Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Новые возможности применения амброксола в пульмонологии: влияние на биопленки
Новые возможности применения амброксола в пульмонологии: влияние на биопленки
К.А.Зыков, О.Ю.Агапова, Е.И.Соколов. Новые возможности применения амброксола в пульмонологии: влияние на биопленки. Consilium Medicum. Пульмонология (Прил.). 2014; 1: 27-32.
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Полный текст
Список литературы
1. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (GOLD). Update 2013.
2. Шмелева Н.М., Шмелев Е.И. Современные аспекты мукоактивной терапии в пульмонологической практике. Терапевт. арх. 2013; 3: 107–9.
3. Моногарова Н.Е., Глухов А.В., Закомолдина Т.В. и др. Опыт использования комбинации ацетилцистеина и амброксола у пациентов с ХОЗЛ. Укр. пульмонологич. вестн. 2006; 4: 29–31.
4. Balsamo R, Lanata L, Egan CG. Mucoactive drugs. Eur Respir Rev 2010; 19 (116): 127–33.
5. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2013. Available from: http://www.goldcopd.org/
6. Decramer M, Rutten-van Molken M, Dekhuijzen PN et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomized placebo-controlled trial. Lancet 2005; 365 (9470): 1552–60.
7. Stav D, Raz M. Effect of N-acetylcysteine on air trapping in COPD: a randomized placebo-controlled study. Chest 2009; 136: 381–6.
8. Zheng JP, Kang J, Huang SG et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet 2008; 371 (9629): 2013–8.
9. Malerba M, Ponticiello A, Radaeli A et al. Effect of twelve-months therapy with oral ambroxol in preventing exacerbations in patients with COPD. Double-blind, randomized, multicenter, placebo-controlled study (the AMETHIST Trial). Pulm Pharmacol Ther 2004; 17 (1): 27–34.
10. Chenot JF, Weber P, Friede T. Efficacy of Ambroxol lozenges for pharyngitis: a meta-analysis. BMC Fam Pract 2014; 15: 45.
11. Kido H, Okumura Y, Yamada H et al. Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents. Curr Pharm Des 2007; 13 (4): 405–14.
12. Yang B, Yao DF, Ohuchi M et al. Ambroxol suppresses influenza-virus proliferation in the mouse airway by increasing antiviral factor levels. Eur Respir J 2002; 19 (5): 952–8.
13. Aihara M, Dobashi K, Akiyama M et al. Effects of N-acetylcysteine and ambroxol on the production of IL-12 and IL-10 in human alveolar macrophages. Respiration 2000; 67 (6): 662–71.
14. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganism. Clin Microbiol Rev 2002; 15: 167–93.
15. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8: 623–33.
16. Vu B, Chen M, Crawford RJ et al. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009; 14: 2535–54.
17. Pintucci JP, Corno S, Garotta M. Biofilms and infections of the upper respiratory tract. Eur Rev Med Pharmacol Sci 2010; 14: 683–90. Biofilm life cycle. Montana State University Center for Biofilm Engineering. Available at ULR: http://www.biofilm.montana.edu
18. Cataldi M, Sblendorio V, Leo A, Piazza O. Biofilm-dependent airway infections: a role for ambroxol? Pulm Pharmacol Ther 2014; 28 (2): 98–108.
19. Li F. Effects of ambroxol on alginate of mature P. aeruginosa biofilms. Curr Microbiol 2008; 57 (1): 1–7.
20. Heukelekian H, Heller A. Relation between Food Concentration and Surface for Bacterial Growth. J Bacteriol 1940; 40 (4): 547–58.
21. Mack WN, Mack JP, Ackerson AO. Microbial film development in a trickling filter. Microb Ecol 1975; 2 (3): 215–26.
22. Sauer K, Camper AK, Ehrlich GD et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002; 184 (4): 1140–54.
23. Stewart PS, Franklin MJ. Physiological hetero-geneity in biofilms. Nat Rev Microbiol 2008; 6 (3): 199–210.
24. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55: 165–99.
25. Yung-Hua Li. Xiaolin Tian. Quorum Sensing and Bacterial Social Interactions in Biofilms Sensors 2012; 12: 2519–38.
26. Ceri H, Olson ME, Stremick C et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37: 1771–6.
27. Desrosiers M, Bendauah Z, Barbeau J. Effectiveness of topical antibiotics on Staphylococcus aureus biofilm in vitro. Am J Rhinol 2007; 21: 149–53.
28. Lambiase A, Rossano F, Piazza O et al. Typing of Pseudomonas aeruginosa isolated from patients with VAP in an intensive care unit. New Microbiol 2009; 32: 277e83.
29. Adair CG, Gorman SP, Feron BM et al. Implications of endotracheal tube biofilm for ventilator-associated pneu- monia. Intensive Care Med 1999; 25: 1072e6.
30. Safdar N, Crnich CJ, Maki DG. The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention. Respir Care 2005; 50: 725e39.
31. Sethi S, Sethi R, Eschberger K et al. Airway bacterial concentrations and exacerbations of chronic obstructive pulmonarydisease. Am J Respir Crit Care Med 2007; 176: 356e61.
32. Eldika N, Sethi S. Role of nontypeable Haemophilus influenzae in exacerbations and progression of chronic obstructive pulmonary disease. Curr Opin Pulm Med 2006; 12: 118e24.
33. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011; 378: 1015e26.
34. Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 2001; 14: 336e63.
35. Sethi S, Evans N, Grant BJ, Murphy TF. New strains of bacteria and exacer- bations of chronic obstructive pulmonary disease. N Engl J Med 2002; 347: 465e71
36. Riise GC, Qvarfordt I, Larsson S et al. Inhibitory effect of N-acetylcysteine on adherence of Streptococcus pneumoniae and Haemophilus influenzae to human oropharyngeal epithelial cells in vitro. Respiration 2000; 67: 552e8.
37. Hafez MM, Aboulwafa MM, Yassien MA, Hassouna NA. Activity of some mucolytics against bacterial adherence to mammalian cells. Appl Biochem Biotechnol 2009; 158: 97e112.
38. Yang H. Effect of ambroxol on permeability of ciprofloxacin across Pseudomonas aeruginosa biofilm. Chin J Antibiot 2007; 32 (4): 221–4.
39. Lu Q, Yu J, Bao L et al. Effects of combined treatment with ambroxol and ciprofloxacin on catheter-associated Pseudomonas aeruginosa biofilms in a rat model. Chemotherapy 2013; 59 (1): 51–6; doi: 10.1159/000351107
40. Bonnetti P. Ambroxol plus amoxicillin versus amoxicillin alone in various respiratory tract infections. Investig Med International 1993; 20: 99–103.
41. Neria JP, Rubi EG. Response to the combination of ambroxol/amoxicillin versus amoxicillin alone in patients with acute respiratory infection. Comparative study of antibiotic levels in bronchial mucus and plasma. Compend Invest Clin Lat Am 1992; 12 (1): 5–10.
42. Franchini F et al. Effect of a mucolytic agent on the bioavailability of antibiotics in patients with chronic respiratory disease. Curr Ther Res 1988; 43 (4): 734–42.
43. Spatola J et al. Influence of Ambroxol on lung tissue penetration of amoxicillin. Arznein Forsch Drug Res 1987; 37 [11] (8): 967–8.
44. http://www.medindia.net/doctors/drug_information/index.asp
45. Pfeifer S, Zissel G, Kienast K, Müller-Quernheim J. Reduction of cytokine release of blood and bronchoalveolar mononuclear cells by ambroxol. Eur J Med Res 1997; 2 (3): 129–32.
46. Zhang B, Liu Y. Prophylaxis against ventilator-induced lung injury by Ambroxol Zhonghua Yi Xue Za Zhi 2000; 80 (1): 51–3.
47. Zhao SP, Guo QL, Wang RK, Wang E. Oxidative and anti-oxidative effects of ambroxol on acute hydrochloric acid-induced lung injury in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2004; 29 (5): 586–8.
48. Nowak D, Antczak A, Król M et al. Antioxidant properties of Ambroxol. Free Radic Biol Med 1994; 16 (4): 517–22.
49. Qiu XW, Wang JH, Li ZQ. Management of extensive burn accompanying severe inhalation injury. Di Yi Jun Yi Da Xue Xue Bao 2004; 24 (5): 597–9.
2. Шмелева Н.М., Шмелев Е.И. Современные аспекты мукоактивной терапии в пульмонологической практике. Терапевт. арх. 2013; 3: 107–9.
3. Моногарова Н.Е., Глухов А.В., Закомолдина Т.В. и др. Опыт использования комбинации ацетилцистеина и амброксола у пациентов с ХОЗЛ. Укр. пульмонологич. вестн. 2006; 4: 29–31.
4. Balsamo R, Lanata L, Egan CG. Mucoactive drugs. Eur Respir Rev 2010; 19 (116): 127–33.
5. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2013. Available from: http://www.goldcopd.org/
6. Decramer M, Rutten-van Molken M, Dekhuijzen PN et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomized placebo-controlled trial. Lancet 2005; 365 (9470): 1552–60.
7. Stav D, Raz M. Effect of N-acetylcysteine on air trapping in COPD: a randomized placebo-controlled study. Chest 2009; 136: 381–6.
8. Zheng JP, Kang J, Huang SG et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE Study): a randomised placebo-controlled study. Lancet 2008; 371 (9629): 2013–8.
9. Malerba M, Ponticiello A, Radaeli A et al. Effect of twelve-months therapy with oral ambroxol in preventing exacerbations in patients with COPD. Double-blind, randomized, multicenter, placebo-controlled study (the AMETHIST Trial). Pulm Pharmacol Ther 2004; 17 (1): 27–34.
10. Chenot JF, Weber P, Friede T. Efficacy of Ambroxol lozenges for pharyngitis: a meta-analysis. BMC Fam Pract 2014; 15: 45.
11. Kido H, Okumura Y, Yamada H et al. Proteases essential for human influenza virus entry into cells and their inhibitors as potential therapeutic agents. Curr Pharm Des 2007; 13 (4): 405–14.
12. Yang B, Yao DF, Ohuchi M et al. Ambroxol suppresses influenza-virus proliferation in the mouse airway by increasing antiviral factor levels. Eur Respir J 2002; 19 (5): 952–8.
13. Aihara M, Dobashi K, Akiyama M et al. Effects of N-acetylcysteine and ambroxol on the production of IL-12 and IL-10 in human alveolar macrophages. Respiration 2000; 67 (6): 662–71.
14. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganism. Clin Microbiol Rev 2002; 15: 167–93.
15. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8: 623–33.
16. Vu B, Chen M, Crawford RJ et al. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009; 14: 2535–54.
17. Pintucci JP, Corno S, Garotta M. Biofilms and infections of the upper respiratory tract. Eur Rev Med Pharmacol Sci 2010; 14: 683–90. Biofilm life cycle. Montana State University Center for Biofilm Engineering. Available at ULR: http://www.biofilm.montana.edu
18. Cataldi M, Sblendorio V, Leo A, Piazza O. Biofilm-dependent airway infections: a role for ambroxol? Pulm Pharmacol Ther 2014; 28 (2): 98–108.
19. Li F. Effects of ambroxol on alginate of mature P. aeruginosa biofilms. Curr Microbiol 2008; 57 (1): 1–7.
20. Heukelekian H, Heller A. Relation between Food Concentration and Surface for Bacterial Growth. J Bacteriol 1940; 40 (4): 547–58.
21. Mack WN, Mack JP, Ackerson AO. Microbial film development in a trickling filter. Microb Ecol 1975; 2 (3): 215–26.
22. Sauer K, Camper AK, Ehrlich GD et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 2002; 184 (4): 1140–54.
23. Stewart PS, Franklin MJ. Physiological hetero-geneity in biofilms. Nat Rev Microbiol 2008; 6 (3): 199–210.
24. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55: 165–99.
25. Yung-Hua Li. Xiaolin Tian. Quorum Sensing and Bacterial Social Interactions in Biofilms Sensors 2012; 12: 2519–38.
26. Ceri H, Olson ME, Stremick C et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37: 1771–6.
27. Desrosiers M, Bendauah Z, Barbeau J. Effectiveness of topical antibiotics on Staphylococcus aureus biofilm in vitro. Am J Rhinol 2007; 21: 149–53.
28. Lambiase A, Rossano F, Piazza O et al. Typing of Pseudomonas aeruginosa isolated from patients with VAP in an intensive care unit. New Microbiol 2009; 32: 277e83.
29. Adair CG, Gorman SP, Feron BM et al. Implications of endotracheal tube biofilm for ventilator-associated pneu- monia. Intensive Care Med 1999; 25: 1072e6.
30. Safdar N, Crnich CJ, Maki DG. The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention. Respir Care 2005; 50: 725e39.
31. Sethi S, Sethi R, Eschberger K et al. Airway bacterial concentrations and exacerbations of chronic obstructive pulmonarydisease. Am J Respir Crit Care Med 2007; 176: 356e61.
32. Eldika N, Sethi S. Role of nontypeable Haemophilus influenzae in exacerbations and progression of chronic obstructive pulmonary disease. Curr Opin Pulm Med 2006; 12: 118e24.
33. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011; 378: 1015e26.
34. Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 2001; 14: 336e63.
35. Sethi S, Evans N, Grant BJ, Murphy TF. New strains of bacteria and exacer- bations of chronic obstructive pulmonary disease. N Engl J Med 2002; 347: 465e71
36. Riise GC, Qvarfordt I, Larsson S et al. Inhibitory effect of N-acetylcysteine on adherence of Streptococcus pneumoniae and Haemophilus influenzae to human oropharyngeal epithelial cells in vitro. Respiration 2000; 67: 552e8.
37. Hafez MM, Aboulwafa MM, Yassien MA, Hassouna NA. Activity of some mucolytics against bacterial adherence to mammalian cells. Appl Biochem Biotechnol 2009; 158: 97e112.
38. Yang H. Effect of ambroxol on permeability of ciprofloxacin across Pseudomonas aeruginosa biofilm. Chin J Antibiot 2007; 32 (4): 221–4.
39. Lu Q, Yu J, Bao L et al. Effects of combined treatment with ambroxol and ciprofloxacin on catheter-associated Pseudomonas aeruginosa biofilms in a rat model. Chemotherapy 2013; 59 (1): 51–6; doi: 10.1159/000351107
40. Bonnetti P. Ambroxol plus amoxicillin versus amoxicillin alone in various respiratory tract infections. Investig Med International 1993; 20: 99–103.
41. Neria JP, Rubi EG. Response to the combination of ambroxol/amoxicillin versus amoxicillin alone in patients with acute respiratory infection. Comparative study of antibiotic levels in bronchial mucus and plasma. Compend Invest Clin Lat Am 1992; 12 (1): 5–10.
42. Franchini F et al. Effect of a mucolytic agent on the bioavailability of antibiotics in patients with chronic respiratory disease. Curr Ther Res 1988; 43 (4): 734–42.
43. Spatola J et al. Influence of Ambroxol on lung tissue penetration of amoxicillin. Arznein Forsch Drug Res 1987; 37 [11] (8): 967–8.
44. http://www.medindia.net/doctors/drug_information/index.asp
45. Pfeifer S, Zissel G, Kienast K, Müller-Quernheim J. Reduction of cytokine release of blood and bronchoalveolar mononuclear cells by ambroxol. Eur J Med Res 1997; 2 (3): 129–32.
46. Zhang B, Liu Y. Prophylaxis against ventilator-induced lung injury by Ambroxol Zhonghua Yi Xue Za Zhi 2000; 80 (1): 51–3.
47. Zhao SP, Guo QL, Wang RK, Wang E. Oxidative and anti-oxidative effects of ambroxol on acute hydrochloric acid-induced lung injury in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2004; 29 (5): 586–8.
48. Nowak D, Antczak A, Król M et al. Antioxidant properties of Ambroxol. Free Radic Biol Med 1994; 16 (4): 517–22.
49. Qiu XW, Wang JH, Li ZQ. Management of extensive burn accompanying severe inhalation injury. Di Yi Jun Yi Da Xue Xue Bao 2004; 24 (5): 597–9.
Авторы
К.А.Зыков1, О.Ю.Агапова1, Е.И.Соколов2
1 Лаборатория пульмонологии НИМСИ ГБОУ ВПО МГМСУ им. А.И.Евдокимова Минздрава России;
2 Кафедра факультетской терапии и профессиональных болезней ГБОУ ВПО МГМСУ им. А.И.Евдокимова Минздрава России
1 Лаборатория пульмонологии НИМСИ ГБОУ ВПО МГМСУ им. А.И.Евдокимова Минздрава России;
2 Кафедра факультетской терапии и профессиональных болезней ГБОУ ВПО МГМСУ им. А.И.Евдокимова Минздрава России
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
