREE trial // Lancet Healthy Longev. 2022. Vol. 3, N 2. P. e109–e118. doi: 10.1016/S2666-7568(22)00001-0. Erratum in: Lancet Healthy Longev. 2023. Vol. 4, N 8. P. e373.
38. Heinze-Milne S., Banga S., Howlett S.E. Low testosterone concentrations and risk of ischaemic cardiovascular disease in ageing: not just a problem for older men // Lancet Healthy Longev. 2022. Vol. 3, N 2. Р. e83–e84. doi: 10.1016/S2666-7568(22)00008-3
39. Shigehara K., Izumi K., Kadono Y., Mizokami A. Testosterone and Bone Health in Men: A Narrative Review // J Clin Med. 2021. Vol. 10, N 3. Р. 530. doi: 10.3390/jcm10030530
40. Alalwan T.A. Phenotypes of Sarcopenic Obesity: Exploring the Effects on Peri-Muscular Fat, the Obesity Paradox, Hormone-Related Responses and the Clinical Implications // Geriatrics (Basel). 2020. Vol. 5, N 1. Р. 8. doi: 10.3390/geriatrics5010008
41. Сергеева Н.С., Кармакова Т.А., Алентов И.И., и др. Клиническая значимость простатического специфического антигена у больных раком молочной железы // Сибирский онкологический журнал. 2020. T. 19, № 6. С. 28–37. doi: 10.21294/1814-4861-2020-19-6-28-37
42. Khosravi A., Nemati E., Soleimanian M., et al. Association between prostate specific antigen levels and coronary artery angioplasty // J Renal Inj Prev. 2016. Vol. 6, N 2. Р. 132–136. doi: 10.15171/jrip.2017.26
43. Lee J.H., Jee B.A., Kim J-H., et al. Prognostic Impact of Sarcopenia in Patients with Metastatic Hormone-Sensitive Prostate Cancer // Cancers (Basel). 2021. Vol. 13, N 24. Р. 6345. doi: 10.3390/cancers13246345
44. Chang Y., Kim J.H., Noh J.W., et al. Prostate-Specific Antigen Within the Reference Range, Subclinical Coronary Atherosclerosis, and Cardiovascular Mortality // Circ Res. 2019.
Vol. 124, N 10. Р. 1492–1504. doi: 10.1161/CIRCRESAHA.118.313413
45. Guo M., Yao J., Li J., et al. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction // J Cachexia Sarcopenia Muscle. 2023. Vol. 14, N 1. Р. 391–405.
doi: 10.1002/jcsm.13141
46. Supriya R., Singh K.P., Gao Y., et al. A Multifactorial Approach for Sarcopenia Assessment: A Literature Review // Biology (Basel). 2021. Vol. 10, N 12. Р. 1354.
doi: 10.3390/biology10121354
47. Fu J., Li F., Tang Y., et al. The Emerging Role of Irisin in Cardiovascular Diseases // J Am Heart Assoc. 2021. Vol. 10, N 20. Р. e022453. doi: 10.1161/JAHA.121.022453
48. Zhao M., Zhou X., Yuan C., et al. Association between serum irisin concentrations and sarcopenia in patients with liver cirrhosis: a cross-sectional study // Sci Rep. 2020. Vol. 10, N 1. Р. 16093. doi: 10.1038/s41598-020-73176-z
49. Antuña E., Cachán-Vega C., Bermejo-Millo J.C., et al. Inflammaging: Implications in Sarcopenia // Int J Mol Sci. 2022. Vol. 23, N 23. Р. 15039. doi: 10.3390/ijms232315039
50. Kirk B., Feehan J., Lombardi G., Duque G. Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines // Curr Osteoporos. 2020. Vol. 18, N 4.
Р. 388–400. doi: 10.1007/s11914-020-00599-y
51. Colaianni G., Cuscito C., Mongelli T., et al. Irisin enhances osteoblast differentiation in vitro // Int J Endocrinol. 2014. N 2014. P. 902186. doi: 10.1155/2014/902186
52. Anastasilakis A.D., Koulaxis D., Kefala N., et al. Circulating irisin levels are lower in patients with either stable coronary artery disease (CAD) or myocardial infarction (MI) versus healthy controls, whereas follistatin and activin A levels are higher and can discriminate MI from CAD with similar to CK-MB accuracy // Metabolism. 2017. N 73, Р. 1–8.
doi: 10.1016/j.metabol.2017.05.002
53. Kwon J.H., Moon K.M., Min K.W. Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview // Healthcare (Basel). 2020. Vol. 8, N 4.
Р. 378. doi: 10.3390/healthcare8040378
54. Bekki M., Hashida R., Kawaguchi T., et al. The association between sarcopenia and decorin, an exercise-induced myokine, in patients with liver cirrhosis: a pilot study // JCSM Rapid Communications. 2018. Vol. 1, N 2. P. 1–10. doi: 10.1002/j.2617-1619.2018.tb00009
55. Baczek J., Silkiewicz M., Wojszel Z.B. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps // Nutrients. 2020. Vol. 12, N 8.
Р. 2401. doi: 10.3390/nu12082401
56. Peng L.N., Lee W.J., Liu L.K., et al. Healthy community-living older men differ from women in associations between myostatin levels and skeletal muscle mass // J Cachexia Sarcopenia Muscle. 2018. Vol. 9, N 4. Р. 635–642. doi: 10.1002/jcsm.12302
57. Skrzypczak D., Skrzypczak-Zielińska M., Ratajczak A.E., et al. Myostatin and Follistatin-New Kids on the Block in the Diagnosis of Sarcopenia in IBD and Possible Therapeutic Implications // Biomedicines. 2021. Vol. 9, N 10. Р. 1301. doi: 10.3390/biomedicines9101301
58. Esposito P., Picciotto D., Battaglia Y., et al. Myostatin: Basic biology to clinical application // Adv Clin Chem. 2022. N 106. P. 181–234. doi: 10.1016/bs.acc.2021.09.006
59. Oliveira P.G.S., Schwed J.F., Chiuso-Minicucci F., et al. Association Between Serum Myostatin Levels, Hospital Mortality, and Muscle Mass and Strength Following ST-Elevation Myocardial Infarction // Heart Lung Circ. 2022. Vol. 31, N 3. Р. 365–371. doi: 10.1016/j.hlc.2021.08.018
60. Ahn S.H., Jung H.W., Lee E., et al. Decreased Serum Level of Sclerostin in Older Adults with Sarcopenia // Endocrinol Metab (Seoul). 2022. Vol. 37, N 3. Р. 487–496.
doi: 10.3803/EnM.2022.1428
61. Kim J.A., Roh E., Hong S.H., et al. Association of serum sclerostin levels with low skeletal muscle mass: The Korean Sarcopenic Obesity Study (KSOS) // Bone. 2019. N 128.
P. 115053. doi: 10.1016/j.bone.2019.115053
62. Courtalin M., Bertheaume N., Badr S., et al. Relationships between Circulating Sclerostin, Bone Marrow Adiposity, Other Adipose Deposits and Lean Mass in Post-Menopausal Women // Int J Mol Sci. 2023. Vol. 24, N 6. Р. 5922. doi: 10.3390/ijms24065922
63. Tobias J.H. Sclerostin and Cardiovascular Disease // Curr Osteoporos Rep. 2023. Vol. 21, N 5. Р. 519–526. doi: 10.1007/s11914-023-00810-w
64. Frysz M., Gergei I., Scharnagl H., et al. Circulating Sclerostin Levels Are Positively Related to Coronary Artery Disease Severity and Related Risk Factors // J Bone Miner Res. 2022. Vol. 37, N 2. Р. 273–284. doi: 10.1002/jbmr.4467
65. Golledge J., Thanigaimani S. Role of Sclerostin in Cardiovascular Disease // Arterioscler Thromb Vasc Biol. 2022. Vol. 42, N 7. Р. e187–e202. doi: 10.1161/ATVBAHA.122.317635
66. Bian A., Ma Y., Zhou X., et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly // BMC Musculoskelet Disord. 2020. Vol. 21, N 1. Р. 214. doi: 10.1186/s12891-020-03236-y
67. Tritos N.A., Biller B.M.K. Current concepts of the diagnosis of adult growth hormone deficiency // Rev Endocr Metab Disord. 2021. Vol. 22, N 1. P. 109–116.
doi: 10.1007/s11154-020-09594-1
68. Kopchick J.J., Berryman D.E., Puri. V., et al. The effects of growth hormone on adipose tissue: old observations, new mechanisms // Nat Rev Endocrinol. 2020. Vol. 16, N 3.
P. 135–146. doi: 10.1038/s41574-019-0280-9
69. Cannarella R., Barbagallo F., Condorelli R.A., еt al. Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly // J Clin Med. 2019. Vol. 8, N 10.
Р. 1564. doi: 10.3390/jcm8101564
70. Obradovic M., Zafirovic S., Soskic S., et al. Effects of IGF-1 on the Cardiovascular System // Curr Pharm Des. 2019. Vol. 25, N 35. Р. 3715–3725.
doi: 10.2174/1381612825666191106091507
71. Higashi Y., Gautam S., Delafontaine P., Sukhanov S. IGF-1 and cardiovascular disease // Growth Horm IGF Res. 2019. N 45, P. 6–16. doi: 10.1016/j.ghir.2019.01.002
72. Руденко Е.В., Руденко Э.В., Самоховец О.Ю., и др. Ассоциация полиморфных вариантов гена рецептора витамина D с показателями минеральной плотности костной ткани у женщин в менопаузе // Известия Национальной академии наук Беларуси. Серия медицинских наук. 2019. Т. 16, № 2. С. 192–201.
doi: 10.29235/1814-6023-2019-16-2-192-201
73. Reid I.R. Vitamin D Effect on Bone Mineral Density and Fractures // Endocrinol Metab Clin North Am. 2017. Vol. 46, N 4. Р. 935–945. doi: 10.1016/j.ecl.2017.07.005
74. Vaes A.M.M., Brouwer-Brolsma E.M., Toussaint N., et al. The association between 25-hydroxyvitamin D concentration, physical performance and frailty status in older adults // Eur J Nutr. 2019. Vol. 58, N 3. Р. 1173–1181. doi: 10.1007/s00394-018-1634-0
75. Beaudart C., Buckinx F., Rabenda V., et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials // J Clin Endocrinol Metab. 2014. Vol. 99, N 11. Р. 4336–4345. doi: 10.1210/jc.2014-1742
76. Kim Y.M., Kim. S., Won Y.J., Kim S.H. Clinical Manifestations and Factors Associated with Osteosarcopenic Obesity Syndrome: A Cross-Sectional Study in Koreans with Obesity // Calcif Tissue Int. 2019. Vol. 105. P. 77–88. doi: 10.1007/s00223-019-00551-y
77. Latic N., Erben R.G. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure // Int J Mol Sci. 2020. Vol. 21, N 18. Р. 6483.
doi: 10.3390/ijms21186483
________________________________________________
1. Casati M, Costa AS, Capitanio D, et al. The Biological Foundations of Sarcopenia: Established and Promising Markers. Front Med (Lausanne). 2019;(6):184.
doi: 10.3389/fmed.2019.00184
2. Lee K. Association of osteosarcopenic obesity and its components: osteoporosis, sarcopenia and obesity with insulin resistance. J Bone Miner Metab. 2020;38(5):695–701.
doi: 10.1007/s00774-020-01104-2
3. Keramidaki K, Tsagari A, Hiona M, Risvas G. Osteosarcopenic obesity, the coexistence of osteoporosis, sarcopenia and obesity and consequences in the quality of life in older adults ≥65 years-old in Greece. J Frailty Sarcopenia Falls. 2019;4(4):91–101. doi: 10.22540/JFSF-04-091
4. Zhang N, Zhu WL, Liu XH, et al. Prevalence and prognostic implications of sarcopenia in older patients with coronary heart disease. J Geriatr Cardiol. 2019;16(10):756–763.
doi: 10.11909/j.issn.1671-5411.2019.10.002
5. Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci. 2020;21(2):494.
doi: 10.3390/ijms21020494
6. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169. Erratum in: Age Ageing. 2019;48(4):601.
7. Uchida S, Kamiya K, Hamazaki N, et al. Association between sarcopenia and atherosclerosis in elderly patients with ischemic heart disease. Heart Vessels. 2020;35(6):769–775.
doi: 10.1007/s00380-020-01554-8
8. He N, Zhang Y, Zhang L, et al. Relationship Between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview. Front Cardiovasc Med. 2021;(8):743710.
doi: 10.3389/fcvm.2021.743710
9. Xia N, Cai Y, Wang W, et al. Association of bone-related biomarkers with femoral neck bone strength. BMC Musculoskelet Disord. 2022;23(1):482. doi: 10.1186/s12891-022-05427-1
10. Khandkar C, Vaidya K, Karimi Galougahi K, Patel S. Low bone mineral density and coronary artery disease: A systematic review and meta-analysis. Int J Cardiol Heart Vasc.
2021;(37):100891. doi: 10.1016/j.ijcha.2021.100891
11. den Uyl D, Nurmohamed MT, van Tuyl LH, et al. (Sub)clinical cardiovascular disease is associated with increased bone loss and fracture risk; a systematic review of the association between cardiovascular disease and osteoporosis. Arthritis Res Ther. 2011;13(1):R5. doi: 10.1186/ar3224
12. Grebennikova TA, Tsoriev TT, Vorobeva JR, Belaya ZE. Osteosarcopenia: pathogenesis, diagnosis and therapeutic approaches. Annals of the Russian academy of medical sciences. 2020;75(3):240–249. doi: 10.15690/vramn1243
13. Fahimfar N, Parsaiyan H, Khalagi K, et al. The Association of Cardiovascular Diseases Risk Scores and Osteosarcopenia Among Older Adult Populations: The Results of Bushehr Elderly Health (BEH) Program. Calcif Tissue Int. 2023;112(4):422–429. doi: 10.1007/s00223-022-01059-8
14. Caffarelli C, Al Refaie A, Baldassini L, et al. Bone fragility, sarcopenia and cardiac calcifications in an elderly population: a preliminary study. Aging Clin Exp Res.
2023;35(5):1097–1105. doi: 10.1007/s40520-023-02393-z
15. Park CH, Lee YT, Yoon KJ. Association between osteosarcopenia and coronary artery calcification in asymptomatic individuals. Sci Rep. 2022;12(1):2231.
doi: 10.1038/s41598-021-02640-1
16. Berns SA, Sheptulina AF, Mamutova EM, et al. Sarcopenic obesity: epidemiology, pathogenesis and diagnostic criteria. Cardiovascular Therapy and Prevention. 2023;22(6):78–85. doi: 10.15829/1728-8800-2023-3576
17. Santana NM, Mendes RML, Silva NFD, Pinho CPS. Sarcopenia and sarcopenic obesity as prognostic predictors in hospitalized elderly patients with acute myocardial infarction. Einstein (Sao Paulo). 2019;17(4):eAO4632. doi: 10.31744/einstein_journal/2019AO4632
18. Sato R, Okada K, Akiyama E, et al. Impact of sarcopenic obesity on long-term clinical outcomes after ST-segment elevation myocardial infarction. Atherosclerosis.
2021;(335):135–141. doi: 10.1016/j.atherosclerosis.2021.08.038
19. Silveira EA, da Silva Filho RR, Spexoto MCB, et al. The Role of Sarcopenic Obesity in Cancer and Cardiovascular Disease: A Synthesis of the Evidence on Pathophysiological Aspects and Clinical Implications. Int J Mol Sci. 2021;22(9):4339. doi: 10.3390/ijms22094339
20. Li F, Bai T, Ren Y, et al. A systematic review and meta-analysis of the association between sarcopenia and myocardial infarction. BMC Geriatr. 2023;23(1):11.
doi: 10.1186/s12877-022-03712-1
21. Hu K, Deya Edelen E, Zhuo W, et al. Understanding the Consequences of Fatty Bone and Fatty Muscle: How the Osteosarcopenic Adiposity Phenotype Uncovers the Deterioration of Body Composition. Metabolites. 2023;13(10):1056. doi: 10.3390/metabo13101056
22. Cardoso AL, Fernandes A, Aguilar-Pimentel JA, et al. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev. 2018;(47):214–277. doi: 10.1016/j.arr.2018.07.004
23. Sato R, Vatic M, da Fonseca GWP, von Haehling S. Sarcopenia and Frailty in Heart Failure: Is There a Biomarker Signature? Curr Heart Fail Rep. 2022;19(6):400–411.
doi: 10.1007/s11897-022-00575-w
24. Macari S, Madeira MFM, Lima ILA, et al. ST2 regulates bone loss in a site-dependent and estrogen-dependent manner. J Cell Biochem. 2018;119(10):8511–8521.
doi: 10.1002/jcb.27080
25. Hughes MF, Appelbaum S, Havulinna AS, et al. ST2 may not be a useful predictor for incident cardiovascular events, heart failure and mortality. Heart. 2014;100(21):1715–1721.
doi: 10.1136/heartjnl-2014-305968
26. Demyanets S, Speidl WS, Tentzeris I, et al. Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome. PLoS One. 2014;9(4):e95055. doi: 10.1371/journal.pone.0095055
27. Zhang J, Chen Z, Ma M, He Y. Soluble ST2 in coronary artery disease: Clinical biomarkers and treatment guidance. Front Cardiovasc Med. 2022;(9):924461.
doi: 10.3389/fcvm.2022.924461
28. Alcalde-Estévez E, Asenjo-Bueno A, Sosa P, et al. Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts. A potential mechanism of aging-related sarcopenia. Aging (Albany NY). 2020;12(12):11200–11223. doi: 10.18632/aging.103450
29. Dhaun N, Webb DJ. Endothelins in cardiovascular biology and therapeutics. Nat Rev Cardiol. 2019;16(8):491–502. doi: 10.1038/s41569-019-0176-3
30. Goudhaman L, Raja Jagadeesan A, Sundaramoorthi S, et al. Association of Serum Asymmetric Dimethylarginine with the Severity of Coronary Artery Disease: A Pilot Study. Rep Biochem Mol Biol. 2021;10(2):302–306. doi: 10.52547/rbmb.10.2.302
31. Xie Z, Hou L, Shen S, et al. Mechanical force promotes dimethylarginine dimethylaminohydrolase 1-mediated hydrolysis of the metabolite asymmetric dimethylarginine to enhance bone formation. Nat Commun. 2022;13(1):50. doi: 10.1038/s41467-021-27629-2
32. Yokoro M, Otaki N, Yano M, et al. Association between asymmetric dimethylarginine and sarcopenia in community-dwelling older women. Sci Rep. 2023;13(1):5510.
doi: 10.1038/s41598-023-32046-0
33. Petermann-Rocha F, Gray SR, Pell JP, et al. Biomarkers Profile of People With Sarcopenia: A Cross-sectional Analysis From UK Biobank. J Am Med Dir Assoc.
2020;21(12):2017.e1–2017.e9. doi: 10.1016/j.jamda.2020.05.005
34. Shin HE, Walston JD, Kim M, Won CW. Sex-Specific Differences in the Effect of Free Testosterone on Sarcopenia Components in Older Adults. Front Endocrinol (Lausanne).
2021;(12):695614. doi: 10.3389/fendo.2021.695614. Erratum in: Front Endocrinol (Lausanne). 2022;(13):876640.
35. Kirby M, Hackett G, Ramachandran S. Testosterone and the Heart. Eur Cardiol. 2019;14(2):103–110. doi: 10.15420/ecr.2019.13.1
36. Elagizi A, Köhler TS, Lavie CJ. Testosterone and Cardiovascular Health. Mayo Clin Proc. 2018;93(1):83–100. doi: 10.1016/j.mayocp.2017.11.006
37. Islam RM, Bell RJ, Handelsman DJ, et al. Associations between blood sex steroid concentrations and risk of major adverse cardiovascular events in healthy older women in Australia: a prospective cohort substudy of the ASPREE trial. Lancet Healthy Longev. 2022;3(2):e109–e118. doi: 10.1016/S2666-7568(22)00001-0. Erratum in: Lancet Healthy Longev. 2023;4(8):e373.
38. Heinze-Milne S, Banga S, Howlett SE. Low testosterone concentrations and risk of ischaemic cardiovascular disease in ageing: not just a problem for older men. Lancet Healthy Longev. 2022;3(2):e83–e84. doi: 10.1016/S2666-7568(22)00008-3
39. Shigehara K, Izumi K, Kadono Y, Mizokami A. Testosterone and Bone Health in Men: A Narrative Review. J Clin Med. 2021;10(3):530. doi: 10.3390/jcm10030530
40. Alalwan TA. Phenotypes of Sarcopenic Obesity: Exploring the Effects on Peri-Muscular Fat, the Obesity Paradox, Hormone-Related Responses and the Clinical Implications. Geriatrics (Basel). 2020;5(1):8. doi: 10.3390/geriatrics5010008
41. Sergeeva NS, Karmakova TA, Alentov II, et al. Clinical significanse of prostate-specific antigen in breast cancer patients. Siberian journal of oncology. 2020;19(6):28–37.
doi: 10.21294/1814-4861-2020-19-6-28-37
42. Khosravi A, Nemati E, Soleimanian M, et al. Association between prostate specific antigen levels and coronary artery angioplasty. J Renal Inj Prev. 2016;6(2):132–136.
doi: 10.15171/jrip.2017.26
43. Lee JH, Jee BA, Kim JH, et al. Prognostic Impact of Sarcopenia in Patients with Metastatic Hormone-Sensitive Prostate Cancer. Cancers (Basel). 2021;13(24):6345.
doi: 10.3390/cancers13246345
44. Chang Y, Kim JH, Noh JW, et al. Prostate-Specific Antigen Within the Reference Range, Subclinical Coronary Atherosclerosis, and Cardiovascular Mortality. Circ Res. 2019;124(10):1492–1504. doi: 10.1161/CIRCRESAHA.118.313413
45. Guo M, Yao J, Li J, et al. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction. J Cachexia Sarcopenia Muscle. 2023;14(1):391–405. doi: 10.1002/jcsm.13141
46. Supriya R, Singh KP, Gao Y, et al. A Multifactorial Approach for Sarcopenia Assessment: A Literature Review. Biology (Basel). 2021;10(12):1354. doi: 10.3390/biology10121354
47. Fu J, Li F, Tang Y, et al. The Emerging Role of Irisin in Cardiovascular Diseases. J Am Heart Assoc. 2021;10(20):e022453. doi: 10.1161/JAHA.121.022453
48. Zhao M, Zhou X, Yuan C, et al. Association between serum irisin concentrations and sarcopenia in patients with liver cirrhosis: a cross-sectional study. Sci Rep. 2020;10(1):16093. doi: 10.1038/s41598-020-73176-z
49. Antuña E, Cachán-Vega C, Bermejo-Millo JC, et al. Inflammaging: Implications in Sarcopenia. Int J Mol Sci. 2022;23(23):15039. doi: 10.3390/ijms232315039
50. Kirk B, Feehan J, Lombardi G, Duque G. Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines. Curr Osteoporos Rep. 2020;18(4):388–400. doi: 10.1007/s11914-020-00599-y
51. Colaianni G, Cuscito C, Mongelli T, et al. Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol. 2014;(2014):902186. doi: 10.1155/2014/902186
52. Anastasilakis AD, Koulaxis D, Kefala N, et al. Circulating irisin levels are lower in patients with either stable coronary artery disease (CAD) or myocardial infarction (MI) versus healthy controls, whereas follistatin and activin A levels are higher and can discriminate MI from CAD with similar to CK-MB accuracy. Metabolism. 2017;(73):1–8.
doi: 10.1016/j.metabol.2017.05.002
53. Kwon JH, Moon KM, Min KW. Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview. Healthcare (Basel). 2020;8(4):378.
doi: 10.3390/healthcare8040378
54. Bekki M, Hashida R, Kawaguchi T, et al. The association between sarcopenia and decorin, an exercise-induced myokine, in patients with liver cirrhosis: a pilot study. JCSM Rapid Communications. 2018;1(2):1–10. doi: 10.1002/j.2617-1619.2018.tb00009
55. Baczek J, Silkiewicz M, Wojszel ZB. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients. 2020;12(8):2401.
doi: 10.3390/nu12082401
56. Peng LN, Lee WJ, Liu LK, et al. Healthy community-living older men differ from women in associations between myostatin levels and skeletal muscle mass. J Cachexia Sarcopenia Muscle. 2018;9(4):635–642. doi: 10.1002/jcsm.12302
57. Skrzypczak D, Skrzypczak-Zielińska M, Ratajczak AE, et al. Myostatin and Follistatin-New Kids on the Block in the Diagnosis of Sarcopenia in IBD and Possible Therapeutic Implications. Biomedicines. 2021;9(10):1301. doi: 10.3390/biomedicines9101301
58. Esposito P, Picciotto D, Battaglia Y, et al. Myostatin: Basic biology to clinical application. Adv Clin Chem. 2022;(106):181–234. doi: 10.1016/bs.acc.2021.09.006
59. Oliveira PGS, Schwed JF, Chiuso-Minicucci F, et al. Association Between Serum Myostatin Levels, Hospital Mortality, and Muscle Mass and Strength Following ST-Elevation Myocardial Infarction. Heart Lung Circ. 2022;31(3):365–371. doi: 10.1016/j.hlc.2021.08.018
60. Ahn SH, Jung HW, Lee E, et al. Decreased Serum Level of Sclerostin in Older Adults with Sarcopenia. Endocrinol Metab (Seoul). 2022;37(3):487–496. doi: 10.3803/EnM.2022.1428
61. Kim JA, Roh E, Hong SH, et al. Association of serum sclerostin levels with low skeletal muscle mass: The Korean Sarcopenic Obesity Study (KSOS). Bone. 2019;(128):115053.
doi: 10.1016/j.bone.2019.115053
62. Courtalin M, Bertheaume N, Badr S, et al. Relationships between Circulating Sclerostin, Bone Marrow Adiposity, Other Adipose Deposits and Lean Mass in Post-Menopausal Women. Int J Mol Sci. 2023;24(6):5922. doi: 10.3390/ijms24065922
63. Tobias JH. Sclerostin and Cardiovascular Disease. Curr Osteoporos Rep. 2023;21(5):519–526. doi: 10.1007/s11914-023-00810-w
64. Frysz M, Gergei I, Scharnagl H, et al. Circulating Sclerostin Levels Are Positively Related to Coronary Artery Disease Severity and Related Risk Factors. J Bone Miner Res. 2022;37(2):273–284. doi: 10.1002/jbmr.4467
65. Golledge J, Thanigaimani S. Role of Sclerostin in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2022;42(7):e187–e202. doi: 10.1161/ATVBAHA.122.317635
66. Bian A, Ma Y, Zhou X, et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet Disord. 2020;21(1):214. doi: 10.1186/s12891-020-03236-y
67. Tritos NA, Biller BMK. Current concepts of the diagnosis of adult growth hormone deficiency. Rev Endocr Metab Disord. 2021;22(1):109–116. doi: 10.1007/s11154-020-09594-1
68. Kopchick JJ, Berryman DE, Puri V, et al. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat Rev Endocrinol. 2020;16(3):135–146.
doi: 10.1038/s41574-019-0280-9
69. Cannarella R, Barbagallo F, Condorelli RA, et al. Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly. J Clin Med. 2019;8(10):1564.
doi: 10.3390/jcm8101564
70. Obradovic M, Zafirovic S, Soskic S, et al. Effects of IGF-1 on the Cardiovascular System. Curr Pharm Des. 2019;25(35):3715–3725. doi: 10.2174/1381612825666191106091507
71. Higashi Y, Gautam S, Delafontaine P, Sukhanov S. IGF-1 and cardiovascular disease. Growth Horm IGF Res. 2019;(45):6–16. doi: 10.1016/j.ghir.2019.01.002
72. Rudenka AV, Rudenka EV, Samokhovec VYu, et al. Association of vitamin D receptor gene polymorphism with a bone mineral density level in postmenopausal women. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2019;16(2):192–201. doi: 10.29235/1814-6023-2019-16-2-192-201
73. Reid IR. Vitamin D Effect on Bone Mineral Density and Fractures. Endocrinol Metab Clin North Am. 2017;46(4):935–945. doi: 10.1016/j.ecl.2017.07.005
74. Vaes AMM, Brouwer-Brolsma EM, Toussaint N, et al. The association between 25-hydroxyvitamin D concentration, physical performance and frailty status in older adults. Eur J Nutr. 2019;58(3):1173–1181. doi: 10.1007/s00394-018-1634-0
75. Beaudart C, Buckinx F, Rabenda V, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336–4345. doi: 10.1210/jc.2014-1742
76. Kim YM, Kim S, Won YJ, Kim SH. Clinical Manifestations and Factors Associated with Osteosarcopenic Obesity Syndrome: A Cross-Sectional Study in Koreans with Obesity. Calcif Tissue Int. 2019;105(1):77–88. doi: 10.1007/s00223-019-00551-y
77. Latic N, Erben RG. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int J Mol Sci. 2020;21(18):6483.
doi: 10.3390/ijms21186483
1НИИ комплексных проблем сердечно-сосудистых заболеваний, Кемерово, Россия; 2Кемеровский государственный медицинский университет, Кемерово, Россия
*anastasiyaneeshpapa@mail.ru
________________________________________________
Viktoria N. Karetnikova1,2, Anastasiya G. Neeshpapa*1, Evgenia I. Karpova1, Olga L. Barbarash1,2
1Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia; 2Kemerovo State Medical University, Kemerovo, Russia
*anastasiyaneeshpapa@mail.ru