Фармакологическая обоснованность сочетания амлодипина, лизиноприла и розувастатина в трехкомпонентном комбинированном препарате
Фармакологическая обоснованность сочетания амлодипина, лизиноприла и розувастатина в трехкомпонентном комбинированном препарате
Гиляревский С.Р., Голшмид М.В., Кузьмина И.М. и др. Фармакологическая обоснованность сочетания амлодипина, лизиноприла и розувастатина в трехкомпонентном комбинированном препарате. Consilium Medicum. 2016; 18 (10): 66–70. DOI: 10.26442/2075-1753_2016.10.66-70
________________________________________________
Giliarevskiy S.R., Golshmid M.V., Kuzmina I.M. et al. Pharmacological validity of amlodipine, lisinopril and rosuvastatin in three-component combination drug products. Consilium Medicum. 2016; 18 (10): 66–70. DOI: 10.26442/2075-1753_2016.10.66-70
Фармакологическая обоснованность сочетания амлодипина, лизиноприла и розувастатина в трехкомпонентном комбинированном препарате
Гиляревский С.Р., Голшмид М.В., Кузьмина И.М. и др. Фармакологическая обоснованность сочетания амлодипина, лизиноприла и розувастатина в трехкомпонентном комбинированном препарате. Consilium Medicum. 2016; 18 (10): 66–70. DOI: 10.26442/2075-1753_2016.10.66-70
________________________________________________
Giliarevskiy S.R., Golshmid M.V., Kuzmina I.M. et al. Pharmacological validity of amlodipine, lisinopril and rosuvastatin in three-component combination drug products. Consilium Medicum. 2016; 18 (10): 66–70. DOI: 10.26442/2075-1753_2016.10.66-70
Создание комбинированных препаратов, включающих антигипертензивные и гиполипидемические средства, представляет собой важный этап в клинической фармакологии средств для лечения и профилактики развития осложнений сердечно-сосудистых заболеваний. Такой подход позволяет существенно повысить степень соблюдения предписанной терапии. Для обеспечения эффективности и безопасности применения комбинированного препарата необходимо, чтобы лекарственные взаимодействия между его компонентами были минимальными или отсутствовали. В статье приводятся данные, подтверждающие фармакологическую обоснованность сочетанного применения дигидропиридинового антагониста кальция амлодипина, ингибитора ангиотензинпревращающего фермента лизиноприла и розувастатина, наиболее широко применяемого в настоящее время статина.
The development of combined drugs, including antihypertensive and hypolipidemic components, represents the important stage in the clinical pharmacology funds for the treatment and prevention of cardiovascular disease complications. This approach allows significantly increase the degree of adherence of patients to treatment. The interactions between the drug components should be minimal or absent to improve the efficacy and safety of combined drug application. The article shows the significant data concerning the pharmacological validity of the combined application of dihydropyridine calcium channel blockers, amlodipine, angiotensin-converting enzyme inhibitors lisinopril and rosuvastatin; the most widely used drugs – statins.
1. Roth GA, Forouzanfar MH, Moran AE et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med 2015; 372: 1333–41.
2. Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13.
3. Yusuf S, Hawken S, Ounpuu S et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937–52.
4. Rose G. Strategy of prevention: lessons from cardiovascular disease. Br Med J (Clin Res Ed) 1981; 282: 1847–51.
5. Wald NJ, Law MR. A strategy to reduce cardiovascular disease by more than 80%. BMJ 2003; 326: 1419.
6. Chapman RH, Benner JS, Petrilla AA et al. Predictors of adherence with antihypertensive and lipid-lowering therapy. Arch Intern Med 2005; 165: 1147–52.
7. Li W, Zeng S, Yu LS, Zhou Q. Pharmacokinetic drug interaction profle of omeprazole with adverse consequences and clinical risk management. Ther Clin Risk Manag 2013; 9: 259–71.
8. Olsson AG, McTaggart F, Raza A. Rosuvastatin: a highly effective new HMG-CoA reductase inhibitor. Cardiovasc Drug Rev 2002; 20: 303–28.
9. Hua WJ, Hua WX, Fang HJ. The role of OATP1B1 and BCRP in pharmacokinetics and DDI of novel statins. Cardiovasc Ther 2012; 30: e234–e241.
10. Kitamura S, Maeda K, Wang Y, Sugiyama Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 2008; 36: 2014–23.
11. Kock K, Brouwer KL. A perspective on efflux transport proteins in the liver. Clin Pharmacol Ther 2012; 92: 599–612.
12. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011; 63: 157–81.
13. AstraZeneca. Crestor (rosuvastatin) [prescribing information]. http://www1.astrazeneca-us.com/pi/crestor.pdf. Accessed November 3, 2015.
14. Crestor tablets. AccessdataFDA. http://www.accessdata. fda.gov/drugsatfda_docs/label/2005/21366slr005lbl.pdf. Accessed June 3, 2016.
15. Boehringer Ingelheim. Twynsta (telmisartan/amlodipine) [prescribing information]. www.accessdata.fda.gov/drug satfda_docs/label/2014/ 022401s016lbl.pdf. Accessed November 3, 2015.
16. Abernethy DR. Pharmacokinetics and pharmacodynamics of amlodipine. Cardiology 1992; 80 (Suppl. 1): 31–6.
17. Nishio S, Watanabe H, Kosuge K et al. Interaction between amlodipine and simvastatin in patients with hypercholesterolemia and hypertension. Hypertens Res 2005; 28: 223–7.
18. Park CG, Lee H, Choi JW et al. Non-concurrent dosing attenuates the pharmacokinetic interaction between amlodipine and simvastatin. Int J Clin Pharmacol Ther 2010; 48: 497–503.
19. Son H, Lee D, Lim LA et al. Development of a pharmacokinetic interaction model for co-administration of simvastatin and amlodipine. Drug Metab Pharmacokinet 2014; 29: 120–8.
20. Zhou YT, Yu LS, Zeng S et al. Pharmacokinetic drug-drug interactions between 1,4-dihydropyridine calcium channel blockers and statins: factors determining interaction strength and relevant clinical risk management. Ther Clin Risk Manag 2014; 10: 17–26.
21. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57.
22. Kerr KP, Mate KE, Magin PJ et al. The prevalence of co-prescription of clinically relevant CYP enzyme inhibitor and substrate drugs in community-dwelling elderly Australians. J Clin Pharm Ther 2014; 39: 383–9.
23. Ulm EH, Hichens M, Gomez HJ et al. Enalapril maleate and a lysine analogue (MK-521): Disposition in man. Br J Clin Pharmac 1982; 14: 357–62.
24. Gomez HJ, Cirillo VJ, Moncloa F. The clinical pharmacology of lisinopril. J Сardiovasc Pharmac 1987; 9 (Suppl. 3): S27–S34.
25. Wang YC, Hsieh TC, Chou CL et al. Risks of Adverse Events Following Coprescription of Statins and Calcium Channel Blockers: A Nationwide Population-Based Study. Medicine (Baltimore) 2016; 95 (2): e2487.
26. Son H, Lee D, Lim LA et al. Development of a pharmacokinetic interaction model for co-administration of simvastatin and amlodipine. Drug Metab Pharmacokinet 2014; 29: 120–8.
27. Zhou YT, Yu LS, Zeng S et al. Pharmacokinetic drug-drug interactions between 1,4-dihydropyridine calcium channel blockers and statins: factors determining interaction strength and relevant clinical risk management. Ther Clin Risk Manag 2014; 10: 17–26.
28. Sever PS, Dahlöf B, Poulter NR et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial – Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 2003; 361: 1149–58.
29. Pedersen TR, Faergeman O, Kastelein JJ et al. High-Dose Atorvastatin vs Usual-Dose Simvastatin for Secondary Prevention After Myocardial Infarction: The IDEAL Study: A Randomized Controlled Trial. JAMA 2005; 294: 2437–45.
30. Shionoiri H. Pharmacokinetic drug interactions with ACE inhibitors. Clin Pharmacokinet 1993; 25: 20–58.
31. Sun JX, Cipriano A, Chan K, John VA. Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects. Eur J Clin Pharmacol 1994; 47: 285–9.
32. Zheng X, Liu T, Chen X et al. Investigation of a potential pharmacokinetic interaction between perindopril arginine and amlodipine when administered as a single perindopril/amlodipine fixed-dose combination tablet in healthy Chinese male volunteers. Int J Clin Pharmacol Ther 2016; 54: 43–51.
33. Son M, Guk J, Kim Y et al. Pharmacokinetic Interaction Between Rosuvastatin, Telmisartan, and Amlodipine in Healthy Male Korean Subjects: A Randomized, Open-label, Multiple-dose, 2-period Crossover Study. Clin Ther 2016. Jul 12 [Epub ahead of print].
34. Kennedy-Dixon TG, Gossell-Williams M, Hall J, Anglin-Brown B. The prevalence of major potential drug-drug interactions at a University health centre pharmacy in Jamaica. Pharm Pract (Granada) 2015; 13: 601.
35. Teixeira JJ, Crozatti MT, dos Santos CA, Romano-Lieber NS. Potential drug-drug interactions in prescriptions to patients over 45 years of age in primary care, southern Brazil. PLoS One 2012; 7: e47062.
36. Kónyi A, Sárszegi Z, Hild G, Gaszner B. Safety and effectiveness of combined antihypertensive and cholesterol-lowering therapy in high-/very high-risk patients. J Comp Eff Res 2016; 5: 355–64.
________________________________________________
1. Roth GA, Forouzanfar MH, Moran AE et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med 2015; 372: 1333–41.
2. Lewington S, Clarke R, Qizilbash N et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13.
3. Yusuf S, Hawken S, Ounpuu S et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937–52.
4. Rose G. Strategy of prevention: lessons from cardiovascular disease. Br Med J (Clin Res Ed) 1981; 282: 1847–51.
5. Wald NJ, Law MR. A strategy to reduce cardiovascular disease by more than 80%. BMJ 2003; 326: 1419.
6. Chapman RH, Benner JS, Petrilla AA et al. Predictors of adherence with antihypertensive and lipid-lowering therapy. Arch Intern Med 2005; 165: 1147–52.
7. Li W, Zeng S, Yu LS, Zhou Q. Pharmacokinetic drug interaction profle of omeprazole with adverse consequences and clinical risk management. Ther Clin Risk Manag 2013; 9: 259–71.
8. Olsson AG, McTaggart F, Raza A. Rosuvastatin: a highly effective new HMG-CoA reductase inhibitor. Cardiovasc Drug Rev 2002; 20: 303–28.
9. Hua WJ, Hua WX, Fang HJ. The role of OATP1B1 and BCRP in pharmacokinetics and DDI of novel statins. Cardiovasc Ther 2012; 30: e234–e241.
10. Kitamura S, Maeda K, Wang Y, Sugiyama Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 2008; 36: 2014–23.
11. Kock K, Brouwer KL. A perspective on efflux transport proteins in the liver. Clin Pharmacol Ther 2012; 92: 599–612.
12. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011; 63: 157–81.
13. AstraZeneca. Crestor (rosuvastatin) [prescribing information]. http://www1.astrazeneca-us.com/pi/crestor.pdf. Accessed November 3, 2015.
14. Crestor tablets. AccessdataFDA. http://www.accessdata. fda.gov/drugsatfda_docs/label/2005/21366slr005lbl.pdf. Accessed June 3, 2016.
15. Boehringer Ingelheim. Twynsta (telmisartan/amlodipine) [prescribing information]. www.accessdata.fda.gov/drug satfda_docs/label/2014/ 022401s016lbl.pdf. Accessed November 3, 2015.
16. Abernethy DR. Pharmacokinetics and pharmacodynamics of amlodipine. Cardiology 1992; 80 (Suppl. 1): 31–6.
17. Nishio S, Watanabe H, Kosuge K et al. Interaction between amlodipine and simvastatin in patients with hypercholesterolemia and hypertension. Hypertens Res 2005; 28: 223–7.
18. Park CG, Lee H, Choi JW et al. Non-concurrent dosing attenuates the pharmacokinetic interaction between amlodipine and simvastatin. Int J Clin Pharmacol Ther 2010; 48: 497–503.
19. Son H, Lee D, Lim LA et al. Development of a pharmacokinetic interaction model for co-administration of simvastatin and amlodipine. Drug Metab Pharmacokinet 2014; 29: 120–8.
20. Zhou YT, Yu LS, Zeng S et al. Pharmacokinetic drug-drug interactions between 1,4-dihydropyridine calcium channel blockers and statins: factors determining interaction strength and relevant clinical risk management. Ther Clin Risk Manag 2014; 10: 17–26.
21. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57.
22. Kerr KP, Mate KE, Magin PJ et al. The prevalence of co-prescription of clinically relevant CYP enzyme inhibitor and substrate drugs in community-dwelling elderly Australians. J Clin Pharm Ther 2014; 39: 383–9.
23. Ulm EH, Hichens M, Gomez HJ et al. Enalapril maleate and a lysine analogue (MK-521): Disposition in man. Br J Clin Pharmac 1982; 14: 357–62.
24. Gomez HJ, Cirillo VJ, Moncloa F. The clinical pharmacology of lisinopril. J Сardiovasc Pharmac 1987; 9 (Suppl. 3): S27–S34.
25. Wang YC, Hsieh TC, Chou CL et al. Risks of Adverse Events Following Coprescription of Statins and Calcium Channel Blockers: A Nationwide Population-Based Study. Medicine (Baltimore) 2016; 95 (2): e2487.
26. Son H, Lee D, Lim LA et al. Development of a pharmacokinetic interaction model for co-administration of simvastatin and amlodipine. Drug Metab Pharmacokinet 2014; 29: 120–8.
27. Zhou YT, Yu LS, Zeng S et al. Pharmacokinetic drug-drug interactions between 1,4-dihydropyridine calcium channel blockers and statins: factors determining interaction strength and relevant clinical risk management. Ther Clin Risk Manag 2014; 10: 17–26.
28. Sever PS, Dahlöf B, Poulter NR et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial – Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 2003; 361: 1149–58.
29. Pedersen TR, Faergeman O, Kastelein JJ et al. High-Dose Atorvastatin vs Usual-Dose Simvastatin for Secondary Prevention After Myocardial Infarction: The IDEAL Study: A Randomized Controlled Trial. JAMA 2005; 294: 2437–45.
30. Shionoiri H. Pharmacokinetic drug interactions with ACE inhibitors. Clin Pharmacokinet 1993; 25: 20–58.
31. Sun JX, Cipriano A, Chan K, John VA. Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects. Eur J Clin Pharmacol 1994; 47: 285–9.
32. Zheng X, Liu T, Chen X et al. Investigation of a potential pharmacokinetic interaction between perindopril arginine and amlodipine when administered as a single perindopril/amlodipine fixed-dose combination tablet in healthy Chinese male volunteers. Int J Clin Pharmacol Ther 2016; 54: 43–51.
33. Son M, Guk J, Kim Y et al. Pharmacokinetic Interaction Between Rosuvastatin, Telmisartan, and Amlodipine in Healthy Male Korean Subjects: A Randomized, Open-label, Multiple-dose, 2-period Crossover Study. Clin Ther 2016. Jul 12 [Epub ahead of print].
34. Kennedy-Dixon TG, Gossell-Williams M, Hall J, Anglin-Brown B. The prevalence of major potential drug-drug interactions at a University health centre pharmacy in Jamaica. Pharm Pract (Granada) 2015; 13: 601.
35. Teixeira JJ, Crozatti MT, dos Santos CA, Romano-Lieber NS. Potential drug-drug interactions in prescriptions to patients over 45 years of age in primary care, southern Brazil. PLoS One 2012; 7: e47062.
36. Kónyi A, Sárszegi Z, Hild G, Gaszner B. Safety and effectiveness of combined antihypertensive and cholesterol-lowering therapy in high-/very high-risk patients. J Comp Eff Res 2016; 5: 355–64.
1 ГБОУ ДПО Российская медицинская академия последипломного образования Минздрава России.125993, Россия, Москва, ул. Баррикадная, д. 2/1;
2 ГБУЗ НИИ скорой помощи им. Н.В.Склифосовского Департамента здравоохранения г. Москвы. 129090, Россия, Москва, Большая Сухаревская пл., д. 3
*sgilarevsky@rambler.ru
1 Russian Medical Academy of Postgraduate Education of the Ministry of Health of the Russian Federation. 125993, Russian Federation, Moscow, ul. Barrikadnaia, d. 2/1;
2 N.V.Sklifosovsky Research Institute of Emergency Medicine of the Department of Health of Moscow. 129090, Russian Federation, Mosсow, Bol'shaia Sukharevskaia pl., d. 3
*sgilarevsky@rambler.ru