Клиническая эффективность миметика инкретинов экзенатида: результаты исследований и показания к применению у больных сахарным диабетом типа 2
Клиническая эффективность миметика инкретинов экзенатида: результаты исследований и показания к применению у больных сахарным диабетом типа 2
Викулова О.К., Шестакова М.В. Клиническая эффективность миметика инкретинов экзенатида: результаты исследований и показания к применению у больных сахарным диабетом типа 2. Consilium Medicum. 2008; 10 (9): 12–18.
Клиническая эффективность миметика инкретинов экзенатида: результаты исследований и показания к применению у больных сахарным диабетом типа 2
Викулова О.К., Шестакова М.В. Клиническая эффективность миметика инкретинов экзенатида: результаты исследований и показания к применению у больных сахарным диабетом типа 2. Consilium Medicum. 2008; 10 (9): 12–18.
1. Koro CE, Bowlin SJ, Bourgeois N, Fedder DO. Glycemic control from 1988 to 2000 among U.S. adults diagnosed with type 2 diabetes: a preliminary report. Diabetes Care 2004; 27: 17–20.
2. Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 2004; 291: 335–42.
3. Turner RC, Cull CA, Frighi V, Holman RR. UK Prospective Diabetes Study (UKPDS) Group. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: prospective requirement for multiple therapies (UKPDS 49). JAMA 1999; 281: 2005–12.
4. Willey CJ, Andrade SE, Cohen J et al. Polypharmacy with oral antidiabetic agents: an indicator of poor glycemic control. Am J Manag Care 2006; 12: 435–40.
5. Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37: 826–8.
6. Schmidt WE, Siegel EG, Creutzfeldt W. Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia 1985; 28: 704–7.
7. Mortensen K, Christensen LL, Holst JJ, Orskov C. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Rept 2003; 114: 189–96.
8. Nauck MA, Heimesaat MM, Orskov C et al. Preserved incretin activity of glucagon-like peptide-1 (7–36 amide) but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91: 301–7.
9. Dube PE, Brubaker PL. Nutrient, neural and endocrine control of glucagons-like peptide secretion. Horm Metab Res 2004; 36 (11–12): 755–60.
10. Shah P, Vella A, Rizza RA. Glucagon physiology, pathophysiology and prospects of glucagons antagonists for the treatment of diabetes. Int Diabet Monitor 2005; 17 (6): 3–10.
11. Wettergren A, Schjoldager B, Mortensen PE et al. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993; 38: 665–73.
12. Gutzwiller JP, Drewe J, Goke B et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999; 276: R1541–4.
13. Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-I(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 1992; 130: 159–66.
14. Buteau J, Roduit R, Susini S, Prentki M. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 1999; 42: 856–64.
15. Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 2000; 141: 4600–5.
16. Perfetti R. The role of GLP-1 in the regulation of the islet cell mass. Medscape Diabet Endocrinol 2004; 6 (2).
17. Li Y, Hansotia T, Yusta B et al. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem 2003; 278: 471–8.
18. Hui H, Nourparvar A, Zxao X, Perfetti R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein–kinase A and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 2003; 144: 1444–55.
19. Farilla L, Bulotta A, Hirshberg B et al. Glucagon-like peptide-1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 2003; 144: 5149–58.
20. Buteau J, El-Assaad W, Rhodes CJ et al. Glucagon-like peptide-1 prevents β-cell glucolipotoxicity. Diabetologia 2004; 47: 806–15.
21. Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon–like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995; 80: 952–7.
22. Шестакова М.В., Викулова О.К. Современные возможности фармакотерапии сахарного диабета 2 типа при помощи аналогов глюкагоноподобного пептида-1 (ГПП-1). Сах. диабет. 2007; 1: 9–15.
23. Nielsen LL, Young AA, Parkers DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes. Regul Rept 2004; 117: 77–88.
24. Holst JJ. GLP-1 receptor agonists for the treatment of diabetes. Int Diabetes Monitor 2005; 17 (6): 11–8.
25. Fehse FC, Trautmann ME, Holst JJ et al. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2005; 90: 5991–7.
26. Kolterman OG, Buse JB, Fineman MS et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 2003; 88: 3082–9.
27. Degn KB, Brock B, Juhl CB et al. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and couterregulation during hypoglycemia. Diabetes 2004; 53 (9): 2397–403.
28. Kolterman O, Kim DD, Shen L et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 2005; 62: 173–81.
29. Edwards CMB, Stanley SA, Davis R et al. Exendin-4 reduses fasting and postprandial glucose decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab 2001; 281 (1): E155–61.
30. Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendine-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270–6.
31. Wajchenberg BL. β-Cell failure in diabetes and preservation by clinical treatment. Endocrine Reviews 2007; 28 (2): 187–218.
32. DeFronzo R, Ratner R, Han J et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabet Care 2005; 28 (5): 1092–100.
33. Buse J, Henry R, Han J et al. Effests of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004; 27 (11): 2628–35.
34. Kendall DM, Riddle MC, Rosenstock J et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005; 28 (5): 1083–91.
35. Zinman B, Hoogwerf BJ, Garcia SD et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes. Ann Intern Med 2007; 146: 477–85.
36. Kim D, MacConell L, Zhuang D et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007; 30: 1487–93.
37. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes. Systemic review and meta-analysis. JAMA 2007; 298: 194–206.
38. Heine RJ, Van Gaal LF, Johns D et al. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005; 143 (8): 559–69.
39. Barnett AH, Burger J, Johns D, Brodows R et al. Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: a multinational, randomized, open-label, two-period crossover noninferiority trial. Clin Ther 2007; 29: 2333–48.
40. Nauck MA, Duran S, Kim D et al. A comparison of a twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study. Diabetologia 2007; 50: 259–67.
41. Davis SN, Johns D, Maggs D et al. Exploring the substitution of exenatide for insulin in patients treated with insulin in combination with oral antidiabetes agents. Diabet Care 2007, 30: 2767–72.
42. Blonde L, Klein EJ, Han J et al. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 patients with type 2 diabetes. Diabetes Obes Metab 2006; 8: 436–47.
43. Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. Endocrinology and Metabolism Clinics of North America 2003; 32: 805–22.
44. Fineman MS, Shen LZ, Taylor K et al. Effectiveness of progressive dose-escalation of exenatide (exendin-4) in reducing dose-limiting effects in subjects with type 2 diabetes. Diabet Metab Res Rev 2004; 20: 411–7.
45. Food and Drug Administration Information for Healthcare Professionals Exenatide (marketed as Byetta). Available at www.fda.gov/cder/drug/InfoSheets/HCP/exenatideHCP.htm Accessed Jan 17, 2008.
46. Van Gaal LF, Gutkin SW, Nauck MA. Exploiting the antidiabetic properties of incretins to treat type 2 diabetes mellitus: glucagons-like peptide 1 receptor agonists or insulin for patients with inadequate glycemic control? Eur J Endocrinol 2008; 158: 773–84.