Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Особенности течения COVID-19 и постковидного периода у пациентов с ожирением - Научно-практический журнал Cardioсоматика Том 15, №4 (2024)
Особенности течения COVID-19 и постковидного периода у пациентов с ожирением
Фролова Е.С., Веселовский П.П., Чумакова Г.А., Веселовская Н.Г., Отт А.В. Особенности течения COVID-19 и постковидного периода у пациентов с ожирением // CardioСоматика. 2024. Т. 15. № 4. С. 344–353. DOI: https://doi.org/10.17816/CS626503
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Пандемия COVID-19 затронула население всей планеты, нанеся значительный экономический и материальный ущерб и непоправимые человеческие потери. Многие страны были вынуждены оперативно перестроить систему здравоохранения для спасения пациентов с COVID-19. Патогенез и особенности течения данного заболевания изучены не до конца, однако одна закономерность прослеживается особенно отчётливо: люди, страдающие ожирением, переносят COVID-19 значительно тяжелее. Как известно, жировая ткань обладает свойством поддерживать хроническое низкоинтенсивное воспаление, а также имеет свою эндокринную активность. С течением времени стало очевидно, что у части пациентов после завершения острой фазы COVID-19 остаются последствия, которые в ряде случаев приводят к необратимым изменениям в организме и снижению качества жизни. Это состояние получило название «постковидный синдром». В данном обзоре мы рассматриваем влияние COVID-19 на разные системы органов в отдалённом периоде. Большое внимание уделяем патогенетическим механизмам течения инфекции и особенностям постковидного синдрома у пациентов с ожирением.
Ключевые слова: ожирение, COVID-19, постковидный синдром, патогенетические механизмы
Keywords: obesity, COVID-19, post-COVID syndrome, pathogenic mechanisms
Ключевые слова: ожирение, COVID-19, постковидный синдром, патогенетические механизмы
________________________________________________
Keywords: obesity, COVID-19, post-COVID syndrome, pathogenic mechanisms
Полный текст
Список литературы
1. Ochani R., Asad A., Yasmin F., et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management // Infez Med. 2021. Vol. 29, N 1. P. 20–36.
2. Han Q., Zheng B., Daines L., Sheikh A. Long-Term Sequelae of COVID-19: A Systematic Review and Meta-Analysis of One-Year Follow-Up Studies on Post-COVID Symptoms // Pathogens. 2022. Vol. 11, N 2. P. 269. doi: 10.3390/pathogens11020269
3. Liu E., Lee H., Lui B., et al. Respiratory and nonrespiratory COVID-19 complications in patients with obesity: recent developments // J Comp Eff Res. 2022. Vol. 11, N 5. P. 371–381. doi: 10.2217/cer-2021-0237
4. World Health Organization. World leaders express strong support for WHO at G20. Режим доступа: https://www.who.int/home. Дата обращения: 04.08.2024 г.
5. Федеральная служба государственной статистики. Режим доступа: https://rosstat.gov.ru. Дата обращения: 30.09.2024 г.
6. Лескова И.В., Ершова Е.В., Никитина Е.А., и др. Ожирение в России: современный взгляд под углом социальных проблем // Ожирение и метаболизм. 2019. Т. 16, № 1. С. 20–26. EDN: KDEROH doi: 10.14341/omet9988
7. Кравчук Е.Н., Неймарк А.Е., Бабенко А.Ю., и др. Ожирение и COVID-19 // Артериальная гипертензия. 2020. Т. 26, № 4. С. 440446. EDN: IFIREM doi: 10.18705/1607-419X-2020-26-4-440-446
8. Разина А.О., Руненко С.Д., Ачкасов Е.Е. Проблема ожирения: современные тенденции в России и в мире // Вестник РАМН. 2016. Т. 71, № 2. С. 154–159. EDN: VYQBYN doi: 10.15690/vramn655
9. Gammone M.A., D’Orazio N. COVID-19 and Obesity: Overlapping of Two Pandemics // Obes Facts. 2021. Vol. 14, N 6. P. 579–585. doi: 10.1159/000518386
10. Баклаушев В.П., Кулемзин С.В., Горчаков А.А., и др. COVID-19. Этиология, патогенез, диагностика и лечение // Клиническая практика. 2020. Т. 11, № 1. С. 7–20. EDN: COJLTB doi: 10.17816/clinpract26339
11. Никифоров В.В., Суранова Т.Г., Чернобровкина Т.Я., и др. Новая коронавирусная инфекция (COVID-19): клинико-эпидемиологические аспекты // Архивъ внутренней медицины. 2020. Т. 10, № 2. С. 87–93. EDN: MELBOP doi: 10.20514/2226-6704-2020-10-2-87-93
12. Шатунова П.О., Быков А.С., Свитич О.А., Зверев В.В. Ангиотензинпревращающий фермент 2. Подходы к патогенетической терапии COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2020. Т. 97, № 4. С. 339–345. EDN: PMHTVH doi: 10.36233/0372-9311-2020-97-4-6
13. Hoffmann M., Kleine-Weber H., Krüger N., et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells // BioRxiv. 2020. doi: 10.1101/2020.01.31.929042
14. Carluccio M., Soccio M., De Caterina R. Aspects of gene polymorphisms in cardiovascular disease: the renin-angiotensin system // Eur J Clin Invest. 2001. Vol. 31, N 6. P. 476–488. doi: 10.1046/j.1365-2362.2001.00839.x
15. Mehta P., McAuley D., Brown M., et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression // Lancet. 2020. Vol. 395, N 10229. P. 1033–1034. doi: 10.1016/S0140-6736(20)30628-0
16. Welch W. Angiotensin II-dependent superoxide: effects on hypertension and vascular dysfunction // Hypertension. 2008. Vol. 52, N 1. P. 51–56. doi: 10.1161/HYPERTENSIONAHA.107.090472
17. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology // Semin Immunopathol. 2017. Vol. 39, N 5. P. 529–539. doi: 10.1007/s00281-017-0629-x
18. Caussy C., Pattou F., Wallet F., et al. Prevalence of obesity among adult inpatients with COVID-19 in France // Lancet Diabetes Endocrinol. 2020. Vol. 8, N 7. P. 562–564. doi: 10.1016/S2213-8587(20)30160-1
19. Vanhems P., Gustin M., Elias C., et al. Factors associated with admission to intensive care units in COVID-19 patients in Lyon-France // PloS One. 2021. Vol. 16, N 1. P. e0243709. doi: 10.1371/journal.pone.0243709
20. O’Hearn M., Liu J., Cudhea F., et al. Coronavirus Disease 2019 Hospitalizations Attributable to Cardiometabolic Conditions in the United States: A Comparative Risk Assessment Analysis // J Am Heart Assoc. 2021. Vol. 10, N 5. P. e019259. doi: 10.1161/JAHA.120.019259
21. Petrilli C., Jones S., Yang J., et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study // BMJ. 2020. Vol. 369. P. m1966. doi: 10.1136/bmj.m1966
22. Cai Q., Chen F., Wang T., et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China // Diabetes Care. 2020. Vol. 43(7):1392–1398. doi: 10.2337/dc20-0576
23. Jia X., Yin C., Lu S., et al. Two Things about COVID-19 Might Need Attention // Preprints. 2020. P. 2020020315. doi: 10.20944/preprints202002.0315.v1
24. Stefan N., Birkenfeld A., Schulze M. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19 // Nat Rev Endocrinol. 2021. Vol. 17, N 3. P. 135–149. doi: 10.1038/s41574-020-00462-1
25. Yan T., Xiao R., Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronaviruse and SARS-CoV-2: A double-edged sword? // FASEB J. 2020. Vol. 34, N 5. P. 6017–6026. doi: 10.1096/fj.202000782
26. Bandaru P., Rajkumar H., Nappanveettil G. The Impact of Obesity on Immune Response to Infection and Vaccine: An Insight into Plausible Mechanisms // Endocrinol Metab Synd. 2013. Vol. 2. P. 1000113. doi: 10.4172/2161-1017.1000113
27. Muscogiuri G., Pugliese G., Laudisio D., et al. The impact of obesity on immune response to infection: Plausible mechanisms and outcomes // Obes Rev. 2021. Vol. 22, N 6. P. e13216. doi: 10.1111/obr.13216
28. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the "Cytokine Storm" in COVID-19 // J Infect. 2020. Vol. 80, N 6. P. 607–613. doi: 10.1016/j.jinf.2020.03.037
29. Mirsoian A., Bouchlaka M., Sckisel G., et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med. 2014. Vol. 211, N 12. P. 2373–2783. doi: 10.1084/jem.20140116
30. De Leeuw A., Oude Luttikhuis M, Wellen A, et al. Obesity and its impact on COVID-19 // J Mol Med (Berl). 2021. Vol. 99, N 7. P. 899–915. doi: 10.1007/s00109-021-02072-4
31. Muskiet F., Carrera-Bastos P., Pruimboom L., et al. Obesity and leptin resistance in the regulation of the type I interferon early response and the increased risk for severe COVID-19 // Nutrients. 2022. Vol. 14, N 7. P. 1388. doi: 10.3390/nu14071388
32. Zhou Y., Rui L. Leptin signaling and leptin resistance // Front Med. 2013. Vol. 7, N 2. P. 207–222. doi: 10.1007/s11684-013-0263-5
33. Van der Voort P., Moser J., Zandstra D., et al. Leptin levels in SARS‑CoV-2 infection related respiratory failure: A cross‑sectional study and a pathophysiological framework on the role of fat tissue // Heliyon. 2020. Vol. 6, N 8. P. e04696. doi: 10.1016/j.heliyon.2020.e04696
34. Maier H., Lopez R., Sanchez N., et al. Obesity Increases the Duration of Influenza A Virus Shedding in Adults // J Infect Dis. 2018. Vol. 218, N 9. P. 1378–1382. doi: 10.1093/infdis/jiy370
35. Lasbleiz A., Gaborit B., Soghomonian A., et al. COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury // Front Endocrinol (Lausanne). 2021. Vol. 12. P. 726967. doi: 10.3389/fendo.2021.726967
36. Bihan H., Heidar R., Beloeuvre A., et al. Epicardial adipose tissue and severe Coronavirus Disease 19 // Cardiovasc Diabetol. 2021. Vol. 20, N 1. P. 147. doi: 10.1186/s12933-021-01329-z
37. Pasquarelli-do-Nascimento G., Braz-de-Melo H., Faria S., et al. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity // Front Endocrinol (Lausanne). 2020. Vol. 28, N 11. P. 530. doi: 10.3389/fendo.2020.00530
38. Panigada M., Bottino N., Tagliabue P., et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis // J Thromb Haemost. 2020. Vol. 18, N 7. P. 1738–1742. doi: 10.1111/jth.14850
39. Rubin R. As Their Numbers Grow, COVID-19 ”Long Haulers” Stump Experts // JAMA. 2020. Vol. 324, N 14. P. 1381–1383. doi:10.1001/jama.2020.17709
40. Van der Meijden P., Heemskerk J. Platelet biology and functions: new concepts and clinical perspectives // Nat Rev Cardiol. 2019. Vol. 16, N 3. P. 166–179. doi: 10.1038/s41569-018-0110-0
41. Lechner-Scott J., Levy M., Hawkes C., et al. Long COVID or post COVID-19 syndrome // Mult Scler Relat Disord. 2021. Vol. 55. P. 103268. doi: 10.1016/j.msard.2021.103268
42. Raman B., Bluemke D., Lüscher T., Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus // Eur Heart J. 2022. Vol. 43, N 11. P. 1157–1172. doi: 10.1093/eurheartj/ehac031
43. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE). 2024.
44. Scholkmann F., May C. COVID-19, post-acute COVID-19 syndrome (PACS, ”long COVID”) and post-COVID-19 vaccination syndrome (PCVS, ”post-COVIDvac-syndrome”): Similarities and differences // Pathol Res Pract. 2023. Vol. 246. P. 154497. doi: 10.1016/j.prp.2023.154497
45. Chopra V., Flanders S.A., O’Malley M., et al. Sixty-day outcomes among patients hospitalized with COVID-19 // Ann Intern Med. 2021. Vol. 174, N 4. P. 576-578. doi: 10.7326/M20-5661
46. Davis H., McCorkell L., Vogel J., Topol E. Long COVID: major findings, mechanisms and recommendations // Nat Rev Microbiol. 2023. Vol. 21, N 3. P. 133–146. doi: 10.1038/s41579-022-00846-2
47. Kingstone T., Taylor A., O’Donnell C., et al. Finding the ”right” GP: a qualitative study of the experiences of people with long‑COVID // BJGP Open. 2020. Vol. 4, N 5. P. bjgpopen20X101143. doi: 10.3399/bjgpopen20X101143
48. Naeije R., Caravita S. Phenotyping long COVID // Eur Respir J. 2021. Vol. 58, N 2. P. 2101763. doi: 10.1183/13993003.01763-2021
49. Dixit N., Churchill A., Nsair A., Hsu J. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? // Am Heart J Plus. 2021. Vol. 5. P. 100025. doi: 10.1016/j.ahjo.2021.100025
50. Nalbandian A., Sehgal K., Gupta A., et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, N 4. P. 601–615. doi: 10.1038/s41591-021-01283-z
51. Oikonomou E., Souvaliotis N., Lampsas S., et al. Endothelial dysfunction in acute and long standing COVID-19: A prospective cohort study // Vascul Pharmacol. 2022. Vol. 144. P. 106975. doi: 10.1016/j.vph.2022.106975
52. Sathish T., Tapp R., Cooper M., Zimmet P. Potential metabolic and inflammatory pathways between COVID-19 and new‑onset diabetes // Diabetes Metab. 2021. Vol. 47, N 2. P. 101204. doi: 10.1016/j.diabet.2020.10.002
2. Han Q, Zheng B, Daines L, Sheikh A. Long-Term Sequelae of COVID-19: A Systematic Review and Meta-Analysis of One‑Year Follow-Up Studies on Post-COVID Symptoms. Pathogens. 2022;11(2):269. doi: 10.3390/pathogens11020269
3. Liu E, Lee H, Lui B, et al. Respiratory and nonrespiratory COVID-19 complications in patients with obesity: recent developments. J Comp Eff Res. 2022;11(5):371–381. doi: 10.2217/cer-2021-0237
4. World Health Organization. World leaders express strong support for WHO at G20. Available from: https://www.who.int/home
5. Federal State Statistics Service. Available from: https://rosstat.gov.ru
6. Leskova IV, Ershova EV, Nikitina EA, et al. Obesity in Russia: modern view in the light of a social problems. Obesity and metabolism. 2019;16(1):20–26. EDN: KDEROH doi: 10.14341/omet9988
7. Kravchuk EN, Neimark AE, Babenko AYu, et al. Obesity and COVID-19. Arterial Hypertension. 2020;26(4):440–446. EDN: IFIREM doi: 10.18705/1607-419X-2020-26-4-440-446
8. Razina AО, Runenko SD, Achkasov EЕ. Obesity: Current Global and Russian Trends. Annals of the Russian Academy of Medical Sciences. 2016;71(2):154–159. EDN: VYQBYN doi: 10.15690/vramn655
9. Gammone M, D’Orazio N. COVID-19 and Obesity: Overlapping of Two Pandemics. Obes Facts. 2021;14(6):579–585. doi: 10.1159/000518386
10. Baklaushev VP, Kulemzin SV, Gorchakov АА, et al. COVID-19. Etiology, Pathogenesis, Diagnosis and Treatment. Journal of Clinical Practice. 2020;11(1):7–20. EDN: COJLTB doi: 10.17816/clinpract26339
11. Nikiforov VV, Suranova TG, Chernobrovkina TYa, et al. New Coronavirus Infection (COVID-19): Clinical and Epidemiological Aspects. The Russian Archives of Internal Medicine. 2020;10(2):87–93. EDN: MELBOP doi: 10.20514/2226-6704-2020-10-2-87-93
12. Shatunova PO, Bykov AS, Svitich OA, Zverev VV. Angiotensin-converting enzyme 2. Approaches to pathogenetic therapy of COVID-19. Journal of microbiology, epidemiology and immunobiology. 2020;97(4):339–345. EDN: PMHTVH doi: 10.36233/0372-9311-2020-97-4-6
13. Hoffmann M, Kleine-Weber H, Krüger N, et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. 2020. doi: 10.1101/2020.01.31.929042
14. Carluccio M, Soccio M, De Caterina R. Aspects of gene polymorphisms in cardiovascular disease: the renin‑angiotensin system. Eur J Clin Invest. 2001;31(6):476–488. doi: 10.1046/j.1365-2362.2001.00839.x
15. Mehta P, McAuley DF, Brown M, et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0
16. Welch WJ. Angiotensin II-dependent superoxide: effects on hypertension and vascular dysfunction. Hypertension. 2008;52(1):51–56. doi: 10.1161/HYPERTENSIONAHA.107.090472
17. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529–539. doi: 10.1007/s00281-017-0629-x
18. Caussy C, Pattou F, Wallet F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020;8(7):562–564. doi: 10.1016/S2213-8587(20)30160-1
19. Vanhems, Philippe et al. Factors associated with admission to intensive care units in COVID-19 patients in Lyon-France. PloS One. 2021;16(1):e0243709. doi: 10.1371/journal.pone.0243709
20. O’Hearn M, Liu J, Cudhea F, et al. Coronavirus Disease 2019 Hospitalizations Attributable to Cardiometabolic Conditions in the United States: A Comparative Risk Assessment Analysis. J Am Heart Assoc. 2021;10(5):e019259. doi: 10.1161/JAHA.120.019259
21. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. doi: 10.1136/bmj.m1966
22. Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392–1398. doi: 10.2337/dc20-0576
23. Jia X., Yin C, Lu S, et al. Two Things about COVID-19 Might Need Attention. Preprint. 2020:2020020315. doi: 10.20944/preprints202002.0315.v1
24. Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021;17(3):135–149. doi: 10.1038/s41574-020-00462-1
25. Yan T, Xiao R, Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronaviruse and SARS-CoV-2: A double-edged sword? FASEB J. 2020;34:6017–6026. doi: 10.1096/fj.202000782
26. Bandaru P, Rajkumar H, Nappanveettil G. The Impact of Obesity on Immune Response to Infection and Vaccine: An Insight into Plausible Mechanisms. Endocrinol Metab Synd. 2013;2:1000113. doi: 10.4172/2161-1017.1000113
27. Muscogiuri G, Pugliese G, Laudisio D, et al. The impact of obesity on immune response to infection: Plausible mechanisms and outcomes. Obes Rev. 2021;22(6):e13216. doi: 10.1111/obr.13216
28. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037
29. Mirsoian A, Bouchlaka MN, Sckisel GD, et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med. 2014;211(12):2373–2383. doi: 10.1084/jem.20140116
30. De Leeuw A, Oude Luttikhuis M, Wellen A, et al. Obesity and its impact on COVID-19. J Mol Med (Berl). 2021;99(7):899–915. doi: 10.1007/s00109-021-02072-4
31. Muskiet FAJ, Carrera-Bastos P, Pruimboom L, et al. Obesity and leptin resistance in the regulation of the type I interferon early response and the increased risk for severe COVID-19. Nutrients. 2022;14(7):1388. doi: 10.3390/nu14071388
32. Zhou Y, Rui L. Leptin signaling and leptin resistance. Front Med. 2013;7(2):207–222. doi: 10.1007/s11684-013-0263-5
33. Van der Voort P, Moser J, Zandstra D, et al. Leptin levels in SARS-CoV-2 infection related respiratory failure: A cross-sectional study and a pathophysiological framework on the role of fat tissue. Heliyon. 2020;6(8):e04696. doi: 10.1016/j.heliyon.2020.e04696
34. Maier H, Lopez R, Sanchez N, et al. Obesity Increases the Duration of Influenza A Virus Shedding in Adults. J Infect Dis. 2018;218(9):1378–1382. doi: 10.1093/infdis/jiy370
35. Lasbleiz A, Gaborit B, Soghomonian A, et al. COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury. Front Endocrinol (Lausanne). 2021;12:726967. doi: 10.3389/fendo.2021.726967
36. Bihan H, Heidar R, Beloeuvre A, et al. Epicardial adipose tissue and severe Coronavirus Disease 19. Cardiovasc Diabetol. 2021;20(1):147. doi: 10.1186/s12933-021-01329-z
37. Pasquarelli-do-Nascimento G, Braz-de-Melo H, Faria S, et al. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity. Front Endocrinol (Lausanne). 2020;11:530. doi: 10.3389/fendo.2020.00530
38. Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738–1742. doi: 10.1111/jth.14850
39. Rubin R. As Their Numbers Grow, COVID-19 ”Long Haulers” Stump Experts. JAMA. 2020;324(14):1381–1383. doi:10.1001/jama.2020.17709
40. Van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–179. doi: 10.1038/s41569-018-0110-0
41. Lechner-Scott J, Levy M, Hawkes C, et al. Long COVID or post COVID-19 syndrome. Mult Scler Relat Disord. 2021;55:103268. doi: 10.1016/j.msard.2021.103268
42. Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–1172. doi: 10.1093/eurheartj/ehac031
43. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE); 2020.
44. Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, ”long COVID”) and post-COVID-19 vaccination syndrome (PCVS, ”post-COVIDvac-syndrome”): Similarities and differences. Pathol Res Pract. 2023;246:154497. doi: 10.1016/j.prp.2023.154497
45. Chopra V, Flanders SA, O’Malley M, et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann Intern Med. 2021;174(4):576–578. doi: 10.7326/M20-5661
46. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–146. doi: 10.1038/s41579-022-00846-2
47. Kingstone T, Taylor AK, O’Donnell CA, et al. Finding the "right" GP: a qualitative study of the experiences of people with long-COVID. BJGP Open. 2020;4(5):bjgpopen20X101143. doi: 10.3399/bjgpopen20X101143
48. Naeije R, Caravita S. Phenotyping long COVID. Eur Respir J. 2021;58(2):2101763. doi: 10.1183/13993003.01763-2021
49. Dixit NM, Churchill A, Nsair A, Hsu JJ. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? Am Heart J Plus. 2021;5:100025. doi: 10.1016/j.ahjo.2021.100025
50. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z
51. Oikonomou E, Souvaliotis N, Lampsas S, et al. Endothelial dysfunction in acute and long standing COVID-19: A prospective cohort study. Vascul Pharmacol. 2022;144:106975. doi: 10.1016/j.vph.2022.106975
52. Sathish T, Tapp RJ, Cooper ME, et al. Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. Diabetes Metab. 2021;47(2):101204. doi: 10.1016/j.diabet.2020.10.002
2. Han Q., Zheng B., Daines L., Sheikh A. Long-Term Sequelae of COVID-19: A Systematic Review and Meta-Analysis of One-Year Follow-Up Studies on Post-COVID Symptoms // Pathogens. 2022. Vol. 11, N 2. P. 269. doi: 10.3390/pathogens11020269
3. Liu E., Lee H., Lui B., et al. Respiratory and nonrespiratory COVID-19 complications in patients with obesity: recent developments // J Comp Eff Res. 2022. Vol. 11, N 5. P. 371–381. doi: 10.2217/cer-2021-0237
4. World Health Organization. World leaders express strong support for WHO at G20. Режим доступа: https://www.who.int/home. Дата обращения: 04.08.2024 г.
5. Федеральная служба государственной статистики. Режим доступа: https://rosstat.gov.ru. Дата обращения: 30.09.2024 г.
6. Лескова И.В., Ершова Е.В., Никитина Е.А., и др. Ожирение в России: современный взгляд под углом социальных проблем // Ожирение и метаболизм. 2019. Т. 16, № 1. С. 20–26. EDN: KDEROH doi: 10.14341/omet9988
7. Кравчук Е.Н., Неймарк А.Е., Бабенко А.Ю., и др. Ожирение и COVID-19 // Артериальная гипертензия. 2020. Т. 26, № 4. С. 440446. EDN: IFIREM doi: 10.18705/1607-419X-2020-26-4-440-446
8. Разина А.О., Руненко С.Д., Ачкасов Е.Е. Проблема ожирения: современные тенденции в России и в мире // Вестник РАМН. 2016. Т. 71, № 2. С. 154–159. EDN: VYQBYN doi: 10.15690/vramn655
9. Gammone M.A., D’Orazio N. COVID-19 and Obesity: Overlapping of Two Pandemics // Obes Facts. 2021. Vol. 14, N 6. P. 579–585. doi: 10.1159/000518386
10. Баклаушев В.П., Кулемзин С.В., Горчаков А.А., и др. COVID-19. Этиология, патогенез, диагностика и лечение // Клиническая практика. 2020. Т. 11, № 1. С. 7–20. EDN: COJLTB doi: 10.17816/clinpract26339
11. Никифоров В.В., Суранова Т.Г., Чернобровкина Т.Я., и др. Новая коронавирусная инфекция (COVID-19): клинико-эпидемиологические аспекты // Архивъ внутренней медицины. 2020. Т. 10, № 2. С. 87–93. EDN: MELBOP doi: 10.20514/2226-6704-2020-10-2-87-93
12. Шатунова П.О., Быков А.С., Свитич О.А., Зверев В.В. Ангиотензинпревращающий фермент 2. Подходы к патогенетической терапии COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2020. Т. 97, № 4. С. 339–345. EDN: PMHTVH doi: 10.36233/0372-9311-2020-97-4-6
13. Hoffmann M., Kleine-Weber H., Krüger N., et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells // BioRxiv. 2020. doi: 10.1101/2020.01.31.929042
14. Carluccio M., Soccio M., De Caterina R. Aspects of gene polymorphisms in cardiovascular disease: the renin-angiotensin system // Eur J Clin Invest. 2001. Vol. 31, N 6. P. 476–488. doi: 10.1046/j.1365-2362.2001.00839.x
15. Mehta P., McAuley D., Brown M., et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression // Lancet. 2020. Vol. 395, N 10229. P. 1033–1034. doi: 10.1016/S0140-6736(20)30628-0
16. Welch W. Angiotensin II-dependent superoxide: effects on hypertension and vascular dysfunction // Hypertension. 2008. Vol. 52, N 1. P. 51–56. doi: 10.1161/HYPERTENSIONAHA.107.090472
17. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology // Semin Immunopathol. 2017. Vol. 39, N 5. P. 529–539. doi: 10.1007/s00281-017-0629-x
18. Caussy C., Pattou F., Wallet F., et al. Prevalence of obesity among adult inpatients with COVID-19 in France // Lancet Diabetes Endocrinol. 2020. Vol. 8, N 7. P. 562–564. doi: 10.1016/S2213-8587(20)30160-1
19. Vanhems P., Gustin M., Elias C., et al. Factors associated with admission to intensive care units in COVID-19 patients in Lyon-France // PloS One. 2021. Vol. 16, N 1. P. e0243709. doi: 10.1371/journal.pone.0243709
20. O’Hearn M., Liu J., Cudhea F., et al. Coronavirus Disease 2019 Hospitalizations Attributable to Cardiometabolic Conditions in the United States: A Comparative Risk Assessment Analysis // J Am Heart Assoc. 2021. Vol. 10, N 5. P. e019259. doi: 10.1161/JAHA.120.019259
21. Petrilli C., Jones S., Yang J., et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study // BMJ. 2020. Vol. 369. P. m1966. doi: 10.1136/bmj.m1966
22. Cai Q., Chen F., Wang T., et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China // Diabetes Care. 2020. Vol. 43(7):1392–1398. doi: 10.2337/dc20-0576
23. Jia X., Yin C., Lu S., et al. Two Things about COVID-19 Might Need Attention // Preprints. 2020. P. 2020020315. doi: 10.20944/preprints202002.0315.v1
24. Stefan N., Birkenfeld A., Schulze M. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19 // Nat Rev Endocrinol. 2021. Vol. 17, N 3. P. 135–149. doi: 10.1038/s41574-020-00462-1
25. Yan T., Xiao R., Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronaviruse and SARS-CoV-2: A double-edged sword? // FASEB J. 2020. Vol. 34, N 5. P. 6017–6026. doi: 10.1096/fj.202000782
26. Bandaru P., Rajkumar H., Nappanveettil G. The Impact of Obesity on Immune Response to Infection and Vaccine: An Insight into Plausible Mechanisms // Endocrinol Metab Synd. 2013. Vol. 2. P. 1000113. doi: 10.4172/2161-1017.1000113
27. Muscogiuri G., Pugliese G., Laudisio D., et al. The impact of obesity on immune response to infection: Plausible mechanisms and outcomes // Obes Rev. 2021. Vol. 22, N 6. P. e13216. doi: 10.1111/obr.13216
28. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the "Cytokine Storm" in COVID-19 // J Infect. 2020. Vol. 80, N 6. P. 607–613. doi: 10.1016/j.jinf.2020.03.037
29. Mirsoian A., Bouchlaka M., Sckisel G., et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med. 2014. Vol. 211, N 12. P. 2373–2783. doi: 10.1084/jem.20140116
30. De Leeuw A., Oude Luttikhuis M, Wellen A, et al. Obesity and its impact on COVID-19 // J Mol Med (Berl). 2021. Vol. 99, N 7. P. 899–915. doi: 10.1007/s00109-021-02072-4
31. Muskiet F., Carrera-Bastos P., Pruimboom L., et al. Obesity and leptin resistance in the regulation of the type I interferon early response and the increased risk for severe COVID-19 // Nutrients. 2022. Vol. 14, N 7. P. 1388. doi: 10.3390/nu14071388
32. Zhou Y., Rui L. Leptin signaling and leptin resistance // Front Med. 2013. Vol. 7, N 2. P. 207–222. doi: 10.1007/s11684-013-0263-5
33. Van der Voort P., Moser J., Zandstra D., et al. Leptin levels in SARS‑CoV-2 infection related respiratory failure: A cross‑sectional study and a pathophysiological framework on the role of fat tissue // Heliyon. 2020. Vol. 6, N 8. P. e04696. doi: 10.1016/j.heliyon.2020.e04696
34. Maier H., Lopez R., Sanchez N., et al. Obesity Increases the Duration of Influenza A Virus Shedding in Adults // J Infect Dis. 2018. Vol. 218, N 9. P. 1378–1382. doi: 10.1093/infdis/jiy370
35. Lasbleiz A., Gaborit B., Soghomonian A., et al. COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury // Front Endocrinol (Lausanne). 2021. Vol. 12. P. 726967. doi: 10.3389/fendo.2021.726967
36. Bihan H., Heidar R., Beloeuvre A., et al. Epicardial adipose tissue and severe Coronavirus Disease 19 // Cardiovasc Diabetol. 2021. Vol. 20, N 1. P. 147. doi: 10.1186/s12933-021-01329-z
37. Pasquarelli-do-Nascimento G., Braz-de-Melo H., Faria S., et al. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity // Front Endocrinol (Lausanne). 2020. Vol. 28, N 11. P. 530. doi: 10.3389/fendo.2020.00530
38. Panigada M., Bottino N., Tagliabue P., et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis // J Thromb Haemost. 2020. Vol. 18, N 7. P. 1738–1742. doi: 10.1111/jth.14850
39. Rubin R. As Their Numbers Grow, COVID-19 ”Long Haulers” Stump Experts // JAMA. 2020. Vol. 324, N 14. P. 1381–1383. doi:10.1001/jama.2020.17709
40. Van der Meijden P., Heemskerk J. Platelet biology and functions: new concepts and clinical perspectives // Nat Rev Cardiol. 2019. Vol. 16, N 3. P. 166–179. doi: 10.1038/s41569-018-0110-0
41. Lechner-Scott J., Levy M., Hawkes C., et al. Long COVID or post COVID-19 syndrome // Mult Scler Relat Disord. 2021. Vol. 55. P. 103268. doi: 10.1016/j.msard.2021.103268
42. Raman B., Bluemke D., Lüscher T., Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus // Eur Heart J. 2022. Vol. 43, N 11. P. 1157–1172. doi: 10.1093/eurheartj/ehac031
43. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE). 2024.
44. Scholkmann F., May C. COVID-19, post-acute COVID-19 syndrome (PACS, ”long COVID”) and post-COVID-19 vaccination syndrome (PCVS, ”post-COVIDvac-syndrome”): Similarities and differences // Pathol Res Pract. 2023. Vol. 246. P. 154497. doi: 10.1016/j.prp.2023.154497
45. Chopra V., Flanders S.A., O’Malley M., et al. Sixty-day outcomes among patients hospitalized with COVID-19 // Ann Intern Med. 2021. Vol. 174, N 4. P. 576-578. doi: 10.7326/M20-5661
46. Davis H., McCorkell L., Vogel J., Topol E. Long COVID: major findings, mechanisms and recommendations // Nat Rev Microbiol. 2023. Vol. 21, N 3. P. 133–146. doi: 10.1038/s41579-022-00846-2
47. Kingstone T., Taylor A., O’Donnell C., et al. Finding the ”right” GP: a qualitative study of the experiences of people with long‑COVID // BJGP Open. 2020. Vol. 4, N 5. P. bjgpopen20X101143. doi: 10.3399/bjgpopen20X101143
48. Naeije R., Caravita S. Phenotyping long COVID // Eur Respir J. 2021. Vol. 58, N 2. P. 2101763. doi: 10.1183/13993003.01763-2021
49. Dixit N., Churchill A., Nsair A., Hsu J. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? // Am Heart J Plus. 2021. Vol. 5. P. 100025. doi: 10.1016/j.ahjo.2021.100025
50. Nalbandian A., Sehgal K., Gupta A., et al. Post-acute COVID-19 syndrome // Nat Med. 2021. Vol. 27, N 4. P. 601–615. doi: 10.1038/s41591-021-01283-z
51. Oikonomou E., Souvaliotis N., Lampsas S., et al. Endothelial dysfunction in acute and long standing COVID-19: A prospective cohort study // Vascul Pharmacol. 2022. Vol. 144. P. 106975. doi: 10.1016/j.vph.2022.106975
52. Sathish T., Tapp R., Cooper M., Zimmet P. Potential metabolic and inflammatory pathways between COVID-19 and new‑onset diabetes // Diabetes Metab. 2021. Vol. 47, N 2. P. 101204. doi: 10.1016/j.diabet.2020.10.002
________________________________________________
2. Han Q, Zheng B, Daines L, Sheikh A. Long-Term Sequelae of COVID-19: A Systematic Review and Meta-Analysis of One‑Year Follow-Up Studies on Post-COVID Symptoms. Pathogens. 2022;11(2):269. doi: 10.3390/pathogens11020269
3. Liu E, Lee H, Lui B, et al. Respiratory and nonrespiratory COVID-19 complications in patients with obesity: recent developments. J Comp Eff Res. 2022;11(5):371–381. doi: 10.2217/cer-2021-0237
4. World Health Organization. World leaders express strong support for WHO at G20. Available from: https://www.who.int/home
5. Federal State Statistics Service. Available from: https://rosstat.gov.ru
6. Leskova IV, Ershova EV, Nikitina EA, et al. Obesity in Russia: modern view in the light of a social problems. Obesity and metabolism. 2019;16(1):20–26. EDN: KDEROH doi: 10.14341/omet9988
7. Kravchuk EN, Neimark AE, Babenko AYu, et al. Obesity and COVID-19. Arterial Hypertension. 2020;26(4):440–446. EDN: IFIREM doi: 10.18705/1607-419X-2020-26-4-440-446
8. Razina AО, Runenko SD, Achkasov EЕ. Obesity: Current Global and Russian Trends. Annals of the Russian Academy of Medical Sciences. 2016;71(2):154–159. EDN: VYQBYN doi: 10.15690/vramn655
9. Gammone M, D’Orazio N. COVID-19 and Obesity: Overlapping of Two Pandemics. Obes Facts. 2021;14(6):579–585. doi: 10.1159/000518386
10. Baklaushev VP, Kulemzin SV, Gorchakov АА, et al. COVID-19. Etiology, Pathogenesis, Diagnosis and Treatment. Journal of Clinical Practice. 2020;11(1):7–20. EDN: COJLTB doi: 10.17816/clinpract26339
11. Nikiforov VV, Suranova TG, Chernobrovkina TYa, et al. New Coronavirus Infection (COVID-19): Clinical and Epidemiological Aspects. The Russian Archives of Internal Medicine. 2020;10(2):87–93. EDN: MELBOP doi: 10.20514/2226-6704-2020-10-2-87-93
12. Shatunova PO, Bykov AS, Svitich OA, Zverev VV. Angiotensin-converting enzyme 2. Approaches to pathogenetic therapy of COVID-19. Journal of microbiology, epidemiology and immunobiology. 2020;97(4):339–345. EDN: PMHTVH doi: 10.36233/0372-9311-2020-97-4-6
13. Hoffmann M, Kleine-Weber H, Krüger N, et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. 2020. doi: 10.1101/2020.01.31.929042
14. Carluccio M, Soccio M, De Caterina R. Aspects of gene polymorphisms in cardiovascular disease: the renin‑angiotensin system. Eur J Clin Invest. 2001;31(6):476–488. doi: 10.1046/j.1365-2362.2001.00839.x
15. Mehta P, McAuley DF, Brown M, et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0
16. Welch WJ. Angiotensin II-dependent superoxide: effects on hypertension and vascular dysfunction. Hypertension. 2008;52(1):51–56. doi: 10.1161/HYPERTENSIONAHA.107.090472
17. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529–539. doi: 10.1007/s00281-017-0629-x
18. Caussy C, Pattou F, Wallet F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020;8(7):562–564. doi: 10.1016/S2213-8587(20)30160-1
19. Vanhems, Philippe et al. Factors associated with admission to intensive care units in COVID-19 patients in Lyon-France. PloS One. 2021;16(1):e0243709. doi: 10.1371/journal.pone.0243709
20. O’Hearn M, Liu J, Cudhea F, et al. Coronavirus Disease 2019 Hospitalizations Attributable to Cardiometabolic Conditions in the United States: A Comparative Risk Assessment Analysis. J Am Heart Assoc. 2021;10(5):e019259. doi: 10.1161/JAHA.120.019259
21. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. doi: 10.1136/bmj.m1966
22. Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392–1398. doi: 10.2337/dc20-0576
23. Jia X., Yin C, Lu S, et al. Two Things about COVID-19 Might Need Attention. Preprint. 2020:2020020315. doi: 10.20944/preprints202002.0315.v1
24. Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021;17(3):135–149. doi: 10.1038/s41574-020-00462-1
25. Yan T, Xiao R, Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronaviruse and SARS-CoV-2: A double-edged sword? FASEB J. 2020;34:6017–6026. doi: 10.1096/fj.202000782
26. Bandaru P, Rajkumar H, Nappanveettil G. The Impact of Obesity on Immune Response to Infection and Vaccine: An Insight into Plausible Mechanisms. Endocrinol Metab Synd. 2013;2:1000113. doi: 10.4172/2161-1017.1000113
27. Muscogiuri G, Pugliese G, Laudisio D, et al. The impact of obesity on immune response to infection: Plausible mechanisms and outcomes. Obes Rev. 2021;22(6):e13216. doi: 10.1111/obr.13216
28. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037
29. Mirsoian A, Bouchlaka MN, Sckisel GD, et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J Exp Med. 2014;211(12):2373–2383. doi: 10.1084/jem.20140116
30. De Leeuw A, Oude Luttikhuis M, Wellen A, et al. Obesity and its impact on COVID-19. J Mol Med (Berl). 2021;99(7):899–915. doi: 10.1007/s00109-021-02072-4
31. Muskiet FAJ, Carrera-Bastos P, Pruimboom L, et al. Obesity and leptin resistance in the regulation of the type I interferon early response and the increased risk for severe COVID-19. Nutrients. 2022;14(7):1388. doi: 10.3390/nu14071388
32. Zhou Y, Rui L. Leptin signaling and leptin resistance. Front Med. 2013;7(2):207–222. doi: 10.1007/s11684-013-0263-5
33. Van der Voort P, Moser J, Zandstra D, et al. Leptin levels in SARS-CoV-2 infection related respiratory failure: A cross-sectional study and a pathophysiological framework on the role of fat tissue. Heliyon. 2020;6(8):e04696. doi: 10.1016/j.heliyon.2020.e04696
34. Maier H, Lopez R, Sanchez N, et al. Obesity Increases the Duration of Influenza A Virus Shedding in Adults. J Infect Dis. 2018;218(9):1378–1382. doi: 10.1093/infdis/jiy370
35. Lasbleiz A, Gaborit B, Soghomonian A, et al. COVID-19 and Obesity: Role of Ectopic Visceral and Epicardial Adipose Tissues in Myocardial Injury. Front Endocrinol (Lausanne). 2021;12:726967. doi: 10.3389/fendo.2021.726967
36. Bihan H, Heidar R, Beloeuvre A, et al. Epicardial adipose tissue and severe Coronavirus Disease 19. Cardiovasc Diabetol. 2021;20(1):147. doi: 10.1186/s12933-021-01329-z
37. Pasquarelli-do-Nascimento G, Braz-de-Melo H, Faria S, et al. Hypercoagulopathy and adipose tissue exacerbated inflammation may explain higher mortality in COVID-19 patients with obesity. Front Endocrinol (Lausanne). 2020;11:530. doi: 10.3389/fendo.2020.00530
38. Panigada M, Bottino N, Tagliabue P, et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738–1742. doi: 10.1111/jth.14850
39. Rubin R. As Their Numbers Grow, COVID-19 ”Long Haulers” Stump Experts. JAMA. 2020;324(14):1381–1383. doi:10.1001/jama.2020.17709
40. Van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–179. doi: 10.1038/s41569-018-0110-0
41. Lechner-Scott J, Levy M, Hawkes C, et al. Long COVID or post COVID-19 syndrome. Mult Scler Relat Disord. 2021;55:103268. doi: 10.1016/j.msard.2021.103268
42. Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–1172. doi: 10.1093/eurheartj/ehac031
43. COVID-19 rapid guideline: managing the long-term effects of COVID-19. London: National Institute for Health and Care Excellence (NICE); 2020.
44. Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, ”long COVID”) and post-COVID-19 vaccination syndrome (PCVS, ”post-COVIDvac-syndrome”): Similarities and differences. Pathol Res Pract. 2023;246:154497. doi: 10.1016/j.prp.2023.154497
45. Chopra V, Flanders SA, O’Malley M, et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann Intern Med. 2021;174(4):576–578. doi: 10.7326/M20-5661
46. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–146. doi: 10.1038/s41579-022-00846-2
47. Kingstone T, Taylor AK, O’Donnell CA, et al. Finding the "right" GP: a qualitative study of the experiences of people with long-COVID. BJGP Open. 2020;4(5):bjgpopen20X101143. doi: 10.3399/bjgpopen20X101143
48. Naeije R, Caravita S. Phenotyping long COVID. Eur Respir J. 2021;58(2):2101763. doi: 10.1183/13993003.01763-2021
49. Dixit NM, Churchill A, Nsair A, Hsu JJ. Post-Acute COVID-19 Syndrome and the cardiovascular system: What is known? Am Heart J Plus. 2021;5:100025. doi: 10.1016/j.ahjo.2021.100025
50. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z
51. Oikonomou E, Souvaliotis N, Lampsas S, et al. Endothelial dysfunction in acute and long standing COVID-19: A prospective cohort study. Vascul Pharmacol. 2022;144:106975. doi: 10.1016/j.vph.2022.106975
52. Sathish T, Tapp RJ, Cooper ME, et al. Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. Diabetes Metab. 2021;47(2):101204. doi: 10.1016/j.diabet.2020.10.002
Авторы
Е.С. Фролова*1, П.П. Веселовский2, Г.А. Чумакова2, Н.Г. Веселовская1,2, А.В. Отт1,2
1Алтайский краевой кардиологический диспансер, Барнаул, Россия;
2Алтайский государственный медицинский университет, Барнаул, Россия
*frolovaec@mail.ru
1Altai Regional Cardiology Dispensary, Barnaul, Russia;
2Altai State Medical University, Barnaul, Russia
*frolovaec@mail.ru
1Алтайский краевой кардиологический диспансер, Барнаул, Россия;
2Алтайский государственный медицинский университет, Барнаул, Россия
*frolovaec@mail.ru
________________________________________________
1Altai Regional Cardiology Dispensary, Barnaul, Russia;
2Altai State Medical University, Barnaul, Russia
*frolovaec@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
