Нарушение обмена углекислого газа: особенности патогенеза и диагностики
Нарушение обмена углекислого газа: особенности патогенеза и диагностики
Штабницкий В.А. Нарушение обмена углекислого газа: особенности патогенеза и диагностики. Consilium Medicum. 2016; 18 (12): 88–91. DOI: 10.26442/2075-1753_2016.12.88-91
________________________________________________
Shtabnitskiy V.A. Carbon dioxide exchange violation: features of the pathogenesis and diagnosis. Consilium Medicum. 2016; 18 (12): 88–91. DOI: 10.26442/2075-1753_2016.12.88-91
Нарушение обмена углекислого газа: особенности патогенеза и диагностики
Штабницкий В.А. Нарушение обмена углекислого газа: особенности патогенеза и диагностики. Consilium Medicum. 2016; 18 (12): 88–91. DOI: 10.26442/2075-1753_2016.12.88-91
________________________________________________
Shtabnitskiy V.A. Carbon dioxide exchange violation: features of the pathogenesis and diagnosis. Consilium Medicum. 2016; 18 (12): 88–91. DOI: 10.26442/2075-1753_2016.12.88-91
Дыхательная недостаточность является частым и актуальным осложнением многих заболеваний респираторной системы, а также сердечно-сосудистой и нервной. Острая и хроническая дыхательная недостаточность – один из неблагоприятных факторов и, как правило, указывает на ограничение прогноза для жизни. Умение распознавать ранние признаки дыхательной недостаточности позволяет проводить превентивную терапию дыхательных нарушений. Для правильного выбора метода лечения важно знать основные механизмы развития дыхательной недостаточности. В статье разбирается детальный патогенез развития нарушений обмена углекислого газа. Дается краткий обзор методов диагностики гиперкапнии и гипокапнии.
Respiratory failure is a frequent and relevant complication of many diseases of the respiratory system and the cardiovascular and nervous systems. Acute and chronic respiratory failure is one of the adverse factors, and usually indicates the limit of the forecast for life. The ability to recognize early signs of respiratory insufficiency allows preventive treatment of respiratory disorders. For the correct choice of treatment, it is important to know the basic mechanisms of respiratory nedostatochnosti.V article understands detailed pathogenesis of carbon dioxide metabolic disorders. A brief review of diagnostic methods hypercapnia and hypocapnia.
1. Энгельс Ф. Диалектика природы. М., 1975. / Engel's F. Dialektika prirody. M., 1975. [in Russian]
2. Зильбер А.П. Дыхательная недостаточность. М.: Медицина, 1989. / Zil'ber A.P. Dykhatel'naia nedostatochnost'. M.: Meditsina, 1989. [in Russian]
3. Шмидт Р., Тевс Г. Физиология человека. М.: Мир, 1996. / Shmidt R., Tevs G. Fiziologiia cheloveka. M.: Mir, 1996. [in Russian]
4. Simonneau G, Robbins IM et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2009; 54: S43–54.
5. Conkin J. Equivalent Air Altitude and the Alveolar Gas Equation. Aerosp Med Hum Perform. 2016; 87 (1): 61–4. DOI: 10.3357/AMHP.4421.2016.
6. Beck KC, Johnson BD, Olson TP, Wilson TA. Ventilation-perfusion distributionin normal subjects. J Appl Physiol (1985) 2012; 113 (6): 872–7.
7. Rafferty GF, Lou Harris M, Polkey MI et al. Effect ofhypercapnia on maximal voluntary ventilation and diaphragm fatigue in normalhumans. Am J Respir Crit Care Med 1999; 160 (5 Pt. 1): 1567–71.
8. Romer LM, Polkey MI. Exercise-induced respiratory muscle fatigue: implicationsfor performance. J Appl Physiol (1985) 2008; 104 (3): 879–88.
9. Burton MD, Kazemi H. Neurotransmitters in central respiratory control. Respir Physiol 2000; 122 (2–3): 111–21.
10. Poon CS, Tin C, Song G. Submissive hypercapnia: Why COPD patients are moreprone to CO2 retention than heart failure patients. Respir Physiol Neurobiol 2015; 216: 86–93.
11. Bauman KA, Kurili A, Schmidt SL et al. Home-based overnight transcutaneous capnography/pulse oximetry for diagnosingnocturnal hypoventilation associated with neuromuscular disorders. Arch Phys Med Rehabil 2013; 94 (1): 46–52.
12. Rasera CC, Gewehr PM, Domingues AM. PET(CO2) measurement and featureextraction of capnogram signals for extubation outcomes from mechanicalventilation. Physiol Meas 2015; 36 (2): 231–42.
13. Paschoal IA, Villalba Wde O, Pereira MC. Chronic respiratory failure inpatients with neuromuscular diseases: diagnosis and treatment. J Bras Pneumol 2007; 33 (1): 81–92.
14. Iscoe S, Fisher JA. Hyperoxia-induced hypocapnia: an underappreciated risk. Chest 2005; 128 (1): 430–3.
15. AlDabal L, BaHammam AS. Cheyne-stokes respiration in patients with heartfailure. Lung 2010; 188 (1): 5–14.
16. Sikter A, Frecska E, Braun IM et al. The role ofhyperventilation: hypocapnia in the pathomechanism of panic disorder. Rev Bras Psiquiatr 2007; 29 (4): 375–9.
________________________________________________
1. Engel's F. Dialektika prirody. M., 1975. [in Russian]
2. Zil'ber A.P. Dykhatel'naia nedostatochnost'. M.: Meditsina, 1989. [in Russian]
3. Shmidt R., Tevs G. Fiziologiia cheloveka. M.: Mir, 1996. [in Russian]
4. Simonneau G, Robbins IM et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2009; 54: S43–54.
5. Conkin J. Equivalent Air Altitude and the Alveolar Gas Equation. Aerosp Med Hum Perform. 2016; 87 (1): 61–4. DOI: 10.3357/AMHP.4421.2016.
6. Beck KC, Johnson BD, Olson TP, Wilson TA. Ventilation-perfusion distributionin normal subjects. J Appl Physiol (1985) 2012; 113 (6): 872–7.
7. Rafferty GF, Lou Harris M, Polkey MI et al. Effect ofhypercapnia on maximal voluntary ventilation and diaphragm fatigue in normalhumans. Am J Respir Crit Care Med 1999; 160 (5 Pt. 1): 1567–71.
8. Romer LM, Polkey MI. Exercise-induced respiratory muscle fatigue: implicationsfor performance. J Appl Physiol (1985) 2008; 104 (3): 879–88.
9. Burton MD, Kazemi H. Neurotransmitters in central respiratory control. Respir Physiol 2000; 122 (2–3): 111–21.
10. Poon CS, Tin C, Song G. Submissive hypercapnia: Why COPD patients are moreprone to CO2 retention than heart failure patients. Respir Physiol Neurobiol 2015; 216: 86–93.
11. Bauman KA, Kurili A, Schmidt SL et al. Home-based overnight transcutaneous capnography/pulse oximetry for diagnosingnocturnal hypoventilation associated with neuromuscular disorders. Arch Phys Med Rehabil 2013; 94 (1): 46–52.
12. Rasera CC, Gewehr PM, Domingues AM. PET(CO2) measurement and featureextraction of capnogram signals for extubation outcomes from mechanicalventilation. Physiol Meas 2015; 36 (2): 231–42.
13. Paschoal IA, Villalba Wde O, Pereira MC. Chronic respiratory failure inpatients with neuromuscular diseases: diagnosis and treatment. J Bras Pneumol 2007; 33 (1): 81–92.
14. Iscoe S, Fisher JA. Hyperoxia-induced hypocapnia: an underappreciated risk. Chest 2005; 128 (1): 430–3.
15. AlDabal L, BaHammam AS. Cheyne-stokes respiration in patients with heartfailure. Lung 2010; 188 (1): 5–14.
16. Sikter A, Frecska E, Braun IM et al. The role ofhyperventilation: hypocapnia in the pathomechanism of panic disorder. Rev Bras Psiquiatr 2007; 29 (4): 375–9.
Авторы
В.А.Штабницкий
ФГБОУ ВО Российский национальный исследовательский медицинский университет им. Н.И.Пирогова Минздрава России. 117997, Россия, Москва, ул. Островитянова, д. 1;
ФГБУ НИИ пульмонологии ФМБА России. 105077, Россия, Москва, ул. 11-я Парковая, д. 32 Shtabnitskiy@gmail.com
________________________________________________
V.A.Shtabnitskiy
N.I.Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation. 117997, Russian Federation, Moscow, ul. Ostrovitianova, d. 1;
Research Institute of Pulmonology of FMBA of Russia. 105077, Russian Federation, Moscow, ul. 11-ia Parkovaia, d. 32 Shtabnitskiy@gmail.com