Нозокомиальная пневмония, связанная с искусственной вентиляцией легких, является одной из актуальных проблем интенсивной терапии, вследствие высокой распространенности, недостаточной эффективности лечения, дополнительных затрат, связанных с удлинением пребывания в отделениях реанимации и стационаре. Антибактериальная терапия достоверно снижает летальность и затраты при условии адекватности по спектру и оптимальности по продолжительности. Настоящий аналитический обзор посвящен обсуждению проблемы оптимальной продолжительности антибактериальной терапии.
Ventilator-associated pneumonia is one of the current problems of intensive care due to high prevalence, insufficient treatment effectiveness, additional costs associated with lengthening stay in the intensive care unit and inpatient. Antibiotic therapy significantly reduces mortality and costs, provided that it is adequate in spectrum and optimality for duration. This analytical review is devoted to the discussion of the optimal duration of antibiotic therapy.
Key words: nosocomial pneumonia, resistance, antibacterial therapy, carbapenems, efficiency and safety.
1. Kollef MH: Ventilator-associated pneumonia. A multivariate analysis. JAMA 1993; 270: 1965–70.
2. Vincent JL, Rello J, Marshall et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302: 2323–9.
3. American Thoracic Society Infectious Diseases Society of America: Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171: 388–416.
4. Rotstein C, Evans G, Born A et al. Clinical practice guidelines for hospital-acquired pneumonia and ventilator-associated pneumonia in adults. Can J Infect Dis Med Microbiol 2008; 19: 19–53.
5. Авдеев С.Н., Белобородов В.Б., Белоцерковский Б.З. и др. Нозокомиальная пневмония у взрослых (Национальные рекомендации). Под ред. А.Г.Чучалина, Б.Р.Гельфанда. Клин. микробиология и антимикроб. химиотерапия. 2009; 11 (2): 100–38. / Avdeev S.N., Beloborodov V.B., Belotserkovskiĭ B.Z. i dr. Nozokomialnaia pnevmoniia u vzroslykh (Natsionalnye rekomendatsii). Pod red. A.G.Chuchalina, B.R.Gelfanda. Klin. mikrobiologiia i antimikrob. khimioterapiia. 2009; 11 (2): 100–38. [in Russian]
6. Barlow M, Hall BG. Phylogenetic analysis shows that the OXA beta- lactamase genes have been on plasmids for millions of years. J Mol Evol 2002; 55: 314–21.
7. D'Costa VM, King CE, Kalan L et al. Antibiotic resistance is ancient. Nature 2011; 477: 457–61.
8. Armand-Lefevre L, Angebault C, Barbier F et al. Emergence of imipenem-resistant Gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother 2013; 57: 1488–95.
9. Bell BG, Schellevis F, Stobberingh E et al. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis 2014; 14: 13.
10. Meyer E, Gastmeier P, Deja M, Schwab F. Antibiotic consumption and resistance: data from Europe and Germany. Int J Med Microbiol 2013; 303: 388–95.
11. Goossens H. Antibiotic consumption and link to resistance. Clin Microbiol Infect 2009; 15 (Suppl. 3): 12–5.
12. Goossens H, Ferech M, Vander SR, Elseviers M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 2005; 365: 579–87.
13. Laxminarayan R, Duse A, Wattal C et al. Antibiotic resistance – the need for global solutions. Lancet Infect Dis 2013; 13: 1057–98.
14. Garcia-Migura L, Hendriksen RS, Fraile L, Aarestrup FM. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet Microbiol 2014; 170: 1–9.
15. Malhotra-Kumar S, Lammens C, Coenen S et al. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet 2007; 369: 482–90.
16. Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis 2003; 36: S11–23.
17. Rodriguez-Rojas A, Rodriguez-Beltran J, Couce A, Blazquez J. Antibiotics and antibiotic resistance: a bitter fight against evolution. Int J Med Microbiol 2013; 303: 293–7.
18. Paramythiotou E, Lucet JC, Timsit JF et al. Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin Infect Dis 2004; 38: 670–7.
19. Carmeli Y, Lidji SK, Shabtai E et al. The effects of group 1 versus group 2 carbapenems on imipenem-resistant Pseudomonas aeruginosa: an ecological study. Diagn Microbiol Infect Dis 2011; 70: 367–72.
20. Solomkin JS, Mazuski JE, Bradley JS et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis 2010; 50: 133–64.
21. Patel N, Harrington S, Dihmess A et al. Clinical epidemiology of carbapenem-intermediate or -resistant Enterobacteriaceae. J Antimicrob Chemother 2011; 66: 1600–8.
22. Kritsotakis EI, Tsioutis C, Roumbelaki M et al. Antibiotic use and the risk of carbapenem-resistant extended-spectrum-β-lactamase- producing Klebsiella pneumoniae infection in hospitalized patients: results of a double case-control study. J Antimicrob Chemother 2011; 66: 1383–91.
23. Kumar A, Haery C, Paladugu B et al. The duration of hypotension before the initiation of antibiotic treatment is a critical determinant of survival in a murine model of Escherichia coli septic shock: association with serum lactate and inflammatory cytokine levels. J Infect Dis 2006; 193: 251–8.
24. Ferrer R, Martin-Loeches I, Phillips G et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42: 1749–55.
25. Paterson DL. “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis 2004; 38 (Suppl. 4): S341–5.
26. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18: 657–86.
27. Rodriguez-Bano J, Navarro MD, Retamar P et al. Beta-Lactam/beta-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 2012; 54: 167–74.
28. Tamma PD, Han JH, Rock C et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin Infect Dis 2015; 60: 1319–25.
29. Harris PN, Tambyah PA, Paterson DL. Beta-lactam and beta-lactamase inhibitor combinations in the treatment of extended-spectrum beta- lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis 2015; 15: 475–85.
30. Lee NY, Lee CC, Huang WH et al. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended- spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis 2013; 56: 488–95.
31. Luyt CE, Aubry A, Lu Q et al. Imipenem, Meropenem, or Doripenem To Treat Patients with Pseudomonas aeruginosa Ventilator-Associated Pneumonia. Antimicrob Agents Chemother 2014; 58 (3): 1372–80.
32. Jones RN, Huynh HK, Biedenbach DJ. Activities of doripenem (S-4661) against drug-resistant clinical pathogens. Antimicrob Agents Chemother 2004; 48: 3136–40.
33. Jones RN, Sader HS, Fritsche TR. Comparativeactivityofdoripenem and three other carbapenems tested against Gram-negative bacilli with various beta-lactamase resistance mechanisms. Diagn Microbiol Infect Dis 2005; 52: 71–4.
34. Sakyo S, Tomita H, Tanimoto K et al. Potency of carbapenems for the prevention of carbapenem-resistant mutants of Pseudomonas aeruginosa: the high potency of a new carbapenem doripenem. J Antibiot (Tokyo) 2006; 59: 220–8.
35. Mushtaq S, Ge Y, Livermore DM. Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother 2004; 48: 3086–92.
36. Chastre J, Wunderink R, Prokocimer P et al. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study. Crit Care Med 2008; 36: 1089–96.
37. Réa-Neto A, Niederman M, Lobo SM et al. Efficacy and safety of doripenem versus piperacillin/tazobactam in nosocomial pneumonia: a randomized, open-label, multicenter study. Curr Med Res Opin 2008; 24: 2113–26.
38. Chastre J, Wolff M, Fagon JY et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator- associated, pneumonia in adults: a randomized trial. JAMA 2003; 290: 2588–98.
39. Kollef M, Chastre J, Clavel M et al. A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care 2012; 16: R218.
40. Drusano GL, Lodise TP, Melnick D et al. Meropenem penetration into epithelial lining fluid in mice and humans and delineation of exposure targets. Antimicrob Agents Chemother 2011; 55: 3406–12.
41. Crandon JL, Ariano RE, Zelenitsky SA et al. Optimization of meropenem dosage in the critically ill population based on renal function. Intensive Care Med 2011; 37: 632–8.
42. Ibrahim EH, Ward S, Sherman G et al. Experience with a clinical guideline for the treatment of ventilator-associated pneumonia. Crit Care Med 2001; 29: 1109–15.
43. Micek ST, Ward S, Fraser VJ, Kollef MH. A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest 2004; 125: 1791–9.
44. Singh N, Rogers P, Atwood CW et al. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 2000; 162: 505–11.
45. Bouadma L, Luyt CE, Tubach F et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375: 463–74.
46. Stolz D, Smyrnios N, Eggimann P et al. Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir J 2009; 34: 1364–75.
47. Hedrick TL, McElearney ST, Smith RL et al. Duration of antibiotic therapy for ventilator-associated pneumonia caused by non-fermentative gram-negative bacilli. Surg Infect 2007; 8: 589–97.
48. Kollef KE, Schramm GE, Wills AR et al. Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibiotic-resistant gram-negative bacteria. Chest 2008; 134: 281–7.
49. Florescu DF, Qiu F, McCartan MA et al. What is the efficacy and safety of colistin for the treatment of ventilator-associated pneumonia? A systematic review and meta-regression. Clin Infect Dis 2012; 54: 670–80.
50. Freire AT, Melnyk V, Kim MJ et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 2010; 68: 140–51.
51. Neuner E, Ritchie D, Micek S. New antibiotics for healthcare associated pneumonia. Semin Respir Crit Care Med 2009; 30: 92–101.
52. Tamma PD, Putcha N, Suh YD et al. Does prolonged β-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infect Dis 2011; 11: 181.
53. Roberts J, Webb S, Paterson D et al. A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 2009; 37: 2071–8.
54. Justo J, Gotfried MH, Deyo K et al. Doripenem intrapulmonary pharmacokinetics in healthy adult subjects. Proceedings of the 51st Interscience Conference on Antimicrobial Agents and Chemotherapy, 17-20 September 2011, Chicago, Illinois.
55. Roberts JA, Kirkpatrick CM, Roberts MS et al. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 2009; 64: 142–50.
56. Bulitta JB, Landersdorfer CB, Forrest A et al. Relevance of pharmacokinetic and pharmacodynamic modelling to clinical care of critically ill patients. Curr Pharm Biotechnol 2011; 12: 2044–61.
57. Goncalves-Pereira J, Povoa P. Antibiotics in critically ill patients- a systematic review of the pharmacokinetics of beta-lactams. Crit Care 2011; 15: R206.
58. Udy A, Roberts J, Lipman J. Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol 2011; 7: 539–43.
59. Udy AA, Varghese JM, Altukroni M et al. Subtherapeutc initial β-lactam concentrations in select critically ill patients. Association between augmented renal clearance and low trough drug concentrations. Chest 2012; 142: 30–9.
________________________________________________
1. Kollef MH: Ventilator-associated pneumonia. A multivariate analysis. JAMA 1993; 270: 1965–70.
2. Vincent JL, Rello J, Marshall et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302: 2323–9.
3. American Thoracic Society Infectious Diseases Society of America: Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 2005; 171: 388–416.
4. Rotstein C, Evans G, Born A et al. Clinical practice guidelines for hospital-acquired pneumonia and ventilator-associated pneumonia in adults. Can J Infect Dis Med Microbiol 2008; 19: 19–53.
5. Avdeev S.N., Beloborodov V.B., Belotserkovskiĭ B.Z. i dr. Nozokomialnaia pnevmoniia u vzroslykh (Natsionalnye rekomendatsii). Pod red. A.G.Chuchalina, B.R.Gelfanda. Klin. mikrobiologiia i antimikrob. khimioterapiia. 2009; 11 (2): 100–38. [in Russian]
6. Barlow M, Hall BG. Phylogenetic analysis shows that the OXA beta- lactamase genes have been on plasmids for millions of years. J Mol Evol 2002; 55: 314–21.
7. D'Costa VM, King CE, Kalan L et al. Antibiotic resistance is ancient. Nature 2011; 477: 457–61.
8. Armand-Lefevre L, Angebault C, Barbier F et al. Emergence of imipenem-resistant Gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother 2013; 57: 1488–95.
9. Bell BG, Schellevis F, Stobberingh E et al. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis 2014; 14: 13.
10. Meyer E, Gastmeier P, Deja M, Schwab F. Antibiotic consumption and resistance: data from Europe and Germany. Int J Med Microbiol 2013; 303: 388–95.
11. Goossens H. Antibiotic consumption and link to resistance. Clin Microbiol Infect 2009; 15 (Suppl. 3): 12–5.
12. Goossens H, Ferech M, Vander SR, Elseviers M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 2005; 365: 579–87.
13. Laxminarayan R, Duse A, Wattal C et al. Antibiotic resistance – the need for global solutions. Lancet Infect Dis 2013; 13: 1057–98.
14. Garcia-Migura L, Hendriksen RS, Fraile L, Aarestrup FM. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet Microbiol 2014; 170: 1–9.
15. Malhotra-Kumar S, Lammens C, Coenen S et al. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet 2007; 369: 482–90.
16. Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis 2003; 36: S11–23.
17. Rodriguez-Rojas A, Rodriguez-Beltran J, Couce A, Blazquez J. Antibiotics and antibiotic resistance: a bitter fight against evolution. Int J Med Microbiol 2013; 303: 293–7.
18. Paramythiotou E, Lucet JC, Timsit JF et al. Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin Infect Dis 2004; 38: 670–7.
19. Carmeli Y, Lidji SK, Shabtai E et al. The effects of group 1 versus group 2 carbapenems on imipenem-resistant Pseudomonas aeruginosa: an ecological study. Diagn Microbiol Infect Dis 2011; 70: 367–72.
20. Solomkin JS, Mazuski JE, Bradley JS et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis 2010; 50: 133–64.
21. Patel N, Harrington S, Dihmess A et al. Clinical epidemiology of carbapenem-intermediate or -resistant Enterobacteriaceae. J Antimicrob Chemother 2011; 66: 1600–8.
22. Kritsotakis EI, Tsioutis C, Roumbelaki M et al. Antibiotic use and the risk of carbapenem-resistant extended-spectrum-β-lactamase- producing Klebsiella pneumoniae infection in hospitalized patients: results of a double case-control study. J Antimicrob Chemother 2011; 66: 1383–91.
23. Kumar A, Haery C, Paladugu B et al. The duration of hypotension before the initiation of antibiotic treatment is a critical determinant of survival in a murine model of Escherichia coli septic shock: association with serum lactate and inflammatory cytokine levels. J Infect Dis 2006; 193: 251–8.
24. Ferrer R, Martin-Loeches I, Phillips G et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42: 1749–55.
25. Paterson DL. “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis 2004; 38 (Suppl. 4): S341–5.
26. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18: 657–86.
27. Rodriguez-Bano J, Navarro MD, Retamar P et al. Beta-Lactam/beta-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 2012; 54: 167–74.
28. Tamma PD, Han JH, Rock C et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin Infect Dis 2015; 60: 1319–25.
29. Harris PN, Tambyah PA, Paterson DL. Beta-lactam and beta-lactamase inhibitor combinations in the treatment of extended-spectrum beta- lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis 2015; 15: 475–85.
30. Lee NY, Lee CC, Huang WH et al. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended- spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis 2013; 56: 488–95.
31. Luyt CE, Aubry A, Lu Q et al. Imipenem, Meropenem, or Doripenem To Treat Patients with Pseudomonas aeruginosa Ventilator-Associated Pneumonia. Antimicrob Agents Chemother 2014; 58 (3): 1372–80.
32. Jones RN, Huynh HK, Biedenbach DJ. Activities of doripenem (S-4661) against drug-resistant clinical pathogens. Antimicrob Agents Chemother 2004; 48: 3136–40.
33. Jones RN, Sader HS, Fritsche TR. Comparativeactivityofdoripenem and three other carbapenems tested against Gram-negative bacilli with various beta-lactamase resistance mechanisms. Diagn Microbiol Infect Dis 2005; 52: 71–4.
34. Sakyo S, Tomita H, Tanimoto K et al. Potency of carbapenems for the prevention of carbapenem-resistant mutants of Pseudomonas aeruginosa: the high potency of a new carbapenem doripenem. J Antibiot (Tokyo) 2006; 59: 220–8.
35. Mushtaq S, Ge Y, Livermore DM. Doripenem versus Pseudomonas aeruginosa in vitro: activity against characterized isolates, mutants, and transconjugants and resistance selection potential. Antimicrob Agents Chemother 2004; 48: 3086–92.
36. Chastre J, Wunderink R, Prokocimer P et al. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study. Crit Care Med 2008; 36: 1089–96.
37. Réa-Neto A, Niederman M, Lobo SM et al. Efficacy and safety of doripenem versus piperacillin/tazobactam in nosocomial pneumonia: a randomized, open-label, multicenter study. Curr Med Res Opin 2008; 24: 2113–26.
38. Chastre J, Wolff M, Fagon JY et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator- associated, pneumonia in adults: a randomized trial. JAMA 2003; 290: 2588–98.
39. Kollef M, Chastre J, Clavel M et al. A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care 2012; 16: R218.
40. Drusano GL, Lodise TP, Melnick D et al. Meropenem penetration into epithelial lining fluid in mice and humans and delineation of exposure targets. Antimicrob Agents Chemother 2011; 55: 3406–12.
41. Crandon JL, Ariano RE, Zelenitsky SA et al. Optimization of meropenem dosage in the critically ill population based on renal function. Intensive Care Med 2011; 37: 632–8.
42. Ibrahim EH, Ward S, Sherman G et al. Experience with a clinical guideline for the treatment of ventilator-associated pneumonia. Crit Care Med 2001; 29: 1109–15.
43. Micek ST, Ward S, Fraser VJ, Kollef MH. A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest 2004; 125: 1791–9.
44. Singh N, Rogers P, Atwood CW et al. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 2000; 162: 505–11.
45. Bouadma L, Luyt CE, Tubach F et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375: 463–74.
46. Stolz D, Smyrnios N, Eggimann P et al. Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir J 2009; 34: 1364–75.
47. Hedrick TL, McElearney ST, Smith RL et al. Duration of antibiotic therapy for ventilator-associated pneumonia caused by non-fermentative gram-negative bacilli. Surg Infect 2007; 8: 589–97.
48. Kollef KE, Schramm GE, Wills AR et al. Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibiotic-resistant gram-negative bacteria. Chest 2008; 134: 281–7.
49. Florescu DF, Qiu F, McCartan MA et al. What is the efficacy and safety of colistin for the treatment of ventilator-associated pneumonia? A systematic review and meta-regression. Clin Infect Dis 2012; 54: 670–80.
50. Freire AT, Melnyk V, Kim MJ et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 2010; 68: 140–51.
51. Neuner E, Ritchie D, Micek S. New antibiotics for healthcare associated pneumonia. Semin Respir Crit Care Med 2009; 30: 92–101.
52. Tamma PD, Putcha N, Suh YD et al. Does prolonged β-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infect Dis 2011; 11: 181.
53. Roberts J, Webb S, Paterson D et al. A systematic review on clinical benefits of continuous administration of beta-lactam antibiotics. Crit Care Med 2009; 37: 2071–8.
54. Justo J, Gotfried MH, Deyo K et al. Doripenem intrapulmonary pharmacokinetics in healthy adult subjects. Proceedings of the 51st Interscience Conference on Antimicrobial Agents and Chemotherapy, 17-20 September 2011, Chicago, Illinois.
55. Roberts JA, Kirkpatrick CM, Roberts MS et al. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 2009; 64: 142–50.
56. Bulitta JB, Landersdorfer CB, Forrest A et al. Relevance of pharmacokinetic and pharmacodynamic modelling to clinical care of critically ill patients. Curr Pharm Biotechnol 2011; 12: 2044–61.
57. Goncalves-Pereira J, Povoa P. Antibiotics in critically ill patients- a systematic review of the pharmacokinetics of beta-lactams. Crit Care 2011; 15: R206.
58. Udy A, Roberts J, Lipman J. Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol 2011; 7: 539–43.
59. Udy AA, Varghese JM, Altukroni M et al. Subtherapeutc initial β-lactam concentrations in select critically ill patients. Association between augmented renal clearance and low trough drug concentrations. Chest 2012; 142: 30–9.
Авторы
В.Б.Белобородов*, В.А.Синикин
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России. 125993, Россия, Москва,
ул. Баррикадная, д. 2/1
*vb_beloborodov@mail.ru
________________________________________________
V.B.Beloborodov*, V.A.Sinikin
Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation. 125993, Russian Federation, Moscow,
ul. Barrikadnaia, d. 2/1
*vb_beloborodov@mail.ru