Выявляемая в норме на протяжении суток вариабельность глюкозы плазмы не является спонтанной. В ее формировании участвуют, без преувеличения, все известные регуляторные механизмы метаболизма углеводов. Эти механизмы иерархически структурированы, их циклическая динамика функциональной активности, тесные взаимосвязи между собой по принципу работы систем управления с обратной связью создают более или менее выраженные флуктуации глюкозы, образующие характерные устойчивые паттерны на определенных временных промежутках. Главенствующая роль в регуляции принадлежит гипоталамусу, в частности, – супрахиазматическому ядру, формирующему суточный ритм динамики глюкозы у здоровых людей. В статье представлены современные представления о циркадных особенностях функционирования систем регуляции углеводного обмена.
The variability of plasma glucose, which is identified as normal during the day, is not spontaneous. All of the known regulatory mechanisms of carbohydrate metabolism, without exaggeration, take part in its formation. These mechanisms are hierarchically structured. Their cyclic dynamics of functional activity, the close relationship between them based on the principle of operation of control systems with inverse connection create more or less obvious fluctuations of glucose. These fluctuations of glucose form typical stable patterns at certain time periods. The hypothalamus plays the most important role in this regu- lation. In particular, the suprachiasmatic nucleus forms the circadian rhythm of glucose dynamics of healthy people. The article is devoted to modern con- cepts of circadian functioning of the systems that regulate carbohydrate metabolism.
1. Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev 2013; 3 (1): 107–35.
2. Kalsbeek A et al. Circadian disruption and SCN control of energy metabolism. FEBS Lett 2011; 585 (10): 1412–26.
3. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Gen 2006; 15: 271–7.
4. Шустов С.Б., Яковлев В.А., Халимов Ю.Ш. Хронобиологические аспекты эндокринологии. Хронобиология и хрономедицина. Под ред. Ф.И.Комарова, С.И.Рапопорта. М.: Триада-Х, 2000; с. 356–77. / Shustov S.B., Yakovlev V.A., Khalimov Yu.Sh. Khronobiologicheskie aspekty endokrinologii. Khronobiologiya i khronomeditsina. Pod red. F.I.Komarova, S.I.Rapoporta. M.: Triada-Kh, 2000; s. 356–77. [in Russian]
5. Ohara S et al. Untangling neural networks with dual retrograde transsynaptic viral infection. Front Neurosci 2009; 3: 344–9.
6. Kalsbeek A et al. The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol Metab 2010; 21 (7): 402–10.
7. Yi CX, Sun M, Ackermans MT. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production through glycogenolysis and via the hepatic sympathetic innervation in rats. Diabetes 2010; 59: 1591–600.
8. Аметов АС. Физиология метаболизма глюкозы. Сахарный диабет 2 типа. Проблемы и решения. 2-е изд. [глава 2], перераб. и доп. М.: ГЭОТАР-Медиа, 2013; c. 17. / Ametov AS. Fiziologiya metabolizma glyukozy. Sakharnyy diabet 2 tipa. Problemy i resheniya. 2-e izd. [glava 2], pererab. i dop. M.: GEOTAR-Media, 2013; s. 17. [in Russian]
9. John Service F. Glucose variability. Diabet 2013; 62 (5): 1398–440.
10. Hill NR, Oliver NS, Choudhary P. Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. Diabetes Technol Ther 2011; 13 (9): 921–8.
11. Merl V et al. Preserved circadian rhythm of serum insulin concentration at low plasma glucose during fasting in lean and overweight humans. Metabolism 2004; 53 (11): 1449–53.
12. Saad A et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes 2012; 61 (11): 2691–700.
13. Bolli GB et al. Demonstration of a dawn phenomenon in normal human volunteers. Diabetes 1984; 33: 1150–3.
14. La Fleur SE. Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J Neuroendocrinol 2003; 15: 315–22.
15. Wehr TA, Aeschbach D, Jr. Duncan WC. Evidence for a biological dawn and dusk in the human circadian timing system. J Physiol 2001; 535 (3): 937–51.
16. Borbély AA, Achermann P. Sleep Homeostasis and models of sleep regulation. In: Kryger, MH. Principles and Practice of Sleep Medicine. Philadelphia, PA: Elsevier Saunders, 2005; p. 405–17.
17. Cersosimo E, Triplitt C, Mandarino LJ et al. Pathogenesis of Type 2 Diabetes Mellitus. [Updated 2015 May 28]. In: De L.J.Groot, P.Beck-Peccoz, G.Chrousos et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: http://www.ncbi.nlm.nih.gov/books/NBK279115
18. Kohsaka A et al. Integration of metabolic and cardiovascular diurnal rhythms by circadian clock. Endocr J 2012; 59 (6): 447–56.
19. La Fleur SE et al. Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res 2000; 71: 50–6.
20. Buijs RM et al. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol 2001; 431 (4): 405–23.
21. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437 (7063): 1257–63.
22. Kalsbeek A, Fliers E. Daily regulation of hormone profiles. Handb Exp Pharmacol 2013; 217: 185–226.
23. Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann NY Acad Sci 2014; 1311: 151–73.
24. Morris CJ, Aeschbach D, Scheer FA. Circadian system, sleep and endocrinology. Mol Cell Endocrinol 2012; 349 (1): 91–104.
25. Gamble KL et al. Circadian clock control of endocrine factors. Nat Rev Endocrinol 2014; 10 (8): 466–75.
26. Kalsbeek A et al. Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS One 2008; 3: 3194.
27. Gooley JJ et al. Exposure to Room Light before Bedtime Suppresses Melatonin Onset and Shortens Melatonin Duration in Humans. J Clin Endocrinol Metab 2011; 96: 463–72.
28. Scheer FA et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009; 106 (11): 4453–8.
29. Shea SA et al. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. Clin Endocrinol Metab 2005; 90 (5): 2537–44.
30. Kalsbeek A et al. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 2001; 142: 2677–85.
31. Duttaroy A et al. Muscarinic Stimulation of Pancreatic Insulin and Glucagon Release is Abolished in M3 Muscarinic Acetylcholine Receptor-Deficient Mice. Diabetes 2004; 53: 1714–20.
32. Konogaki K. New insights to sympathetic regulation of glucose and fat metabolism. Diabetologia 2000; 43: 533–49.
33. Scheer FA et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci USA 2010; 107 (47): 20541–6.
34. Scheer FA et al. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia 2010; 53 (11): 2401–5.
35. Monnier L. Is postprandial glucose a neglected cardiovascular risk factor in type 2 diabetes? Eur J Clin Invest 2000; 30 (2): 3–11.
36. Basu R et al. Effects of age and sex on postprandial glucose metabolism: differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction. Diabetes 2006; 55: 2001–14.
37. Cobelli C et al. Assessment of beta-cell function in humans, simultaneously with insulin sensitivity and hepatic extraction, from intravenous and oral glucose tests. Am J Physiol Endocrinol Metab 2007; 293: 1–15.
38. Natalucci G et al. Spontaneous 24-h ghrelin secretion pattern in fasting subjects: maintenance of a meal-related pattern. Eur J Endocrinolo 2005; 152: 845–50.
39. Drazen DL et al. Effects of a Fixed Meal Pattern on Ghrelin Secretion: Evidence for a Learned Response Independent of Nutrient Status. Endocrinology 2006; 147: 23–30.
________________________________________________
1. Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev 2013; 3 (1): 107–35.
2. Kalsbeek A et al. Circadian disruption and SCN control of energy metabolism. FEBS Lett 2011; 585 (10): 1412–26.
3. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Gen 2006; 15: 271–7.
4. Shustov S.B., Yakovlev V.A., Khalimov Yu.Sh. Khronobiologicheskie aspekty endokrinologii. Khronobiologiya i khronomeditsina. Pod red. F.I.Komarova, S.I.Rapoporta. M.: Triada-Kh, 2000; s. 356–77. [in Russian]
5. Ohara S et al. Untangling neural networks with dual retrograde transsynaptic viral infection. Front Neurosci 2009; 3: 344–9.
6. Kalsbeek A et al. The hypothalamic clock and its control of glucose homeostasis. Trends Endocrinol Metab 2010; 21 (7): 402–10.
7. Yi CX, Sun M, Ackermans MT. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production through glycogenolysis and via the hepatic sympathetic innervation in rats. Diabetes 2010; 59: 1591–600.
8. Ametov AS. Fiziologiya metabolizma glyukozy. Sakharnyy diabet 2 tipa. Problemy i resheniya. 2-e izd. [glava 2], pererab. i dop. M.: GEOTAR-Media, 2013; s. 17. [in Russian]
9. John Service F. Glucose variability. Diabet 2013; 62 (5): 1398–440.
10. Hill NR, Oliver NS, Choudhary P. Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. Diabetes Technol Ther 2011; 13 (9): 921–8.
11. Merl V et al. Preserved circadian rhythm of serum insulin concentration at low plasma glucose during fasting in lean and overweight humans. Metabolism 2004; 53 (11): 1449–53.
12. Saad A et al. Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes 2012; 61 (11): 2691–700.
13. Bolli GB et al. Demonstration of a dawn phenomenon in normal human volunteers. Diabetes 1984; 33: 1150–3.
14. La Fleur SE. Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue. J Neuroendocrinol 2003; 15: 315–22.
15. Wehr TA, Aeschbach D, Jr. Duncan WC. Evidence for a biological dawn and dusk in the human circadian timing system. J Physiol 2001; 535 (3): 937–51.
16. Borbély AA, Achermann P. Sleep Homeostasis and models of sleep regulation. In: Kryger, MH. Principles and Practice of Sleep Medicine. Philadelphia, PA: Elsevier Saunders, 2005; p. 405–17.
17. Cersosimo E, Triplitt C, Mandarino LJ et al. Pathogenesis of Type 2 Diabetes Mellitus. [Updated 2015 May 28]. In: De L.J.Groot, P.Beck-Peccoz, G.Chrousos et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: http://www.ncbi.nlm.nih.gov/books/NBK279115
18. Kohsaka A et al. Integration of metabolic and cardiovascular diurnal rhythms by circadian clock. Endocr J 2012; 59 (6): 447–56.
19. La Fleur SE et al. Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res 2000; 71: 50–6.
20. Buijs RM et al. Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol 2001; 431 (4): 405–23.
21. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437 (7063): 1257–63.
22. Kalsbeek A, Fliers E. Daily regulation of hormone profiles. Handb Exp Pharmacol 2013; 217: 185–226.
23. Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann NY Acad Sci 2014; 1311: 151–73.
24. Morris CJ, Aeschbach D, Scheer FA. Circadian system, sleep and endocrinology. Mol Cell Endocrinol 2012; 349 (1): 91–104.
25. Gamble KL et al. Circadian clock control of endocrine factors. Nat Rev Endocrinol 2014; 10 (8): 466–75.
26. Kalsbeek A et al. Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS One 2008; 3: 3194.
27. Gooley JJ et al. Exposure to Room Light before Bedtime Suppresses Melatonin Onset and Shortens Melatonin Duration in Humans. J Clin Endocrinol Metab 2011; 96: 463–72.
28. Scheer FA et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009; 106 (11): 4453–8.
29. Shea SA et al. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. Clin Endocrinol Metab 2005; 90 (5): 2537–44.
30. Kalsbeek A et al. The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 2001; 142: 2677–85.
31. Duttaroy A et al. Muscarinic Stimulation of Pancreatic Insulin and Glucagon Release is Abolished in M3 Muscarinic Acetylcholine Receptor-Deficient Mice. Diabetes 2004; 53: 1714–20.
32. Konogaki K. New insights to sympathetic regulation of glucose and fat metabolism. Diabetologia 2000; 43: 533–49.
33. Scheer FA et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci USA 2010; 107 (47): 20541–6.
34. Scheer FA et al. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia 2010; 53 (11): 2401–5.
35. Monnier L. Is postprandial glucose a neglected cardiovascular risk factor in type 2 diabetes? Eur J Clin Invest 2000; 30 (2): 3–11.
36. Basu R et al. Effects of age and sex on postprandial glucose metabolism: differences in glucose turnover, insulin secretion, insulin action, and hepatic insulin extraction. Diabetes 2006; 55: 2001–14.
37. Cobelli C et al. Assessment of beta-cell function in humans, simultaneously with insulin sensitivity and hepatic extraction, from intravenous and oral glucose tests. Am J Physiol Endocrinol Metab 2007; 293: 1–15.
38. Natalucci G et al. Spontaneous 24-h ghrelin secretion pattern in fasting subjects: maintenance of a meal-related pattern. Eur J Endocrinolo 2005; 152: 845–50.
39. Drazen DL et al. Effects of a Fixed Meal Pattern on Ghrelin Secretion: Evidence for a Learned Response Independent of Nutrient Status. Endocrinology 2006; 147: 23–30.
ФГБВОУ ВО Военно-медицинская академия им. С.М.Кирова Минобразования России. 194044, Россия, Санкт-Петербург, ул. Академика Лебедева, д. 6
*vlasaluk@yandex.ru
S.M.Kirov Medical Military Academy of the Ministry of Education of the Russian Federation. 194044, Russian Federation, Saint Petersburg, ul. Akademika
*vlasaluk@yandex.ru