Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Болезнь Крона и адгезивно-инвазивные Escherichia coli: патогенетические параллели
________________________________________________
Maev I.V., Andreev D.N., Rakitina D.V. et al. Crohn's disease and the adhesive-invasive Escherichia coli: pathogenetic parallels. Consilium Medicum. 2015; 17 (12): 40–43. DOI:10.26442/2075-1753_2015.12.40-43
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: болезнь Крона, микробиота, дисбиоз, Escherichia coli, адгезивно-инвазивные Escherichia coli.
________________________________________________
Key words: Crohn's disease, microbiota, dysbiosis, Escherichia coli, adhesive-invasive Escherichia coli.
2. Маев И.В., Андреев Д.Н., Кучерявый Ю.А. Гастродуоденальная форма болезни Крона. РЖГГК. 2015; 5: 5–9. / Maev I.V., Andreev D.N., Kucheriavyi Iu.A. Gastroduodenal'naia forma bolezni Krona. RZhGGK. 2015; 5: 5–9. [in Russian]
3. Sands BE, Siegel CA. Crohn's disease. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran's Gastrointestinal and Liver Disease. 10th ed. Philadelphia, Pa: Saunders Elsevier, 2015: chap 115.
4. Burisch J, Munkholm P. Inflammatory bowel disease epidemiology. Curr Opin Gastroenterol 2013; 29 (4): 357–62.
5. Molodecky NA, Soon IS, Rabi DM et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142 (1): 46–54.
6. Kappelman MD, Moore KR, Allen JK, Cook SF. Recent trends in the prevalence of Crohn's disease and ulcerative colitis in a commercially insured US population. Dig Dis Sci 2013; 58 (2): 519–25.
7. Loftus EV. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004; 126: 1504–17.
8. Sandborn WJ. Current directions in IBD therapy: what goals are feasible with biological modifiers? Gastroenterology 2008; 135 (5): 1442–7.
9. Bai A, Peng Z. Biological therapies of inflammatory bowel disease. Immunotherapy 2010; 2 (5): 727–42.
10. Carrière J, Darfeuille-Michaud A, Nguyen HT. Infectious etiopathogenesis of Crohn's disease. World J Gastroenterol 2014; 20 (34): 12102–17.
11. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448 (7152): 427–34.
12. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest 2007; 117 (3): 514–21.
13. Hammer RE, Maika SD, Richardson JA et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human 2m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63: 1099–112.
14. Matsumoto S, Okabe Y, Setoyama H et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 1998; 43: 71–8.
15. Rutgeerts P, Goboes K, Peeters M et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991; 338: 771–4.
16. D’Haens GR, Geboes K, Peeters M et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998; 114: 262–7.
17. Duchmann R, Neurath MF, Meyer zum Buschenfelde KH. Responses to self and non-self intestinal microflora in health and inflammatory bowel disease. Res Immunol 1997; 148: 589–94.
18. Hold GL, Smith M, Grange C et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 2014; 20 (5): 1192–210.
19. Øyri SF, Műzes G, Sipos F. Dysbiotic gut microbiome: A key element of Crohn's disease. Comp Immunol Microbiol Infect Dis 2015; 43: 36–49.
20. Mondot S, Kang S, Furet JP et al. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 2011; 17: 185–92.
21. Baumgart M, Dogan B, Rishniw M et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 2007; 1: 403–18.
22. Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut 2007; 56: 669–75.
23. Gevers D, Kugathasan S, Denson LA et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 2014; 15 (3): 382–92.
24. Frolkis A, Dieleman LA, Barkema HW et al. Environment and the inflammatory bowel diseases. Can J Gastroenterol 2013; 27: e18–e24.
25. Parkes GC, Whelan K, Lindsay JO. Smoking in inflammatory bowel disease: Impact on disease course and insights into the aetiology of its effect. J Crohns Colitis 2014; 8: 717–25.
26. Chapman-Kiddell CA, Davies PS, Gillen L, Radford-Smith GL. Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis 2010; 16: 137–51.
27. Liu JZ, Anderson CA. Genetic studies of Crohn's disease: past, present and future. Best Pract Res Clin Gastroenterol 2014; 28 (3): 373–86.
28. Маев И.В., Андреев Д.Н. Молекулярно-генетические механизмы развития болезни Крона. Молекулярная медицина. 2014; 3: 21–7. / Maev I.V., Andreev D.N. Molekuliarno-geneticheskie mekhanizmy razvitiia bolezni Krona. Molekuliarnaia meditsina. 2014; 3: 21–7. [in Russian]
29. Maev IV, Andreev DN. Role of mutations in NOD2/CARD15, ATG16L1, and IRGM in the pathogenesis of Crohn’s disease. Int J Biomedicine 2014; 4 (1): 7–10.
30. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–6.
31. Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278 (11): 8869–72.
32. Grimes CL, Ariyananda Lde Z, Melnyk JE, O'Shea EK. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J Am Chem Soc 2012; 134 (33): 13535–7.
33. Zhou Z, Lin XY, Akolkar PN et al. Variation at NOD2/CARD15 in familial and sporadic cases of Crohn's disease in the Ashkenazi Jewish population. Am J Gastroenterol 2002; 97:3095–101.
34. Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39 (2): 207–11.
35. Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007; 39: 596–604.
36. Nguyen HT, Lapaquette P, Bringer MA, Darfeuille-Michaud A. Autophagy and Crohn's disease. J Innate Immun 2013; 5 (5): 434–43.
37. Smith EJ, Thompson AP, O'Driscoll A, Clarke DJ. Pathogenesis of adherent-invasive Escherichia coli. Future Microbiol 2013; 8 (10): 1289–300.
38. Маев И.В., Андреев Д.Н., Ракитина Д.В., Байкова Ю.П. Роль дефектов аутофагии и значение адгезивно-инвазивных Escherichia coli в генезе болезни Крона. РЖГГК. 2015; 3: 61–9. / Maev I.V., Andreev D.N., Rakitina D.V., Baikova Iu.P. Rol' defektov autofagii i znachenie adgezivno-invazivnykh Escherichia coli v geneze bolezni Krona. RZhGGK. 2015; 3: 61–9. [in Russian]
39. Darfeuille-Michaud A, Boudeau J, Bulois P et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 2004; 127: 412–21.
40. Landers CJ, Cohavy O, Misra R et al. Selected loss of tolerance evidenced by Crohn‘s disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002; 123 (3): 689–99.
41. Mei L, Targan SR, Landers CJ et al. Familial expression of anti-Escherichia coli outer membrane porin C in relatives of patients with Crohn‘s disease. Gastroenterology 2006; 130 (4): 1078–85.
42. Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity. World J Gastrointest Pathophysiol 2014; 5 (3): 213–27.
43. Darfeuille-Michaud A. Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn’s disease. Int J Med Microbiol 2002; 292: 185–93.
44. Martinez-Medina M, Aldeguer X, Lopez-Siles M et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis 2009; 15 (6): 872–82.
45. Vejborg RM, Hancock V, Petersen AM et al. Comparative genomics of Escherichia coli isolated from patients with inflammatory bowel disease. BMC Genomics 2011; 12: 316.
46. Sobieszczańska BA, Duda-Madej AB, Turniak MB et al. Invasive properties, adhesion patterns and phylogroup profiles among Escherichia coli strains isolated from children with inflammatory bowel disease. Adv Clin Exp Med 2012; 21 (5): 591–9.
47. Conte MP, Longhi C, Marazzato M et al. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features. BMC Res Notes 2014; 7: 748.
48. Carvalho FA, Barnich N, Sivignon A et al. Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med 2009; 206 (10): 2179–89.
49. Small CL, Reid-Yu SA, McPhee JB, Coombes BK. Persistent infection with Crohn's disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat Commun 2013; 4: 1957.
50. Barnich N, Carvalho FA, Glasser AL et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 2007; 117: 1566–74.
51. Barnich N, Darfeuille-Michaud A. Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol 2007; 13 (42): 5571–6.
52. Barnich N, Darfeuille-Michaud A. Abnormal CEACAM6 expression in Crohn disease patients favors gut colonization and inflammation by adherent–invasive E. coli. Virulence 2010; 1 (4): 281–2.
53. Chassaing B, Rolhion N, de Vallée A et al. Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Invest 2011; 121: 966–75.
54. Rolhion N, Barnich N, Bringer MA et al. Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. Gut 2010; 59: 1355–62.
55. Subramanian S, Rhodes JM, Hart CA et al. Characterization of epithelial IL-8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine. Inflamm Bowel Dis 2008; 14: 162–75.
56. Eaves-Pyles T, Allen CA, Taormina J et al. Escherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol 2008; 298: 397–409.
57. Tawfik A, Flanagan PK, Campbell BJ. Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2014; 20 (27): 8751–63.
58. Glasser AL, Boudeau J, Barnich N et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 2001; 69: 5529–37.
59. Lapaquette P, Glasser AL, Huett A et al. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol 2010; 12: 99–113.
60. Sadaghian Sadabad M, Regeling A, de Goffau MC et al. The ATG16L1-T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn's disease patients. Gut 2014. pii: gutjnl-2014-307289. doi
61. Nguyen HT, Dalmasso G, Müller S et al. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 2014; 146 (2): 508–19.
62. Dunne KA, Allam A, McIntosh A et al. Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive Escherichia coli (AIEC) in immune cells. PLoS One 2013; 8: e68386.
63. Meconi S, Vercellone A, Levillain F et al. Adherent-invasive Escherichia coli isolated from Crohn’s disease patients induce granulomas in vitro. Cell Microbiol 2007; 9: 1252–61.
64. Nickerson KP, McDonald C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS One 2012; 7: e52132.
65. Costanzo M, Cesi V, Prete E et al. Krill oil reduces intestinal inflammation by improving epithelial integrity and impairing adherent-invasive Escherichia coli pathogenicity. Dig Liver Dis 2015. pii: S1590-8658(15)00625-8.
66. Subramanian S, Roberts CL, Hart CA et al. Replication of Colonic Crohn's Disease Mucosal Escherichia coli Isolates within Macrophages and Their Susceptibility to Antibiotics. Antimicrob Agents Chemother 2008; 52 (2): 427–34.
67. Dogan B, Scherl E, Bosworth B et al. Multidrug resistance is common in Escherichia coli associated with ileal Crohn’s disease. Inflamm Bowel Dis 2013; 19: 141–50.
68. Martinez-Medina M, Naves P, Blanco J et al. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC). BMC Microbiol 2009; 9: 202.
69. Bertuccini L, Costanzo M, Iosi F et al. Lactoferrin prevents invasion and inflammatory response following E. coli strain LF82 infection in experimental model of Crohn's disease. Dig Liver Dis 2014; 46 (6): 496–504.
70. Bowman KA, Broussard EK, Surawicz CM. Fecal microbiota transplantation: current clinical efficacy and future prospects. Clin Exp Gastroenterol. 2015;8:285-91
71. Colman RJ, Rubin DT. FMT as therapy for inflammatory bowel disease: a systemic review and meta-analysis. J Crohns Colitis 2014; 8 (12): 1569–81.
________________________________________________
1. Maev I.V., Andreev D.N. Novye podkhody k diagnostike i lecheniiu bolezni Krona. Terapevt. arkhiv. 2014; 8: 4–12. [in Russian]
2. Maev I.V., Andreev D.N., Kucheriavyi Iu.A. Gastroduodenal'naia forma bolezni Krona. RZhGGK. 2015; 5: 5–9. [in Russian]
3. Sands BE, Siegel CA. Crohn's disease. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran's Gastrointestinal and Liver Disease. 10th ed. Philadelphia, Pa: Saunders Elsevier, 2015: chap 115.
4. Burisch J, Munkholm P. Inflammatory bowel disease epidemiology. Curr Opin Gastroenterol 2013; 29 (4): 357–62.
5. Molodecky NA, Soon IS, Rabi DM et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142 (1): 46–54.
6. Kappelman MD, Moore KR, Allen JK, Cook SF. Recent trends in the prevalence of Crohn's disease and ulcerative colitis in a commercially insured US population. Dig Dis Sci 2013; 58 (2): 519–25.
7. Loftus EV. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004; 126: 1504–17.
8. Sandborn WJ. Current directions in IBD therapy: what goals are feasible with biological modifiers? Gastroenterology 2008; 135 (5): 1442–7.
9. Bai A, Peng Z. Biological therapies of inflammatory bowel disease. Immunotherapy 2010; 2 (5): 727–42.
10. Carrière J, Darfeuille-Michaud A, Nguyen HT. Infectious etiopathogenesis of Crohn's disease. World J Gastroenterol 2014; 20 (34): 12102–17.
11. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448 (7152): 427–34.
12. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest 2007; 117 (3): 514–21.
13. Hammer RE, Maika SD, Richardson JA et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human 2m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63: 1099–112.
14. Matsumoto S, Okabe Y, Setoyama H et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 1998; 43: 71–8.
15. Rutgeerts P, Goboes K, Peeters M et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991; 338: 771–4.
16. D’Haens GR, Geboes K, Peeters M et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998; 114: 262–7.
17. Duchmann R, Neurath MF, Meyer zum Buschenfelde KH. Responses to self and non-self intestinal microflora in health and inflammatory bowel disease. Res Immunol 1997; 148: 589–94.
18. Hold GL, Smith M, Grange C et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol 2014; 20 (5): 1192–210.
19. Øyri SF, Műzes G, Sipos F. Dysbiotic gut microbiome: A key element of Crohn's disease. Comp Immunol Microbiol Infect Dis 2015; 43: 36–49.
20. Mondot S, Kang S, Furet JP et al. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 2011; 17: 185–92.
21. Baumgart M, Dogan B, Rishniw M et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 2007; 1: 403–18.
22. Kotlowski R, Bernstein CN, Sepehri S, Krause DO. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut 2007; 56: 669–75.
23. Gevers D, Kugathasan S, Denson LA et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 2014; 15 (3): 382–92.
24. Frolkis A, Dieleman LA, Barkema HW et al. Environment and the inflammatory bowel diseases. Can J Gastroenterol 2013; 27: e18–e24.
25. Parkes GC, Whelan K, Lindsay JO. Smoking in inflammatory bowel disease: Impact on disease course and insights into the aetiology of its effect. J Crohns Colitis 2014; 8: 717–25.
26. Chapman-Kiddell CA, Davies PS, Gillen L, Radford-Smith GL. Role of diet in the development of inflammatory bowel disease. Inflamm Bowel Dis 2010; 16: 137–51.
27. Liu JZ, Anderson CA. Genetic studies of Crohn's disease: past, present and future. Best Pract Res Clin Gastroenterol 2014; 28 (3): 373–86.
28. Maev I.V., Andreev D.N. Molekuliarno-geneticheskie mekhanizmy razvitiia bolezni Krona. Molekuliarnaia meditsina. 2014; 3: 21–7. [in Russian]
29. Maev IV, Andreev DN. Role of mutations in NOD2/CARD15, ATG16L1, and IRGM in the pathogenesis of Crohn’s disease. Int J Biomedicine 2014; 4 (1): 7–10.
30. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–6.
31. Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278 (11): 8869–72.
32. Grimes CL, Ariyananda Lde Z, Melnyk JE, O'Shea EK. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J Am Chem Soc 2012; 134 (33): 13535–7.
33. Zhou Z, Lin XY, Akolkar PN et al. Variation at NOD2/CARD15 in familial and sporadic cases of Crohn's disease in the Ashkenazi Jewish population. Am J Gastroenterol 2002; 97:3095–101.
34. Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39 (2): 207–11.
35. Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007; 39: 596–604.
36. Nguyen HT, Lapaquette P, Bringer MA, Darfeuille-Michaud A. Autophagy and Crohn's disease. J Innate Immun 2013; 5 (5): 434–43.
37. Smith EJ, Thompson AP, O'Driscoll A, Clarke DJ. Pathogenesis of adherent-invasive Escherichia coli. Future Microbiol 2013; 8 (10): 1289–300.
38. Maev I.V., Andreev D.N., Rakitina D.V., Baikova Iu.P. Rol' defektov autofagii i znachenie adgezivno-invazivnykh Escherichia coli v geneze bolezni Krona. RZhGGK. 2015; 3: 61–9. [in Russian]
39. Darfeuille-Michaud A, Boudeau J, Bulois P et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 2004; 127: 412–21.
40. Landers CJ, Cohavy O, Misra R et al. Selected loss of tolerance evidenced by Crohn‘s disease-associated immune responses to auto- and microbial antigens. Gastroenterology 2002; 123 (3): 689–99.
41. Mei L, Targan SR, Landers CJ et al. Familial expression of anti-Escherichia coli outer membrane porin C in relatives of patients with Crohn‘s disease. Gastroenterology 2006; 130 (4): 1078–85.
42. Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity. World J Gastrointest Pathophysiol 2014; 5 (3): 213–27.
43. Darfeuille-Michaud A. Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn’s disease. Int J Med Microbiol 2002; 292: 185–93.
44. Martinez-Medina M, Aldeguer X, Lopez-Siles M et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis 2009; 15 (6): 872–82.
45. Vejborg RM, Hancock V, Petersen AM et al. Comparative genomics of Escherichia coli isolated from patients with inflammatory bowel disease. BMC Genomics 2011; 12: 316.
46. Sobieszczańska BA, Duda-Madej AB, Turniak MB et al. Invasive properties, adhesion patterns and phylogroup profiles among Escherichia coli strains isolated from children with inflammatory bowel disease. Adv Clin Exp Med 2012; 21 (5): 591–9.
47. Conte MP, Longhi C, Marazzato M et al. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features. BMC Res Notes 2014; 7: 748.
48. Carvalho FA, Barnich N, Sivignon A et al. Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med 2009; 206 (10): 2179–89.
49. Small CL, Reid-Yu SA, McPhee JB, Coombes BK. Persistent infection with Crohn's disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat Commun 2013; 4: 1957.
50. Barnich N, Carvalho FA, Glasser AL et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest 2007; 117: 1566–74.
51. Barnich N, Darfeuille-Michaud A. Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol 2007; 13 (42): 5571–6.
52. Barnich N, Darfeuille-Michaud A. Abnormal CEACAM6 expression in Crohn disease patients favors gut colonization and inflammation by adherent–invasive E. coli. Virulence 2010; 1 (4): 281–2.
53. Chassaing B, Rolhion N, de Vallée A et al. Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Invest 2011; 121: 966–75.
54. Rolhion N, Barnich N, Bringer MA et al. Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. Gut 2010; 59: 1355–62.
55. Subramanian S, Rhodes JM, Hart CA et al. Characterization of epithelial IL-8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine. Inflamm Bowel Dis 2008; 14: 162–75.
56. Eaves-Pyles T, Allen CA, Taormina J et al. Escherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol 2008; 298: 397–409.
57. Tawfik A, Flanagan PK, Campbell BJ. Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2014; 20 (27): 8751–63.
58. Glasser AL, Boudeau J, Barnich N et al. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect Immun 2001; 69: 5529–37.
59. Lapaquette P, Glasser AL, Huett A et al. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol 2010; 12: 99–113.
60. Sadaghian Sadabad M, Regeling A, de Goffau MC et al. The ATG16L1-T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn's disease patients. Gut 2014. pii: gutjnl-2014-307289. doi
61. Nguyen HT, Dalmasso G, Müller S et al. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 2014; 146 (2): 508–19.
62. Dunne KA, Allam A, McIntosh A et al. Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive Escherichia coli (AIEC) in immune cells. PLoS One 2013; 8: e68386.
63. Meconi S, Vercellone A, Levillain F et al. Adherent-invasive Escherichia coli isolated from Crohn’s disease patients induce granulomas in vitro. Cell Microbiol 2007; 9: 1252–61.
64. Nickerson KP, McDonald C. Crohn’s disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS One 2012; 7: e52132.
65. Costanzo M, Cesi V, Prete E et al. Krill oil reduces intestinal inflammation by improving epithelial integrity and impairing adherent-invasive Escherichia coli pathogenicity. Dig Liver Dis 2015. pii: S1590-8658(15)00625-8.
66. Subramanian S, Roberts CL, Hart CA et al. Replication of Colonic Crohn's Disease Mucosal Escherichia coli Isolates within Macrophages and Their Susceptibility to Antibiotics. Antimicrob Agents Chemother 2008; 52 (2): 427–34.
67. Dogan B, Scherl E, Bosworth B et al. Multidrug resistance is common in Escherichia coli associated with ileal Crohn’s disease. Inflamm Bowel Dis 2013; 19: 141–50.
68. Martinez-Medina M, Naves P, Blanco J et al. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC). BMC Microbiol 2009; 9: 202.
69. Bertuccini L, Costanzo M, Iosi F et al. Lactoferrin prevents invasion and inflammatory response following E. coli strain LF82 infection in experimental model of Crohn's disease. Dig Liver Dis 2014; 46 (6): 496–504.
70. Bowman KA, Broussard EK, Surawicz CM. Fecal microbiota transplantation: current clinical efficacy and future prospects. Clin Exp Gastroenterol. 2015;8:285-91
71. Colman RJ, Rubin DT. FMT as therapy for inflammatory bowel disease: a systemic review and meta-analysis. J Crohns Colitis 2014; 8 (12): 1569–81.
1 ГБОУ ВПО Московский государственный медико-стоматологический университет им. А.И.Евдокимова Минздрава России. 127473, Россия, Москва, ул. Делегатская, д. 20, стр. 1;
2 ФГБУН НИИ физико-химической медицины ФМБА России. 119435, Россия, Москва, ул. Малая Пироговская, д. 1а
*dna-mit8@mail.ru
________________________________________________
1 Moscow State Medical Stomatological University named by A.I.Evdokimova of the Ministry of Health of the Russian Federation. 127473, Russian Federation, Moscow, ul. Delegatskaia, d. 20, str. 1;
2 Institute of Physico-Chemical Medicine of Russia. 119435, Russian Federation, Moscow, ul. Malaya Pirogovskaya, d. 1a
*dna-mit8@mail.ru