Особенности течения COVID-19 и постковидного периода у пациентов с ожирением
Особенности течения COVID-19 и постковидного периода у пациентов с ожирением
Фролова Е.С., Веселовский П.П., Чумакова Г.А., Веселовская Н.Г., Отт А.В. Особенности течения COVID-19 и постковидного периода у пациентов с ожирением // CardioСоматика. 2024. Т. 15. № 4. С. 344–353. DOI: https://doi.org/10.17816/CS626503
________________________________________________
Frolova ES, Veselovsky PP, Chumakova GA, Veselovskaya NG, Ott AV. COVID-19 and post-disease features in patients with obesity. CardioSomatics. 2024;15(4):344–353. DOI: https://doi.org/10.17816/CS626503
Особенности течения COVID-19 и постковидного периода у пациентов с ожирением
Фролова Е.С., Веселовский П.П., Чумакова Г.А., Веселовская Н.Г., Отт А.В. Особенности течения COVID-19 и постковидного периода у пациентов с ожирением // CardioСоматика. 2024. Т. 15. № 4. С. 344–353. DOI: https://doi.org/10.17816/CS626503
________________________________________________
Frolova ES, Veselovsky PP, Chumakova GA, Veselovskaya NG, Ott AV. COVID-19 and post-disease features in patients with obesity. CardioSomatics. 2024;15(4):344–353. DOI: https://doi.org/10.17816/CS626503
Пандемия COVID-19 затронула население всей планеты, нанеся значительный экономический и материальный ущерб и непоправимые человеческие потери. Многие страны были вынуждены оперативно перестроить систему здравоохранения для спасения пациентов с COVID-19. Патогенез и особенности течения данного заболевания изучены не до конца, однако одна закономерность прослеживается особенно отчётливо: люди, страдающие ожирением, переносят COVID-19 значительно тяжелее. Как известно, жировая ткань обладает свойством поддерживать хроническое низкоинтенсивное воспаление, а также имеет свою эндокринную активность. С течением времени стало очевидно, что у части пациентов после завершения острой фазы COVID-19 остаются последствия, которые в ряде случаев приводят к необратимым изменениям в организме и снижению качества жизни. Это состояние получило название «постковидный синдром». В данном обзоре мы рассматриваем влияние COVID-19 на разные системы органов в отдалённом периоде. Большое внимание уделяем патогенетическим механизмам течения инфекции и особенностям постковидного синдрома у пациентов с ожирением.
The COVID-19 pandemic has affected the global population, causing significant economic effect, material damage, and irreparable human losses. Many countries were forced to promptly reorganize their healthcare system in order to save patients with COVID-19. The pathogenesis and specifics of the disease are not completely understood, but one pattern is particularly clear: COVID-19 tends to be more severe in people with obesity. Fatty tissue is known to support chronic low‑grade inflammation and has its own endocrine activity. Over time, it became obvious that some patients still have consequences following the acute phase of COVID-19, which in some cases lead to irreversible changes in the body and reduced quality of life. This condition was called post-COVID syndrome. In this article, we review the long-term effects of COVID-19 on different body systems. We focused on pathogenic infection mechanisms and features of post-COVID syndrome in people with obesity.
1. Ochani R., Asad A., Yasmin F., et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management // Infez Med. 2021. Vol. 29, N 1. P. 20–36.
2. Han Q., Zheng B., Daines L., Sheikh A. Long-Term Sequelae of COVID-19: A Systematic Review and Meta-Analysis of One-Year Follow-Up Studies on Post-COVID Symptoms // Pathogens. 2022. Vol. 11, N 2. P. 269. doi: 10.3390/pathogens11020269
3. Liu E., Lee H., Lui B., et al. Respiratory and nonrespiratory COVID-19 complications in patients with obesity: recent developments // J Comp Eff Res. 2022. Vol. 11, N 5. P. 371–381. doi: 10.2217/cer-2021-0237
4. World Health Organization. World leaders express strong support for WHO at G20. Режим доступа: https://www.who.int/home. Дата обращения: 04.08.2024 г.
5. Федеральная служба государственной статистики. Режим доступа: https://rosstat.gov.ru. Дата обращения: 30.09.2024 г.
6. Лескова И.В., Ершова Е.В., Никитина Е.А., и др. Ожирение в России: современный взгляд под углом социальных проблем // Ожирение и метаболизм. 2019. Т. 16, № 1. С. 20–26. EDN: KDEROH doi: 10.14341/omet9988
7. Кравчук Е.Н., Неймарк А.Е., Бабенко А.Ю., и др. Ожирение и COVID-19 // Артериальная гипертензия. 2020. Т. 26, № 4. С. 440446. EDN: IFIREM doi: 10.18705/1607-419X-2020-26-4-440-446
8. Разина А.О., Руненко С.Д., Ачкасов Е.Е. Проблема ожирения: современные тенденции в России и в мире // Вестник РАМН. 2016. Т. 71, № 2. С. 154–159. EDN: VYQBYN doi: 10.15690/vramn655
9. Gammone M.A., D’Orazio N. COVID-19 and Obesity: Overlapping of Two Pandemics // Obes Facts. 2021. Vol. 14, N 6. P. 579–585. doi: 10.1159/000518386
10. Баклаушев В.П., Кулемзин С.В., Горчаков А.А., и др. COVID-19. Этиология, патогенез, диагностика и лечение // Клиническая практика. 2020. Т. 11, № 1. С. 7–20. EDN: COJLTB doi: 10.17816/clinpract26339
11. Никифоров В.В., Суранова Т.Г., Чернобровкина Т.Я., и др. Новая коронавирусная инфекция (COVID-19): клинико-эпидемиологические аспекты // Архивъ внутренней медицины. 2020. Т. 10, № 2. С. 87–93. EDN: MELBOP doi: 10.20514/2226-6704-2020-10-2-87-93
12. Шатунова П.О., Быков А.С., Свитич О.А., Зверев В.В. Ангиотензинпревращающий фермент 2. Подходы к патогенетической терапии COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2020. Т. 97, № 4. С. 339–345. EDN: PMHTVH doi: 10.36233/0372-9311-2020-97-4-6
13. Hoffmann M., Kleine-Weber H., Krüger N., et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells // BioRxiv. 2020. doi: 10.1101/2020.01.31.929042
14. Carluccio M., Soccio M., De Caterina R. Aspects of gene polymorphisms in cardiovascular disease: the renin-angiotensin system // Eur J Clin Invest. 2001. Vol. 31, N 6. P. 476–488. doi: 10.1046/j.1365-2362.2001.00839.x
15. Mehta P., McAuley D., Brown M., et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression // Lancet. 2020. Vol. 395, N 10229. P. 1033–1034. doi: 10.1016/S0140-6736(20)30628-0
16. Welch W. Angiotensin II-dependent superoxide: effects on hypertension and vascular dysfunction // Hypertension. 2008. Vol. 52, N 1. P. 51–56. doi: 10.1161/HYPERTENSIONAHA.107.090472
17. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology // Semin Immunopathol. 2017. Vol. 39, N 5. P. 529–539. doi: 10.1007/s00281-017-0629-x
18. Caussy C., Pattou F., Wallet F., et al. Prevalence of obesity among adult inpatients with COVID-19 in France // Lancet Diabetes Endocrinol. 2020. Vol. 8, N 7. P. 562–564. doi: 10.1016/S2213-8587(20)30160-1
19. Vanhems P., Gustin M., Elias C., et al. Factors associated with admission to intensive care units in COVID-19 patients in Lyon-France // PloS One. 2021. Vol. 16, N 1. P. e0243709. doi: 10.1371/journal.pone.0243709
20. O’Hearn M., Liu J., Cudhea F., et al. Coronavirus Disease 2019 Hospitalizations Attributable to Cardiometabolic Conditions in the United States: A Comparative Risk Assessment Analysis // J Am Heart Assoc. 2021. Vol. 10, N 5. P. e019259. doi: 10.1161/JAHA.120.019259
21. Petrilli C., Jones S., Yang J., et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study // BMJ. 2020. Vol. 369. P. m1966. doi: 10.1136/bmj.m1966
22. Cai Q., Chen F., Wang T., et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China // Diabetes Care. 2020. Vol. 43(7):1392–1398. doi: 10.2337/dc20-0576
23. Jia X., Yin C., Lu S., et al. Two Things about COVID-19 Might Need Attention // Preprints. 2020. P. 2020020315. doi: 10.20944/preprints202002.0315.v1
24. Stefan N., Birkenfeld A., Schulze M. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19 // Nat Rev Endocrinol. 2021. Vol. 17, N 3. P. 135–149. doi: 10.1038/s41574-020-00462-1
25. Yan T., Xiao R., Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronaviruse and SARS-CoV-2: A double-edged sword? // FASEB J. 2020. Vol. 34, N 5. P. 6017–6026. doi: 10.1096/fj.202000782
26. Bandaru P., Rajkumar H., Nappanveettil G. The Impact of Obesity on Immune Response to Infection and Vaccine: An Insight into Plausible Mechanisms // Endocrinol Metab Synd. 2013. Vol. 2. P. 1000113. doi: 10.4172/2161-1017.1000113
27. Muscogiuri G., Pugliese G., Laudisio D., et al. The impact of obesity on immune response to infection: Plausible mechanisms and outcomes // Obes Rev. 2021. Vol. 22, N 6. P. e13216. doi: 10.1111/obr.13216
28. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the "Cytokine Storm" in COVID-19 // J Infect. 2020. Vol. 80, N 6. P. 607–613. doi: 10.1016/j.jinf.2020.03.037
29. Mirsoian A., Bouchlaka M., Sckisel G., et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med. 2014. Vol. 211, N 12. P. 2373–2783. doi: 10.1084/jem.20140116
30. De Leeuw A., Oude Luttikhuis M, Wellen A, et al. Obesity and its impact on COVID-19 // J Mol Med (Berl). 2021. Vol. 99, N 7. P. 899–915. doi: 10.1007/s00109-021-02072-4
31. Muskiet F., Carrera-Bastos P., Pruimboom L., et al. Obesity and leptin resistance in the regulation of the type I interferon early response and the increased risk for severe COVID-19 // Nutrients. 2022. Vol. 14, N 7. P. 1388. doi: 10.3390/nu14071388
32. Zhou Y., Rui L. Leptin signaling and leptin resistance // Front Med. 2013. Vol. 7, N 2. P. 207–222. doi: 10.1007/s11684-013-0263-5
33. Van der Voort P., Moser J., Zandstra D., et al. Leptin levels in SARS‑CoV-2 infection related respiratory failure: A cross‑sectional study and a pathophysiological framework on the role of fat tissue // Heliyon. 2020. Vol. 6, N 8. P. e04696. doi: 10.1016/j.heliyon.2020.e04696
34. Maier H., Lopez R., Sanchez N., et al. Obesity Increases the Duration of Influenza A Virus Shedding in Adults // J Infect Dis. 2018. Vol. 218, N 9. P. 1378–1382. doi: 10.1093/infdis/jiy370
35. Lasbleiz A., Gaborit B., Soghomonian A., et al. COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury // Front Endocrinol (Lausanne). 2021. Vol. 12. P. 726967. doi: 10.3389/fendo.2021.726967
36. Bihan H., Heidar R., Beloeuvre A., et al. Epicardial adipose tissue and severe Coronavirus Disease 19 // Cardiovasc Diabetol. 2021. Vol. 20, N 1. P. 147. doi: 10.1186/s12933-021-01329-z
37. Pasquarelli-do-Nascimento G., Braz-de-Melo H., Faria S., et al. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity // Front Endocrinol (Lausanne). 2020. Vol. 28, N 11. P. 530. doi: 10.3389/fendo.2020.00530
38. Panigada M., Bottino N., Tagliabue P., et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis // J Thromb Haemost. 2020. Vol. 18, N 7. P. 1738–1742. doi: 10.1111/jth.14850
39. Rubin R. As Their Numbers Grow, COVID-19 ”Long Haulers” Stump Experts // JAMA. 2020. Vol. 324, N 14. P. 1381–1383. doi:10.1001/jama.2020.17709
40. Van der Meijden P., Heemskerk J. Platelet biology and functions: new concepts and clinical perspectives // Nat Rev Cardiol. 2019. Vol. 16, N 3. P. 166–179. doi: 10.1038/s41569-018-0110-0
41. Lechner-Scott J., Levy M., Hawkes C., et al. Long COVID or post COVID-19 syndrome // Mult Scler Relat Disord. 2021. Vol. 55. P. 103268. doi: 10.1016/j.msard.2021.103268
42. Raman B., Bluemke D., Lüscher T., Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus // Eur Heart J. 2022. Vol. 43, N 11. P. 1157–1172. doi: 10.1093/eurheartj/ehac031
43. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE). 2024.
44. Scholkmann F., May C. COVID-19, post-acute COVID-19 syndrome (PACS, ”long COVID”) and post-COVID-19 vaccination syndrome (PCVS, ”post-COVIDvac-syndrome”): Similarities and differences // Pathol Res Pract. 2023. Vol. 246. P. 154497. doi: 10.1016/j.prp.2023.154497
45. Chopra V., Flanders S.A., O’Malley M., et al. Sixty-day outcomes among patients hospitalized with COVID-19 // Ann Intern Med. 2021. Vol. 174, N 4. P. 576-578. doi: 10.7326/M20-5661
46. Davis H., McCorkell L., Vogel J., Topol E. Long COVID: major findings, mechanisms and recommendations // Nat Rev Microbiol. 2023. Vol. 21, N 3. P. 133–146. doi: 10.1038/s41579-022-00846-2
47. Kingstone T., Taylor A., O’Donnell C., et al. Finding the ”right” GP: a qualitative study of the experiences of people with long‑COVID // BJGP Open. 2020. Vol. 4, N 5. P. bjgpopen20X101143. doi: 10.3399/bjgpopen20X101143
48. Naeije R., Caravita S. Phenotyping long COVID // Eur Respir J. 2021. Vol. 58, N 2. P. 2101763. doi: 10.1183/13993003.01763-2021
49. Dixit N., Churchill A., Nsair A., Hsu J. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? // Am Heart J Plus. 2021. Vol. 5. P. 100025. doi: 10.1016/j.ahjo.2021.100025
50. Nalbandian A., Sehgal K., Gupta A., et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, N 4. P. 601–615. doi: 10.1038/s41591-021-01283-z
51. Oikonomou E., Souvaliotis N., Lampsas S., et al. Endothelial dysfunction in acute and long standing COVID-19: A prospective cohort study // Vascul Pharmacol. 2022. Vol. 144. P. 106975. doi: 10.1016/j.vph.2022.106975
52. Sathish T., Tapp R., Cooper M., Zimmet P. Potential metabolic and inflammatory pathways between COVID-19 and new‑onset diabetes // Diabetes Metab. 2021. Vol. 47, N 2. P. 101204. doi: 10.1016/j.diabet.2020.10.002
________________________________________________
1. Ochani R, Asad A, Yasmin F, et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez Med. 2021;29(1):20–36.
2. Han Q, Zheng B, Daines L, Sheikh A. Long-Term Sequelae of COVID-19: A Systematic Review and Meta-Analysis of One‑Year Follow-Up Studies on Post-COVID Symptoms. Pathogens. 2022;11(2):269. doi: 10.3390/pathogens11020269
3. Liu E, Lee H, Lui B, et al. Respiratory and nonrespiratory COVID-19 complications in patients with obesity: recent developments. J Comp Eff Res. 2022;11(5):371–381. doi: 10.2217/cer-2021-0237
4. World Health Organization. World leaders express strong support for WHO at G20. Available from: https://www.who.int/home
5. Federal State Statistics Service. Available from: https://rosstat.gov.ru
6. Leskova IV, Ershova EV, Nikitina EA, et al. Obesity in Russia: modern view in the light of a social problems. Obesity and metabolism. 2019;16(1):20–26. EDN: KDEROH doi: 10.14341/omet9988
7. Kravchuk EN, Neimark AE, Babenko AYu, et al. Obesity and COVID-19. Arterial Hypertension. 2020;26(4):440–446. EDN: IFIREM doi: 10.18705/1607-419X-2020-26-4-440-446
8. Razina AО, Runenko SD, Achkasov EЕ. Obesity: Current Global and Russian Trends. Annals of the Russian Academy of Medical Sciences. 2016;71(2):154–159. EDN: VYQBYN doi: 10.15690/vramn655
9. Gammone M, D’Orazio N. COVID-19 and Obesity: Overlapping of Two Pandemics. Obes Facts. 2021;14(6):579–585. doi: 10.1159/000518386
10. Baklaushev VP, Kulemzin SV, Gorchakov АА, et al. COVID-19. Etiology, Pathogenesis, Diagnosis and Treatment. Journal of Clinical Practice. 2020;11(1):7–20. EDN: COJLTB doi: 10.17816/clinpract26339
11. Nikiforov VV, Suranova TG, Chernobrovkina TYa, et al. New Coronavirus Infection (COVID-19): Clinical and Epidemiological Aspects. The Russian Archives of Internal Medicine. 2020;10(2):87–93. EDN: MELBOP doi: 10.20514/2226-6704-2020-10-2-87-93
12. Shatunova PO, Bykov AS, Svitich OA, Zverev VV. Angiotensin-converting enzyme 2. Approaches to pathogenetic therapy of COVID-19. Journal of microbiology, epidemiology and immunobiology. 2020;97(4):339–345. EDN: PMHTVH doi: 10.36233/0372-9311-2020-97-4-6
13. Hoffmann M, Kleine-Weber H, Krüger N, et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. 2020. doi: 10.1101/2020.01.31.929042
14. Carluccio M, Soccio M, De Caterina R. Aspects of gene polymorphisms in cardiovascular disease: the renin‑angiotensin system. Eur J Clin Invest. 2001;31(6):476–488. doi: 10.1046/j.1365-2362.2001.00839.x
15. Mehta P, McAuley DF, Brown M, et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0
16. Welch WJ. Angiotensin II-dependent superoxide: effects on hypertension and vascular dysfunction. Hypertension. 2008;52(1):51–56. doi: 10.1161/HYPERTENSIONAHA.107.090472
17. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529–539. doi: 10.1007/s00281-017-0629-x
18. Caussy C, Pattou F, Wallet F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020;8(7):562–564. doi: 10.1016/S2213-8587(20)30160-1
19. Vanhems, Philippe et al. Factors associated with admission to intensive care units in COVID-19 patients in Lyon-France. PloS One. 2021;16(1):e0243709. doi: 10.1371/journal.pone.0243709
20. O’Hearn M, Liu J, Cudhea F, et al. Coronavirus Disease 2019 Hospitalizations Attributable to Cardiometabolic Conditions in the United States: A Comparative Risk Assessment Analysis. J Am Heart Assoc. 2021;10(5):e019259. doi: 10.1161/JAHA.120.019259
21. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. doi: 10.1136/bmj.m1966
22. Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392–1398. doi: 10.2337/dc20-0576
23. Jia X., Yin C, Lu S, et al. Two Things about COVID-19 Might Need Attention. Preprint. 2020:2020020315. doi: 10.20944/preprints202002.0315.v1
24. Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021;17(3):135–149. doi: 10.1038/s41574-020-00462-1
25. Yan T, Xiao R, Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronaviruse and SARS-CoV-2: A double-edged sword? FASEB J. 2020;34:6017–6026. doi: 10.1096/fj.202000782
26. Bandaru P, Rajkumar H, Nappanveettil G. The Impact of Obesity on Immune Response to Infection and Vaccine: An Insight into Plausible Mechanisms. Endocrinol Metab Synd. 2013;2:1000113. doi: 10.4172/2161-1017.1000113
27. Muscogiuri G, Pugliese G, Laudisio D, et al. The impact of obesity on immune response to infection: Plausible mechanisms and outcomes. Obes Rev. 2021;22(6):e13216. doi: 10.1111/obr.13216
28. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037
29. Mirsoian A, Bouchlaka MN, Sckisel GD, et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med. 2014;211(12):2373–2383. doi: 10.1084/jem.20140116
30. De Leeuw A, Oude Luttikhuis M, Wellen A, et al. Obesity and its impact on COVID-19. J Mol Med (Berl). 2021;99(7):899–915. doi: 10.1007/s00109-021-02072-4
31. Muskiet FAJ, Carrera-Bastos P, Pruimboom L, et al. Obesity and leptin resistance in the regulation of the type I interferon early response and the increased risk for severe COVID-19. Nutrients. 2022;14(7):1388. doi: 10.3390/nu14071388
32. Zhou Y, Rui L. Leptin signaling and leptin resistance. Front Med. 2013;7(2):207–222. doi: 10.1007/s11684-013-0263-5
33. Van der Voort P, Moser J, Zandstra D, et al. Leptin levels in SARS-CoV-2 infection related respiratory failure: A cross-sectional study and a pathophysiological framework on the role of fat tissue. Heliyon. 2020;6(8):e04696. doi: 10.1016/j.heliyon.2020.e04696
34. Maier H, Lopez R, Sanchez N, et al. Obesity Increases the Duration of Influenza A Virus Shedding in Adults. J Infect Dis. 2018;218(9):1378–1382. doi: 10.1093/infdis/jiy370
35. Lasbleiz A, Gaborit B, Soghomonian A, et al. COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury. Front Endocrinol (Lausanne). 2021;12:726967. doi: 10.3389/fendo.2021.726967
36. Bihan H, Heidar R, Beloeuvre A, et al. Epicardial adipose tissue and severe Coronavirus Disease 19. Cardiovasc Diabetol. 2021;20(1):147. doi: 10.1186/s12933-021-01329-z
37. Pasquarelli-do-Nascimento G, Braz-de-Melo H, Faria S, et al. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity. Front Endocrinol (Lausanne). 2020;11:530. doi: 10.3389/fendo.2020.00530
38. Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738–1742. doi: 10.1111/jth.14850
39. Rubin R. As Their Numbers Grow, COVID-19 ”Long Haulers” Stump Experts. JAMA. 2020;324(14):1381–1383. doi:10.1001/jama.2020.17709
40. Van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–179. doi: 10.1038/s41569-018-0110-0
41. Lechner-Scott J, Levy M, Hawkes C, et al. Long COVID or post COVID-19 syndrome. Mult Scler Relat Disord. 2021;55:103268. doi: 10.1016/j.msard.2021.103268
42. Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–1172. doi: 10.1093/eurheartj/ehac031
43. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE); 2020.
44. Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, ”long COVID”) and post-COVID-19 vaccination syndrome (PCVS, ”post-COVIDvac-syndrome”): Similarities and differences. Pathol Res Pract. 2023;246:154497. doi: 10.1016/j.prp.2023.154497
45. Chopra V, Flanders SA, O’Malley M, et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann Intern Med. 2021;174(4):576–578. doi: 10.7326/M20-5661
46. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–146. doi: 10.1038/s41579-022-00846-2
47. Kingstone T, Taylor AK, O’Donnell CA, et al. Finding the "right" GP: a qualitative study of the experiences of people with long-COVID. BJGP Open. 2020;4(5):bjgpopen20X101143. doi: 10.3399/bjgpopen20X101143
48. Naeije R, Caravita S. Phenotyping long COVID. Eur Respir J. 2021;58(2):2101763. doi: 10.1183/13993003.01763-2021
49. Dixit NM, Churchill A, Nsair A, Hsu JJ. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? Am Heart J Plus. 2021;5:100025. doi: 10.1016/j.ahjo.2021.100025
50. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z
51. Oikonomou E, Souvaliotis N, Lampsas S, et al. Endothelial dysfunction in acute and long standing COVID-19: A prospective cohort study. Vascul Pharmacol. 2022;144:106975. doi: 10.1016/j.vph.2022.106975
52. Sathish T, Tapp RJ, Cooper ME, et al. Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. Diabetes Metab. 2021;47(2):101204. doi: 10.1016/j.diabet.2020.10.002