Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Системная психоневрология и болевые синдромы
Системная психоневрология и болевые синдромы
Дамулин И.В. Системная психоневрология и болевые синдромы. Consilium Medicum. 2017; 19 (9): 37–43. DOI: 10.26442/2075-1753_19.9.37-43
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
В обзорной статье анализируются современные данные о патогенезе боли. При помощи функциональной нейровизуализации было показано, что в ответ на ноцицептивные стимулы происходит более обширная активация церебральных связей, чем это считалось ранее. Также была продемонстрирована и важность функциональных связей, обеспечивающих интеграционную координацию активации структур головного мозга. При этом в процессе ощущения боли играют большую роль спонтанные церебральные осцилляции и изменения функции внимания. Процесс хронификации боли связан с изменениями нейрональных связей, их динамикой. При этом имеют значение и изменения в эмоциональной сфере, и когнитивные реакции. Детально рассматриваются изменения при головной боли разного генеза (мигрень, кластерная, абузусная головная боль, головная боль напряжения), а также при болях в спине. Делается вывод о том, что полученные данные открывают новые возможности для разработки методов воздействия, способных уменьшить или совсем избавиться от боли разного генеза.
Ключевые слова: структурная и функциональная организация головного мозга, коннектом, методы функциональной нейровизуализации, системная психоневрология, боль, патогенез.
Key words: structural and functional organization of the brain, connectome, methods of functional neuroimaging, systemic psychoneurology, pain, pathogenesis.
Ключевые слова: структурная и функциональная организация головного мозга, коннектом, методы функциональной нейровизуализации, системная психоневрология, боль, патогенез.
________________________________________________
Key words: structural and functional organization of the brain, connectome, methods of functional neuroimaging, systemic psychoneurology, pain, pathogenesis.
Полный текст
Список литературы
1. Дамулин И.В. Особенности структурной и функциональной организации головного мозга. Журн. неврологии и психиатрии им. С.С.Корсакова. 2016; 116 (11): 163–8. DOI: 10.17116/jnevro2016116111163-168 / Damulin I.V. Osobennosti strukturnoi i funktsionalnoi organizatsii golovnogo mozga. Zhurn. nevrologii i psikhiatrii im. S.S.Korsakova. 2016; 116 (11): 163–8. DOI: 10.17116/jnevro2016116111163-168 [in Russian]
2. Дамулин И.В. Системная психоневрология: современные представления о структурной и функциональной организации головного мозга. Consilium Medicum. 2017; 19 (2): 8–13. / Damulin I.V. Sistemnaia psikhonevrologiia: sovremennye predstavleniia o strukturnoi i funktsionalnoi organizatsii golovnogo mozga. Consilium Medicum. 2017; 19 (2): 8–13. [in Russian]
3. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev Neurosci 2009; 10 (3): 186–98. DOI: 10.1038/nrn2575
4. Petersen SE, Sporns O. Brain networks and cognitive architectures. Neuron 2015; 88 (1): 207–19. DOI: 10.1016/j.neuron.2015.09.027
5. Van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends in Cognitive Sciences 2013; 17 (12): 683–96. DOI: 10.1016/j.tics.2013.09.012
6. Van den Heuvel MP, Bullmore ET, Sporns O. Comparative connectomics. Trends in Cognitive Sciences 2016; 20 (5): 345–61. DOI: 10.1016/j.tics.2016.03.001
7. Hu L, Iannetti GD. Painful issues in pain prediction. Trends in Neurosciences 2016; 39 (4): 212–20. DOI: 10.1016/j.tins.2016.01.004
8. Kucyi A, Davis KD. The dynamic pain connectome. Trends in Neurosciences 2015; 38 (2): 86–95. DOI: 10.1016/j.tins.2014.11.006
9. Kucyi A, Davis KD. The neural code for pain: from single cell electrophysiology to the dynamic pain connectome. Neuroscientist 2016; 107385841666771. DOI: 10.1177/1073858416667716
10. Sprenger C, Finsterbusch J, Buchel C. Spinal cord-midbrain functional connectivity is related to perceived pain intensity: a combined spino-cortical fMRI study. J Neurosci 2015; 35 (10): 4248–57. DOI: 10.1523/jneurosci.4897-14.2015
11. Torta DM, Legrain V, Mouraux A, Valentini E. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies. Cortex 2017; 89: 120–34. DOI: 10.1016/j.cortex.2017.01.010
12. Ter Minassian A, Ricalens E, Humbert S et al. Dissociating anticipation from perception: acute pain activates default mode network. Human Brain Mapping 2012; 34 (9): 2228–43. DOI: 10.1002/hbm.22062
13. Cauda F, Palermo S, Costa T et al. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. NeuroImage: Clinical 2014; 4: 676–86. DOI: 10.1016/j.nicl.2014.04.007
14. Wang Z, Yang Q, Chen LM. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients. Magn Reson Imaging 2017; 36: 56–67. DOI: 10.1016/j.mri.2016.10.015
15. Yang Q, Wang Z, Yang L et al. Cortical thickness and functional connectivity abnormality in chronic headache and low back pain patients. Human Brain Mapping 2017; 38 (4): 1815–32. DOI: 10.1002/hbm.23484
16. Amin FM, Hougaard A, Magon S et al. Change in brain network connectivity during PACAP38-induced migraine attacks. Neurology 2015; 86 (2): 180–7. DOI: 10.1212/wnl.0000000000002261
17. Colombo B, Rocca MA, Messina R et al. Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine? Neurol Sci 2015; 36 (Suppl. 1): S41–S45. DOI: 10.1007/s10072-015-2145-x
18. Coppola G, Di Renzo A, Tinelli E et al. Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia 2017: 033310241771523. DOI: 10.1177/0333102417715230
19. Hougaard A, Amin FM, Larsson HBW et al. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Human Brain Mapping 2017; 38 (5): 2635–642. DOI: 10.1002/hbm.23548
20. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 2011; 70 (5): 838–45. DOI: 10.1002/ana.22537
21. Russo A, Tessitore A, Giordano A et al. Executive resting-state network connectivity in migraine without aura. Cephalalgia 2012; 32 (14): 1041–8. DOI: 10.1177/0333102412457089
22. Russo A, Conte F, Marcuccio L et al. Abnormal connectivity within executive resting-state network in migraine with aura. J Headache Pain 2015; 16 (Suppl. 1): A156. DOI: 10.1186/1129-2377-16-s1-a156
23. Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016; 139 (7): 1987–93. DOI: 10.1093/brain/aww097
24. Schulte LH, May A. Of generators, networks and migraine attacks. Curr Opin Neurol 2017; 30 (3): 241–5. DOI: 10.1097/wco.0000000000000441
25. Schwedt TJ, Schlaggar BL, Mar S et al. Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache 2013; 53 (5): 737–51. DOI: 10.1111/head.12081
26. Schwedt TJ, Larson-Prior L, Coalson RS et al. Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med 2014; 15 (1): 154–65. DOI: 10.1111/pme.12267
27. Tessitore A, Russo A, Conte F et al. Abnormal connectivity within executive resting-state network in migraine with aura. Headache: The Journal of Head and Face Pain 2015; 55 (6): 794–805. DOI: 10.1111/head.12587
28. Wang T, Chen N, Zhan W et al. Altered effective connectivity of posterior thalamus in migraine with cutaneous allodynia: a resting-state fMRI study with granger causality analysis. J Headache Pain 2016; 17 (1): 17–27. DOI: 10.1186/s10194-016-0610-4
29. Farago P, Tuka B, Toth E et al. Interictal brain activity differs in migraine with and without aura: resting state fMRI study. J Headache Pain 2017; 18 (1): 8–16. DOI: 10.1186/s10194-016-0716-8
30. Park S-P, Seo J-G, Lee W-K. Osmophobia and allodynia are critical factors for suicidality in patients with migraine. J Headache Pain 2015; 16 (1): 44–9. DOI: 10.1186/s10194-015-0529-1
31. Szabo N, Kincses ZT, Pardutz A et al. White matter disintegration in cluster headache. J Headache Pain 2013; 14 (1): 64–9. DOI: 10.1186/1129-2377-14-64
32. Seifert CL, Magon S, Staehle K et al. A case-control study on cortical thickness in episodic cluster headache. Headache 2012; 52 (9): 1362–8. DOI: 10.1111/j.1526-4610.2012.02217.x
33. Naegel S, Holle D, Desmarattes N et al. Cortical plasticity in episodic and chronic cluster headache. NeuroImage: Clinical 2014; 6: 415–23. DOI: 10.1016/j.nicl.2014.10.003
34. Chiapparini L, Ferraro S, Nigri A et al. Resting state fMRI in cluster headache: which role? Neurol Sci 2015; 36 (Suppl. 1): S47–S50. DOI: 10.1007/s10072-015-2129-x
35. Kiraly A, Szabo N, Pardutz A et al. Macro- and microstructural alterations of the subcortical structures in episodic cluster headache. Cephalalgia 2017: 033310241770376. DOI: 10.1177/0333102417703762
36. Farago P, Szabo N, Toth E et al. Ipsilateral alteration of resting state activity suggests that cortical dysfunction contributes to the pathogenesis of cluster headache. Brain Topography 2016; 30 (2): 281–9. DOI: 10.1007/s10548-016-0535-x
37. Tepper D. Medication overuse headache. Headache 2017; 57 (5): 845–6. DOI: 10.1111/head.13034
38. Chen Z, Chen X, Liu M et al. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI. J Headache Pain 2017; 18 (1): 1–9. DOI: 10.1186/s10194-017-0735-0
39. Schwedt TJ, Chong CD. Medication overuse headache: pathophysiological insights from structural and functional brain MRI research. Headache 2017. DOI: 10.1111/head.13037
40. Torta DM, Costa T, Luda E et al. Nucleus accumbens functional connectivity discriminates medication-overuse headache. NeuroImage: Clinical 2016; 11: 686–93. DOI: 10.1016/j.nicl.2016.05.007
41. Meyer M, Di Scala G, Edde M et al. Brain structural investigation and hippocampal tractography in medication overuse headache: a native space analysis. Behav Brain Functions 2017; 13 (6): 1–9. DOI: 10.1186/s12993-017-0124-5
42. Schoenen J, Bottin D, Hardy F, Gerard P. Cephalic and extracephalic pressure pain thresholds in chronic tension-type headache. Pain 1991; 47 (2): 145–9. DOI: 10.1016/0304-3959(91)90198-7
43. Olesen J, Jensen R. Getting away from simple muscle contraction as a mechanism of tension-type headache. Pain 1991; 46 (2): 123–4. DOI: 10.1016/0304-3959(91)90065-6
44. Yu S, Han X. Update of chronic tension-type headache. Curr Pain Headache Rep 2014; 19 (1): 469–76. DOI: 10.1007/s11916-014-0469-5
45. Chen B, He Y, Xia L et al. Cortical plasticity between the pain and pain-free phases in patients with episodic tension-type headache. J Headache Pain 2016; 17 (1): 105–10. DOI: 10.1186/s10194-016-0698-6
46. Pijnenburg M, Brumagne S, Caeyenberghs K et al. Resting-state functional connectivity of the sensorimotor network in individuals with nonspecific low back pain and the association with the sit-to-stand-to-sit task. Brain Connectivity 2015; 5 (5): 303–11. DOI: 10.1089/brain.2014.0309
47. Pijnenburg M, Hosseini SMH, Brumagne S et al. Structural brain connectivity and the sit-to-stand-to-sit performance in individuals with nonspecific low back pain: a diffusion magnetic resonance imaging-based network analysis. Brain Connectivity 2016; 6 (10): 795–803. DOI: 10.1089/brain.2015.0401
48. Zhang S, Wu W, Huang G et al. Resting-state connectivity in the default mode network and insula during experimental low back pain. Neural Regeneration Research 2014; 9 (2): 135–42. DOI: 10.4103/1673-5374.125341
49. Letzen JE, Robinson ME. Negative mood influences default mode network functional connectivity in patients with chronic low back pain. Pain 2017; 158 (1): 48–57. DOI: 10.1097/j.pain.0000000000000708
50. Apkarian AV, Sosa Y, Sonty S et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004; 24 (46): 10410–5. DOI: 10.1523/jneurosci.2541-04.2004
51. Yuan CH, Shi HC, Pan PL et al. Gray matter abnormalities associated with chronic back pain. Clin J Pain 2017; p. 1–25. DOI: 10.1097/ajp.0000000000000489
52. Fritz H-C, McAuley JH, Wittfeld K et al. Chronic back pain is associated with decreased prefrontal and anterior insular gray matter. Results from a population-based cohort study. J Pain 2016; 17 (1): 111–8. DOI: 10.1016/j.jpain.2015.10.003
53. Kolesar TA, Bilevicius E, Kornelsen J. Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome. Scand J Pain 2017; 16: 10–4. DOI: 10.1016/j.sjpain.2017.01.008
54. Kornelsen J, Sboto-Frankenstein U, McIver T et al. Default mode network functional connectivity altered in failed back surgery syndrome. J Pain 2013; 14 (5): 483–91. DOI: 10.1016/j.jpain.2012.12.018
55. Yoon M-S, Manack A, Schramm S et al. Chronic migraine and chronic tension-type headache are associated with concomitant low back pain: Results of the German Headache Consortium study. Pain 2013; 154 (3): 484–92. DOI: 10.1016/j.pain.2012.12.010
56. Sevel LS, Letzen JE, Staud R, Robinson ME. Interhemispheric dorsolateral prefrontal cortex connectivity is associated with individual differences in pain sensitivity in healthy controls. Brain Connectivity 2016; 6 (5): 357–64. DOI: 10.1089/brain.2015.0405
57. Rehme AK, Eickhoff SB, Grefkes C. State-dependent differences between functional and effective connectivity of the human cortical motor system. NeuroImage 2013; 67: 237–46. DOI: 10.1016/j.neuroimage.2012.11.027
58. Bringmann LF, Scholte HS, Waldorp LJ. Matching structural, effective, and functional connectivity: a comparison between structural equation modeling and ancestral graphs. Brain Connectivity 2013; 3 (4): 375–85. DOI: 10.1089/brain.2012.0130
59. Mears D, Pollard HB. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. J Neurosci Res 2016; 94 (6): 590–605. DOI: 10.1002/jnr.23705
60. Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res 2010; 205 (1): 1–12. DOI: 10.1007/s00221-010-2340-1
61. Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded. A salience detection system for the body. Progress Neurobiol 2011; 93 (1): 111–24. DOI: 10.1016/j.pneurobio.2010.10.005
62. Mouraux A, Diukova A, Lee MC et al. A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage 2011; 54 (3): 2237–49. DOI: 10.1016/j.neuroimage.2010.09.084
63. Iannetti GD, Mouraux A. Can the functional MRI responses to physical pain really tell us why social rejection "hurts"? Proceedings of the National Academy of Sciences 2011; 108 (30): E343–E343. DOI: 10.1073/pnas.1105451108
64. Takagi K. A distribution model of functional connectome based on criticality and energy constraints. PLoS ONE 2017; 12 (5): e0177446. DOI: 10.1371/journal.pone.0177446
2. Damulin I.V. Sistemnaia psikhonevrologiia: sovremennye predstavleniia o strukturnoi i funktsionalnoi organizatsii golovnogo mozga. Consilium Medicum. 2017; 19 (2): 8–13. [in Russian]
3. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev Neurosci 2009; 10 (3): 186–98. DOI: 10.1038/nrn2575
4. Petersen SE, Sporns O. Brain networks and cognitive architectures. Neuron 2015; 88 (1): 207–19. DOI: 10.1016/j.neuron.2015.09.027
5. Van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends in Cognitive Sciences 2013; 17 (12): 683–96. DOI: 10.1016/j.tics.2013.09.012
6. Van den Heuvel MP, Bullmore ET, Sporns O. Comparative connectomics. Trends in Cognitive Sciences 2016; 20 (5): 345–61. DOI: 10.1016/j.tics.2016.03.001
7. Hu L, Iannetti GD. Painful issues in pain prediction. Trends in Neurosciences 2016; 39 (4): 212–20. DOI: 10.1016/j.tins.2016.01.004
8. Kucyi A, Davis KD. The dynamic pain connectome. Trends in Neurosciences 2015; 38 (2): 86–95. DOI: 10.1016/j.tins.2014.11.006
9. Kucyi A, Davis KD. The neural code for pain: from single cell electrophysiology to the dynamic pain connectome. Neuroscientist 2016; 107385841666771. DOI: 10.1177/1073858416667716
10. Sprenger C, Finsterbusch J, Buchel C. Spinal cord-midbrain functional connectivity is related to perceived pain intensity: a combined spino-cortical fMRI study. J Neurosci 2015; 35 (10): 4248–57. DOI: 10.1523/jneurosci.4897-14.2015
11. Torta DM, Legrain V, Mouraux A, Valentini E. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies. Cortex 2017; 89: 120–34. DOI: 10.1016/j.cortex.2017.01.010
12. Ter Minassian A, Ricalens E, Humbert S et al. Dissociating anticipation from perception: acute pain activates default mode network. Human Brain Mapping 2012; 34 (9): 2228–43. DOI: 10.1002/hbm.22062
13. Cauda F, Palermo S, Costa T et al. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. NeuroImage: Clinical 2014; 4: 676–86. DOI: 10.1016/j.nicl.2014.04.007
14. Wang Z, Yang Q, Chen LM. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients. Magn Reson Imaging 2017; 36: 56–67. DOI: 10.1016/j.mri.2016.10.015
15. Yang Q, Wang Z, Yang L et al. Cortical thickness and functional connectivity abnormality in chronic headache and low back pain patients. Human Brain Mapping 2017; 38 (4): 1815–32. DOI: 10.1002/hbm.23484
16. Amin FM, Hougaard A, Magon S et al. Change in brain network connectivity during PACAP38-induced migraine attacks. Neurology 2015; 86 (2): 180–7. DOI: 10.1212/wnl.0000000000002261
17. Colombo B, Rocca MA, Messina R et al. Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine? Neurol Sci 2015; 36 (Suppl. 1): S41–S45. DOI: 10.1007/s10072-015-2145-x
18. Coppola G, Di Renzo A, Tinelli E et al. Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia 2017: 033310241771523. DOI: 10.1177/0333102417715230
19. Hougaard A, Amin FM, Larsson HBW et al. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Human Brain Mapping 2017; 38 (5): 2635–642. DOI: 10.1002/hbm.23548
20. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 2011; 70 (5): 838–45. DOI: 10.1002/ana.22537
21. Russo A, Tessitore A, Giordano A et al. Executive resting-state network connectivity in migraine without aura. Cephalalgia 2012; 32 (14): 1041–8. DOI: 10.1177/0333102412457089
22. Russo A, Conte F, Marcuccio L et al. Abnormal connectivity within executive resting-state network in migraine with aura. J Headache Pain 2015; 16 (Suppl. 1): A156. DOI: 10.1186/1129-2377-16-s1-a156
23. Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016; 139 (7): 1987–93. DOI: 10.1093/brain/aww097
24. Schulte LH, May A. Of generators, networks and migraine attacks. Curr Opin Neurol 2017; 30 (3): 241–5. DOI: 10.1097/wco.0000000000000441
25. Schwedt TJ, Schlaggar BL, Mar S et al. Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache 2013; 53 (5): 737–51. DOI: 10.1111/head.12081
26. Schwedt TJ, Larson-Prior L, Coalson RS et al. Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med 2014; 15 (1): 154–65. DOI: 10.1111/pme.12267
27. Tessitore A, Russo A, Conte F et al. Abnormal connectivity within executive resting-state network in migraine with aura. Headache: The Journal of Head and Face Pain 2015; 55 (6): 794–805. DOI: 10.1111/head.12587
28. Wang T, Chen N, Zhan W et al. Altered effective connectivity of posterior thalamus in migraine with cutaneous allodynia: a resting-state fMRI study with granger causality analysis. J Headache Pain 2016; 17 (1): 17–27. DOI: 10.1186/s10194-016-0610-4
29. Farago P, Tuka B, Toth E et al. Interictal brain activity differs in migraine with and without aura: resting state fMRI study. J Headache Pain 2017; 18 (1): 8–16. DOI: 10.1186/s10194-016-0716-8
30. Park S-P, Seo J-G, Lee W-K. Osmophobia and allodynia are critical factors for suicidality in patients with migraine. J Headache Pain 2015; 16 (1): 44–9. DOI: 10.1186/s10194-015-0529-1
31. Szabo N, Kincses ZT, Pardutz A et al. White matter disintegration in cluster headache. J Headache Pain 2013; 14 (1): 64–9. DOI: 10.1186/1129-2377-14-64
32. Seifert CL, Magon S, Staehle K et al. A case-control study on cortical thickness in episodic cluster headache. Headache 2012; 52 (9): 1362–8. DOI: 10.1111/j.1526-4610.2012.02217.x
33. Naegel S, Holle D, Desmarattes N et al. Cortical plasticity in episodic and chronic cluster headache. NeuroImage: Clinical 2014; 6: 415–23. DOI: 10.1016/j.nicl.2014.10.003
34. Chiapparini L, Ferraro S, Nigri A et al. Resting state fMRI in cluster headache: which role? Neurol Sci 2015; 36 (Suppl. 1): S47–S50. DOI: 10.1007/s10072-015-2129-x
35. Kiraly A, Szabo N, Pardutz A et al. Macro- and microstructural alterations of the subcortical structures in episodic cluster headache. Cephalalgia 2017: 033310241770376. DOI: 10.1177/0333102417703762
36. Farago P, Szabo N, Toth E et al. Ipsilateral alteration of resting state activity suggests that cortical dysfunction contributes to the pathogenesis of cluster headache. Brain Topography 2016; 30 (2): 281–9. DOI: 10.1007/s10548-016-0535-x
37. Tepper D. Medication overuse headache. Headache 2017; 57 (5): 845–6. DOI: 10.1111/head.13034
38. Chen Z, Chen X, Liu M et al. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI. J Headache Pain 2017; 18 (1): 1–9. DOI: 10.1186/s10194-017-0735-0
39. Schwedt TJ, Chong CD. Medication overuse headache: pathophysiological insights from structural and functional brain MRI research. Headache 2017. DOI: 10.1111/head.13037
40. Torta DM, Costa T, Luda E et al. Nucleus accumbens functional connectivity discriminates medication-overuse headache. NeuroImage: Clinical 2016; 11: 686–93. DOI: 10.1016/j.nicl.2016.05.007
41. Meyer M, Di Scala G, Edde M et al. Brain structural investigation and hippocampal tractography in medication overuse headache: a native space analysis. Behav Brain Functions 2017; 13 (6): 1–9. DOI: 10.1186/s12993-017-0124-5
42. Schoenen J, Bottin D, Hardy F, Gerard P. Cephalic and extracephalic pressure pain thresholds in chronic tension-type headache. Pain 1991; 47 (2): 145–9. DOI: 10.1016/0304-3959(91)90198-7
43. Olesen J, Jensen R. Getting away from simple muscle contraction as a mechanism of tension-type headache. Pain 1991; 46 (2): 123–4. DOI: 10.1016/0304-3959(91)90065-6
44. Yu S, Han X. Update of chronic tension-type headache. Curr Pain Headache Rep 2014; 19 (1): 469–76. DOI: 10.1007/s11916-014-0469-5
45. Chen B, He Y, Xia L et al. Cortical plasticity between the pain and pain-free phases in patients with episodic tension-type headache. J Headache Pain 2016; 17 (1): 105–10. DOI: 10.1186/s10194-016-0698-6
46. Pijnenburg M, Brumagne S, Caeyenberghs K et al. Resting-state functional connectivity of the sensorimotor network in individuals with nonspecific low back pain and the association with the sit-to-stand-to-sit task. Brain Connectivity 2015; 5 (5): 303–11. DOI: 10.1089/brain.2014.0309
47. Pijnenburg M, Hosseini SMH, Brumagne S et al. Structural brain connectivity and the sit-to-stand-to-sit performance in individuals with nonspecific low back pain: a diffusion magnetic resonance imaging-based network analysis. Brain Connectivity 2016; 6 (10): 795–803. DOI: 10.1089/brain.2015.0401
48. Zhang S, Wu W, Huang G et al. Resting-state connectivity in the default mode network and insula during experimental low back pain. Neural Regeneration Research 2014; 9 (2): 135–42. DOI: 10.4103/1673-5374.125341
49. Letzen JE, Robinson ME. Negative mood influences default mode network functional connectivity in patients with chronic low back pain. Pain 2017; 158 (1): 48–57. DOI: 10.1097/j.pain.0000000000000708
50. Apkarian AV, Sosa Y, Sonty S et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004; 24 (46): 10410–5. DOI: 10.1523/jneurosci.2541-04.2004
51. Yuan CH, Shi HC, Pan PL et al. Gray matter abnormalities associated with chronic back pain. Clin J Pain 2017; p. 1–25. DOI: 10.1097/ajp.0000000000000489
52. Fritz H-C, McAuley JH, Wittfeld K et al. Chronic back pain is associated with decreased prefrontal and anterior insular gray matter. Results from a population-based cohort study. J Pain 2016; 17 (1): 111–8. DOI: 10.1016/j.jpain.2015.10.003
53. Kolesar TA, Bilevicius E, Kornelsen J. Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome. Scand J Pain 2017; 16: 10–4. DOI: 10.1016/j.sjpain.2017.01.008
54. Kornelsen J, Sboto-Frankenstein U, McIver T et al. Default mode network functional connectivity altered in failed back surgery syndrome. J Pain 2013; 14 (5): 483–91. DOI: 10.1016/j.jpain.2012.12.018
55. Yoon M-S, Manack A, Schramm S et al. Chronic migraine and chronic tension-type headache are associated with concomitant low back pain: Results of the German Headache Consortium study. Pain 2013; 154 (3): 484–92. DOI: 10.1016/j.pain.2012.12.010
56. Sevel LS, Letzen JE, Staud R, Robinson ME. Interhemispheric dorsolateral prefrontal cortex connectivity is associated with individual differences in pain sensitivity in healthy controls. Brain Connectivity 2016; 6 (5): 357–64. DOI: 10.1089/brain.2015.0405
57. Rehme AK, Eickhoff SB, Grefkes C. State-dependent differences between functional and effective connectivity of the human cortical motor system. NeuroImage 2013; 67: 237–46. DOI: 10.1016/j.neuroimage.2012.11.027
58. Bringmann LF, Scholte HS, Waldorp LJ. Matching structural, effective, and functional connectivity: a comparison between structural equation modeling and ancestral graphs. Brain Connectivity 2013; 3 (4): 375–85. DOI: 10.1089/brain.2012.0130
59. Mears D, Pollard HB. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. J Neurosci Res 2016; 94 (6): 590–605. DOI: 10.1002/jnr.23705
60. Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res 2010; 205 (1): 1–12. DOI: 10.1007/s00221-010-2340-1
61. Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded. A salience detection system for the body. Progress Neurobiol 2011; 93 (1): 111–24. DOI: 10.1016/j.pneurobio.2010.10.005
62. Mouraux A, Diukova A, Lee MC et al. A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage 2011; 54 (3): 2237–49. DOI: 10.1016/j.neuroimage.2010.09.084
63. Iannetti GD, Mouraux A. Can the functional MRI responses to physical pain really tell us why social rejection "hurts"? Proceedings of the National Academy of Sciences 2011; 108 (30): E343–E343. DOI: 10.1073/pnas.1105451108
64. Takagi K. A distribution model of functional connectome based on criticality and energy constraints. PLoS ONE 2017; 12 (5): e0177446. DOI: 10.1371/journal.pone.0177446
2. Дамулин И.В. Системная психоневрология: современные представления о структурной и функциональной организации головного мозга. Consilium Medicum. 2017; 19 (2): 8–13. / Damulin I.V. Sistemnaia psikhonevrologiia: sovremennye predstavleniia o strukturnoi i funktsionalnoi organizatsii golovnogo mozga. Consilium Medicum. 2017; 19 (2): 8–13. [in Russian]
3. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev Neurosci 2009; 10 (3): 186–98. DOI: 10.1038/nrn2575
4. Petersen SE, Sporns O. Brain networks and cognitive architectures. Neuron 2015; 88 (1): 207–19. DOI: 10.1016/j.neuron.2015.09.027
5. Van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends in Cognitive Sciences 2013; 17 (12): 683–96. DOI: 10.1016/j.tics.2013.09.012
6. Van den Heuvel MP, Bullmore ET, Sporns O. Comparative connectomics. Trends in Cognitive Sciences 2016; 20 (5): 345–61. DOI: 10.1016/j.tics.2016.03.001
7. Hu L, Iannetti GD. Painful issues in pain prediction. Trends in Neurosciences 2016; 39 (4): 212–20. DOI: 10.1016/j.tins.2016.01.004
8. Kucyi A, Davis KD. The dynamic pain connectome. Trends in Neurosciences 2015; 38 (2): 86–95. DOI: 10.1016/j.tins.2014.11.006
9. Kucyi A, Davis KD. The neural code for pain: from single cell electrophysiology to the dynamic pain connectome. Neuroscientist 2016; 107385841666771. DOI: 10.1177/1073858416667716
10. Sprenger C, Finsterbusch J, Buchel C. Spinal cord-midbrain functional connectivity is related to perceived pain intensity: a combined spino-cortical fMRI study. J Neurosci 2015; 35 (10): 4248–57. DOI: 10.1523/jneurosci.4897-14.2015
11. Torta DM, Legrain V, Mouraux A, Valentini E. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies. Cortex 2017; 89: 120–34. DOI: 10.1016/j.cortex.2017.01.010
12. Ter Minassian A, Ricalens E, Humbert S et al. Dissociating anticipation from perception: acute pain activates default mode network. Human Brain Mapping 2012; 34 (9): 2228–43. DOI: 10.1002/hbm.22062
13. Cauda F, Palermo S, Costa T et al. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. NeuroImage: Clinical 2014; 4: 676–86. DOI: 10.1016/j.nicl.2014.04.007
14. Wang Z, Yang Q, Chen LM. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients. Magn Reson Imaging 2017; 36: 56–67. DOI: 10.1016/j.mri.2016.10.015
15. Yang Q, Wang Z, Yang L et al. Cortical thickness and functional connectivity abnormality in chronic headache and low back pain patients. Human Brain Mapping 2017; 38 (4): 1815–32. DOI: 10.1002/hbm.23484
16. Amin FM, Hougaard A, Magon S et al. Change in brain network connectivity during PACAP38-induced migraine attacks. Neurology 2015; 86 (2): 180–7. DOI: 10.1212/wnl.0000000000002261
17. Colombo B, Rocca MA, Messina R et al. Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine? Neurol Sci 2015; 36 (Suppl. 1): S41–S45. DOI: 10.1007/s10072-015-2145-x
18. Coppola G, Di Renzo A, Tinelli E et al. Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia 2017: 033310241771523. DOI: 10.1177/0333102417715230
19. Hougaard A, Amin FM, Larsson HBW et al. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Human Brain Mapping 2017; 38 (5): 2635–642. DOI: 10.1002/hbm.23548
20. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 2011; 70 (5): 838–45. DOI: 10.1002/ana.22537
21. Russo A, Tessitore A, Giordano A et al. Executive resting-state network connectivity in migraine without aura. Cephalalgia 2012; 32 (14): 1041–8. DOI: 10.1177/0333102412457089
22. Russo A, Conte F, Marcuccio L et al. Abnormal connectivity within executive resting-state network in migraine with aura. J Headache Pain 2015; 16 (Suppl. 1): A156. DOI: 10.1186/1129-2377-16-s1-a156
23. Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016; 139 (7): 1987–93. DOI: 10.1093/brain/aww097
24. Schulte LH, May A. Of generators, networks and migraine attacks. Curr Opin Neurol 2017; 30 (3): 241–5. DOI: 10.1097/wco.0000000000000441
25. Schwedt TJ, Schlaggar BL, Mar S et al. Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache 2013; 53 (5): 737–51. DOI: 10.1111/head.12081
26. Schwedt TJ, Larson-Prior L, Coalson RS et al. Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med 2014; 15 (1): 154–65. DOI: 10.1111/pme.12267
27. Tessitore A, Russo A, Conte F et al. Abnormal connectivity within executive resting-state network in migraine with aura. Headache: The Journal of Head and Face Pain 2015; 55 (6): 794–805. DOI: 10.1111/head.12587
28. Wang T, Chen N, Zhan W et al. Altered effective connectivity of posterior thalamus in migraine with cutaneous allodynia: a resting-state fMRI study with granger causality analysis. J Headache Pain 2016; 17 (1): 17–27. DOI: 10.1186/s10194-016-0610-4
29. Farago P, Tuka B, Toth E et al. Interictal brain activity differs in migraine with and without aura: resting state fMRI study. J Headache Pain 2017; 18 (1): 8–16. DOI: 10.1186/s10194-016-0716-8
30. Park S-P, Seo J-G, Lee W-K. Osmophobia and allodynia are critical factors for suicidality in patients with migraine. J Headache Pain 2015; 16 (1): 44–9. DOI: 10.1186/s10194-015-0529-1
31. Szabo N, Kincses ZT, Pardutz A et al. White matter disintegration in cluster headache. J Headache Pain 2013; 14 (1): 64–9. DOI: 10.1186/1129-2377-14-64
32. Seifert CL, Magon S, Staehle K et al. A case-control study on cortical thickness in episodic cluster headache. Headache 2012; 52 (9): 1362–8. DOI: 10.1111/j.1526-4610.2012.02217.x
33. Naegel S, Holle D, Desmarattes N et al. Cortical plasticity in episodic and chronic cluster headache. NeuroImage: Clinical 2014; 6: 415–23. DOI: 10.1016/j.nicl.2014.10.003
34. Chiapparini L, Ferraro S, Nigri A et al. Resting state fMRI in cluster headache: which role? Neurol Sci 2015; 36 (Suppl. 1): S47–S50. DOI: 10.1007/s10072-015-2129-x
35. Kiraly A, Szabo N, Pardutz A et al. Macro- and microstructural alterations of the subcortical structures in episodic cluster headache. Cephalalgia 2017: 033310241770376. DOI: 10.1177/0333102417703762
36. Farago P, Szabo N, Toth E et al. Ipsilateral alteration of resting state activity suggests that cortical dysfunction contributes to the pathogenesis of cluster headache. Brain Topography 2016; 30 (2): 281–9. DOI: 10.1007/s10548-016-0535-x
37. Tepper D. Medication overuse headache. Headache 2017; 57 (5): 845–6. DOI: 10.1111/head.13034
38. Chen Z, Chen X, Liu M et al. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI. J Headache Pain 2017; 18 (1): 1–9. DOI: 10.1186/s10194-017-0735-0
39. Schwedt TJ, Chong CD. Medication overuse headache: pathophysiological insights from structural and functional brain MRI research. Headache 2017. DOI: 10.1111/head.13037
40. Torta DM, Costa T, Luda E et al. Nucleus accumbens functional connectivity discriminates medication-overuse headache. NeuroImage: Clinical 2016; 11: 686–93. DOI: 10.1016/j.nicl.2016.05.007
41. Meyer M, Di Scala G, Edde M et al. Brain structural investigation and hippocampal tractography in medication overuse headache: a native space analysis. Behav Brain Functions 2017; 13 (6): 1–9. DOI: 10.1186/s12993-017-0124-5
42. Schoenen J, Bottin D, Hardy F, Gerard P. Cephalic and extracephalic pressure pain thresholds in chronic tension-type headache. Pain 1991; 47 (2): 145–9. DOI: 10.1016/0304-3959(91)90198-7
43. Olesen J, Jensen R. Getting away from simple muscle contraction as a mechanism of tension-type headache. Pain 1991; 46 (2): 123–4. DOI: 10.1016/0304-3959(91)90065-6
44. Yu S, Han X. Update of chronic tension-type headache. Curr Pain Headache Rep 2014; 19 (1): 469–76. DOI: 10.1007/s11916-014-0469-5
45. Chen B, He Y, Xia L et al. Cortical plasticity between the pain and pain-free phases in patients with episodic tension-type headache. J Headache Pain 2016; 17 (1): 105–10. DOI: 10.1186/s10194-016-0698-6
46. Pijnenburg M, Brumagne S, Caeyenberghs K et al. Resting-state functional connectivity of the sensorimotor network in individuals with nonspecific low back pain and the association with the sit-to-stand-to-sit task. Brain Connectivity 2015; 5 (5): 303–11. DOI: 10.1089/brain.2014.0309
47. Pijnenburg M, Hosseini SMH, Brumagne S et al. Structural brain connectivity and the sit-to-stand-to-sit performance in individuals with nonspecific low back pain: a diffusion magnetic resonance imaging-based network analysis. Brain Connectivity 2016; 6 (10): 795–803. DOI: 10.1089/brain.2015.0401
48. Zhang S, Wu W, Huang G et al. Resting-state connectivity in the default mode network and insula during experimental low back pain. Neural Regeneration Research 2014; 9 (2): 135–42. DOI: 10.4103/1673-5374.125341
49. Letzen JE, Robinson ME. Negative mood influences default mode network functional connectivity in patients with chronic low back pain. Pain 2017; 158 (1): 48–57. DOI: 10.1097/j.pain.0000000000000708
50. Apkarian AV, Sosa Y, Sonty S et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004; 24 (46): 10410–5. DOI: 10.1523/jneurosci.2541-04.2004
51. Yuan CH, Shi HC, Pan PL et al. Gray matter abnormalities associated with chronic back pain. Clin J Pain 2017; p. 1–25. DOI: 10.1097/ajp.0000000000000489
52. Fritz H-C, McAuley JH, Wittfeld K et al. Chronic back pain is associated with decreased prefrontal and anterior insular gray matter. Results from a population-based cohort study. J Pain 2016; 17 (1): 111–8. DOI: 10.1016/j.jpain.2015.10.003
53. Kolesar TA, Bilevicius E, Kornelsen J. Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome. Scand J Pain 2017; 16: 10–4. DOI: 10.1016/j.sjpain.2017.01.008
54. Kornelsen J, Sboto-Frankenstein U, McIver T et al. Default mode network functional connectivity altered in failed back surgery syndrome. J Pain 2013; 14 (5): 483–91. DOI: 10.1016/j.jpain.2012.12.018
55. Yoon M-S, Manack A, Schramm S et al. Chronic migraine and chronic tension-type headache are associated with concomitant low back pain: Results of the German Headache Consortium study. Pain 2013; 154 (3): 484–92. DOI: 10.1016/j.pain.2012.12.010
56. Sevel LS, Letzen JE, Staud R, Robinson ME. Interhemispheric dorsolateral prefrontal cortex connectivity is associated with individual differences in pain sensitivity in healthy controls. Brain Connectivity 2016; 6 (5): 357–64. DOI: 10.1089/brain.2015.0405
57. Rehme AK, Eickhoff SB, Grefkes C. State-dependent differences between functional and effective connectivity of the human cortical motor system. NeuroImage 2013; 67: 237–46. DOI: 10.1016/j.neuroimage.2012.11.027
58. Bringmann LF, Scholte HS, Waldorp LJ. Matching structural, effective, and functional connectivity: a comparison between structural equation modeling and ancestral graphs. Brain Connectivity 2013; 3 (4): 375–85. DOI: 10.1089/brain.2012.0130
59. Mears D, Pollard HB. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. J Neurosci Res 2016; 94 (6): 590–605. DOI: 10.1002/jnr.23705
60. Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res 2010; 205 (1): 1–12. DOI: 10.1007/s00221-010-2340-1
61. Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded. A salience detection system for the body. Progress Neurobiol 2011; 93 (1): 111–24. DOI: 10.1016/j.pneurobio.2010.10.005
62. Mouraux A, Diukova A, Lee MC et al. A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage 2011; 54 (3): 2237–49. DOI: 10.1016/j.neuroimage.2010.09.084
63. Iannetti GD, Mouraux A. Can the functional MRI responses to physical pain really tell us why social rejection "hurts"? Proceedings of the National Academy of Sciences 2011; 108 (30): E343–E343. DOI: 10.1073/pnas.1105451108
64. Takagi K. A distribution model of functional connectome based on criticality and energy constraints. PLoS ONE 2017; 12 (5): e0177446. DOI: 10.1371/journal.pone.0177446
________________________________________________
2. Damulin I.V. Sistemnaia psikhonevrologiia: sovremennye predstavleniia o strukturnoi i funktsionalnoi organizatsii golovnogo mozga. Consilium Medicum. 2017; 19 (2): 8–13. [in Russian]
3. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev Neurosci 2009; 10 (3): 186–98. DOI: 10.1038/nrn2575
4. Petersen SE, Sporns O. Brain networks and cognitive architectures. Neuron 2015; 88 (1): 207–19. DOI: 10.1016/j.neuron.2015.09.027
5. Van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends in Cognitive Sciences 2013; 17 (12): 683–96. DOI: 10.1016/j.tics.2013.09.012
6. Van den Heuvel MP, Bullmore ET, Sporns O. Comparative connectomics. Trends in Cognitive Sciences 2016; 20 (5): 345–61. DOI: 10.1016/j.tics.2016.03.001
7. Hu L, Iannetti GD. Painful issues in pain prediction. Trends in Neurosciences 2016; 39 (4): 212–20. DOI: 10.1016/j.tins.2016.01.004
8. Kucyi A, Davis KD. The dynamic pain connectome. Trends in Neurosciences 2015; 38 (2): 86–95. DOI: 10.1016/j.tins.2014.11.006
9. Kucyi A, Davis KD. The neural code for pain: from single cell electrophysiology to the dynamic pain connectome. Neuroscientist 2016; 107385841666771. DOI: 10.1177/1073858416667716
10. Sprenger C, Finsterbusch J, Buchel C. Spinal cord-midbrain functional connectivity is related to perceived pain intensity: a combined spino-cortical fMRI study. J Neurosci 2015; 35 (10): 4248–57. DOI: 10.1523/jneurosci.4897-14.2015
11. Torta DM, Legrain V, Mouraux A, Valentini E. Attention to pain! A neurocognitive perspective on attentional modulation of pain in neuroimaging studies. Cortex 2017; 89: 120–34. DOI: 10.1016/j.cortex.2017.01.010
12. Ter Minassian A, Ricalens E, Humbert S et al. Dissociating anticipation from perception: acute pain activates default mode network. Human Brain Mapping 2012; 34 (9): 2228–43. DOI: 10.1002/hbm.22062
13. Cauda F, Palermo S, Costa T et al. Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. NeuroImage: Clinical 2014; 4: 676–86. DOI: 10.1016/j.nicl.2014.04.007
14. Wang Z, Yang Q, Chen LM. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients. Magn Reson Imaging 2017; 36: 56–67. DOI: 10.1016/j.mri.2016.10.015
15. Yang Q, Wang Z, Yang L et al. Cortical thickness and functional connectivity abnormality in chronic headache and low back pain patients. Human Brain Mapping 2017; 38 (4): 1815–32. DOI: 10.1002/hbm.23484
16. Amin FM, Hougaard A, Magon S et al. Change in brain network connectivity during PACAP38-induced migraine attacks. Neurology 2015; 86 (2): 180–7. DOI: 10.1212/wnl.0000000000002261
17. Colombo B, Rocca MA, Messina R et al. Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine? Neurol Sci 2015; 36 (Suppl. 1): S41–S45. DOI: 10.1007/s10072-015-2145-x
18. Coppola G, Di Renzo A, Tinelli E et al. Resting state connectivity between default mode network and insula encodes acute migraine headache. Cephalalgia 2017: 033310241771523. DOI: 10.1177/0333102417715230
19. Hougaard A, Amin FM, Larsson HBW et al. Increased intrinsic brain connectivity between pons and somatosensory cortex during attacks of migraine with aura. Human Brain Mapping 2017; 38 (5): 2635–642. DOI: 10.1002/hbm.23548
20. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 2011; 70 (5): 838–45. DOI: 10.1002/ana.22537
21. Russo A, Tessitore A, Giordano A et al. Executive resting-state network connectivity in migraine without aura. Cephalalgia 2012; 32 (14): 1041–8. DOI: 10.1177/0333102412457089
22. Russo A, Conte F, Marcuccio L et al. Abnormal connectivity within executive resting-state network in migraine with aura. J Headache Pain 2015; 16 (Suppl. 1): A156. DOI: 10.1186/1129-2377-16-s1-a156
23. Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 2016; 139 (7): 1987–93. DOI: 10.1093/brain/aww097
24. Schulte LH, May A. Of generators, networks and migraine attacks. Curr Opin Neurol 2017; 30 (3): 241–5. DOI: 10.1097/wco.0000000000000441
25. Schwedt TJ, Schlaggar BL, Mar S et al. Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache 2013; 53 (5): 737–51. DOI: 10.1111/head.12081
26. Schwedt TJ, Larson-Prior L, Coalson RS et al. Allodynia and descending pain modulation in migraine: a resting state functional connectivity analysis. Pain Med 2014; 15 (1): 154–65. DOI: 10.1111/pme.12267
27. Tessitore A, Russo A, Conte F et al. Abnormal connectivity within executive resting-state network in migraine with aura. Headache: The Journal of Head and Face Pain 2015; 55 (6): 794–805. DOI: 10.1111/head.12587
28. Wang T, Chen N, Zhan W et al. Altered effective connectivity of posterior thalamus in migraine with cutaneous allodynia: a resting-state fMRI study with granger causality analysis. J Headache Pain 2016; 17 (1): 17–27. DOI: 10.1186/s10194-016-0610-4
29. Farago P, Tuka B, Toth E et al. Interictal brain activity differs in migraine with and without aura: resting state fMRI study. J Headache Pain 2017; 18 (1): 8–16. DOI: 10.1186/s10194-016-0716-8
30. Park S-P, Seo J-G, Lee W-K. Osmophobia and allodynia are critical factors for suicidality in patients with migraine. J Headache Pain 2015; 16 (1): 44–9. DOI: 10.1186/s10194-015-0529-1
31. Szabo N, Kincses ZT, Pardutz A et al. White matter disintegration in cluster headache. J Headache Pain 2013; 14 (1): 64–9. DOI: 10.1186/1129-2377-14-64
32. Seifert CL, Magon S, Staehle K et al. A case-control study on cortical thickness in episodic cluster headache. Headache 2012; 52 (9): 1362–8. DOI: 10.1111/j.1526-4610.2012.02217.x
33. Naegel S, Holle D, Desmarattes N et al. Cortical plasticity in episodic and chronic cluster headache. NeuroImage: Clinical 2014; 6: 415–23. DOI: 10.1016/j.nicl.2014.10.003
34. Chiapparini L, Ferraro S, Nigri A et al. Resting state fMRI in cluster headache: which role? Neurol Sci 2015; 36 (Suppl. 1): S47–S50. DOI: 10.1007/s10072-015-2129-x
35. Kiraly A, Szabo N, Pardutz A et al. Macro- and microstructural alterations of the subcortical structures in episodic cluster headache. Cephalalgia 2017: 033310241770376. DOI: 10.1177/0333102417703762
36. Farago P, Szabo N, Toth E et al. Ipsilateral alteration of resting state activity suggests that cortical dysfunction contributes to the pathogenesis of cluster headache. Brain Topography 2016; 30 (2): 281–9. DOI: 10.1007/s10548-016-0535-x
37. Tepper D. Medication overuse headache. Headache 2017; 57 (5): 845–6. DOI: 10.1111/head.13034
38. Chen Z, Chen X, Liu M et al. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI. J Headache Pain 2017; 18 (1): 1–9. DOI: 10.1186/s10194-017-0735-0
39. Schwedt TJ, Chong CD. Medication overuse headache: pathophysiological insights from structural and functional brain MRI research. Headache 2017. DOI: 10.1111/head.13037
40. Torta DM, Costa T, Luda E et al. Nucleus accumbens functional connectivity discriminates medication-overuse headache. NeuroImage: Clinical 2016; 11: 686–93. DOI: 10.1016/j.nicl.2016.05.007
41. Meyer M, Di Scala G, Edde M et al. Brain structural investigation and hippocampal tractography in medication overuse headache: a native space analysis. Behav Brain Functions 2017; 13 (6): 1–9. DOI: 10.1186/s12993-017-0124-5
42. Schoenen J, Bottin D, Hardy F, Gerard P. Cephalic and extracephalic pressure pain thresholds in chronic tension-type headache. Pain 1991; 47 (2): 145–9. DOI: 10.1016/0304-3959(91)90198-7
43. Olesen J, Jensen R. Getting away from simple muscle contraction as a mechanism of tension-type headache. Pain 1991; 46 (2): 123–4. DOI: 10.1016/0304-3959(91)90065-6
44. Yu S, Han X. Update of chronic tension-type headache. Curr Pain Headache Rep 2014; 19 (1): 469–76. DOI: 10.1007/s11916-014-0469-5
45. Chen B, He Y, Xia L et al. Cortical plasticity between the pain and pain-free phases in patients with episodic tension-type headache. J Headache Pain 2016; 17 (1): 105–10. DOI: 10.1186/s10194-016-0698-6
46. Pijnenburg M, Brumagne S, Caeyenberghs K et al. Resting-state functional connectivity of the sensorimotor network in individuals with nonspecific low back pain and the association with the sit-to-stand-to-sit task. Brain Connectivity 2015; 5 (5): 303–11. DOI: 10.1089/brain.2014.0309
47. Pijnenburg M, Hosseini SMH, Brumagne S et al. Structural brain connectivity and the sit-to-stand-to-sit performance in individuals with nonspecific low back pain: a diffusion magnetic resonance imaging-based network analysis. Brain Connectivity 2016; 6 (10): 795–803. DOI: 10.1089/brain.2015.0401
48. Zhang S, Wu W, Huang G et al. Resting-state connectivity in the default mode network and insula during experimental low back pain. Neural Regeneration Research 2014; 9 (2): 135–42. DOI: 10.4103/1673-5374.125341
49. Letzen JE, Robinson ME. Negative mood influences default mode network functional connectivity in patients with chronic low back pain. Pain 2017; 158 (1): 48–57. DOI: 10.1097/j.pain.0000000000000708
50. Apkarian AV, Sosa Y, Sonty S et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004; 24 (46): 10410–5. DOI: 10.1523/jneurosci.2541-04.2004
51. Yuan CH, Shi HC, Pan PL et al. Gray matter abnormalities associated with chronic back pain. Clin J Pain 2017; p. 1–25. DOI: 10.1097/ajp.0000000000000489
52. Fritz H-C, McAuley JH, Wittfeld K et al. Chronic back pain is associated with decreased prefrontal and anterior insular gray matter. Results from a population-based cohort study. J Pain 2016; 17 (1): 111–8. DOI: 10.1016/j.jpain.2015.10.003
53. Kolesar TA, Bilevicius E, Kornelsen J. Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome. Scand J Pain 2017; 16: 10–4. DOI: 10.1016/j.sjpain.2017.01.008
54. Kornelsen J, Sboto-Frankenstein U, McIver T et al. Default mode network functional connectivity altered in failed back surgery syndrome. J Pain 2013; 14 (5): 483–91. DOI: 10.1016/j.jpain.2012.12.018
55. Yoon M-S, Manack A, Schramm S et al. Chronic migraine and chronic tension-type headache are associated with concomitant low back pain: Results of the German Headache Consortium study. Pain 2013; 154 (3): 484–92. DOI: 10.1016/j.pain.2012.12.010
56. Sevel LS, Letzen JE, Staud R, Robinson ME. Interhemispheric dorsolateral prefrontal cortex connectivity is associated with individual differences in pain sensitivity in healthy controls. Brain Connectivity 2016; 6 (5): 357–64. DOI: 10.1089/brain.2015.0405
57. Rehme AK, Eickhoff SB, Grefkes C. State-dependent differences between functional and effective connectivity of the human cortical motor system. NeuroImage 2013; 67: 237–46. DOI: 10.1016/j.neuroimage.2012.11.027
58. Bringmann LF, Scholte HS, Waldorp LJ. Matching structural, effective, and functional connectivity: a comparison between structural equation modeling and ancestral graphs. Brain Connectivity 2013; 3 (4): 375–85. DOI: 10.1089/brain.2012.0130
59. Mears D, Pollard HB. Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. J Neurosci Res 2016; 94 (6): 590–605. DOI: 10.1002/jnr.23705
60. Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Exp Brain Res 2010; 205 (1): 1–12. DOI: 10.1007/s00221-010-2340-1
61. Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded. A salience detection system for the body. Progress Neurobiol 2011; 93 (1): 111–24. DOI: 10.1016/j.pneurobio.2010.10.005
62. Mouraux A, Diukova A, Lee MC et al. A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage 2011; 54 (3): 2237–49. DOI: 10.1016/j.neuroimage.2010.09.084
63. Iannetti GD, Mouraux A. Can the functional MRI responses to physical pain really tell us why social rejection "hurts"? Proceedings of the National Academy of Sciences 2011; 108 (30): E343–E343. DOI: 10.1073/pnas.1105451108
64. Takagi K. A distribution model of functional connectome based on criticality and energy constraints. PLoS ONE 2017; 12 (5): e0177446. DOI: 10.1371/journal.pone.0177446
Авторы
И.В.Дамулин
I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2;
Moscow Clinical Science-Research Center of the Department of Health of Moscow. 111123, Russian Federation, Moscow, sh. Entuziastov, d. 86
damulin@mmascience.ru
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М.Сеченова» Минздрава России. 119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2;
ГБУЗ «Московский клинический научно-практический центр» Департамента здравоохранения г. Москвы. 111123, Россия, Москва, ш. Энтузиастов, д. 86
damulin@mmascience.ru
ГБУЗ «Московский клинический научно-практический центр» Департамента здравоохранения г. Москвы. 111123, Россия, Москва, ш. Энтузиастов, д. 86
damulin@mmascience.ru
________________________________________________
I.M.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation. 119991, Russian Federation, Moscow, ul. Trubetskaia, d. 8, str. 2;
Moscow Clinical Science-Research Center of the Department of Health of Moscow. 111123, Russian Federation, Moscow, sh. Entuziastov, d. 86
damulin@mmascience.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
