Рост заболеваемости акне в последние годы как среди подростков, так и среди взрослых тесно связан с западной диетой. Развитию акне способствует потребление трех основных классов продуктов питания: углеводов, молока и молочных продуктов, трансжиров. Повышение уровня в сыворотке крови инсулиноподобного фактора роста 1 в период полового созревания и на фоне погрешностей в диете приводит к гипертрофии, гиперкератозу сальных желез и гиперпродукции измененного по составу кожного сала у генетически предрасположенных к развитию акне лиц.
________________________________________________
The increased incidence of acne in recent years, both among teenagers and among adults is closely associated with the Western diet. The development of acne promotes the consumption of three main classes of food: carbohydrates, milk and dairy products, and trans-fats. Level increase in blood insulin-like growth factor 1 in puberty and the background errors in the diet leads to hypertrophy, hyperkeratosis of the sebaceous glands and overproduction of the changed composition of sebum in genetically predisposed to the development of acne.
1. Deplewski D, Rosenfield RL. Growth hormone and insulin-like growth factors have different effects on sebaceous cell growth and differentiation. Endocrinology 1999; 140 (9): 4089–94.
2. Laron Z, Kowaldo-Silbergeld A, Eshet R, Pertzeln A. Growth hormone resistance. Ann Clin Res 1980; 12 (5): 269–77.
3. Ben-Amitai D, Laron Z. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. J Eur Acad Dermatol Venereol 2011; 25 (8): 950–4.
4. Fan W, Yanase T, Morinaga H et al. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J Biol Chem 2007; 282 (10): 7329–38.
5. Van der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380 (Pt 2): 297–309.
6. Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004; 306 (5704): 2105–8.
7. Jung JY, Yoon MY, Hong JS et al. The influence of dietary patterns on acne vulgaris in Koreans. Eur J Dermatol 2010; 20 (6): 1–5.
8. Bhate K, Williams HC. Epidemiology of acne vulgaris. Br J Dermatol 2013; 168 (3): 474–85.
9. Burris J, Rietkerk W, Woolf K. Acne: the role of medical nutrition therapy. J Acad Nutr Diet 2013; 113 (3): 416–30.
10. Burris J, Rietkerk W, Woolf K. Relationships of self-reported dietary factors and perceived acne severity in a cohort of New York young adults. J Acad Nutr Diet 2014; 114 (3): 384–92.
11. Wolkenstein P, Misery L, Amici JM et al. Smoking and dietary factors associated with moderate-to-severe acne in French adolescents and young adults: results of a survey using a representative sample. Dermatology 2015; 230 (1): 34–9.
12. Smith R, Mann N, Mäkeläinen H et al. A pilot study to determine the short-term effects of a low glycemic load diet on hormonal markers of acne: a nonrandomized, parallel, controlled feeding trial. Mol Nutr Food Res 2008; 52 (6): 718–26.
13. Kwon HH, Yoon JY, Hong JS et al. Clinical and histological effect of a low glycaemic load diet in treatment of acne vulgaris in Korean patients: a randomized, controlled trial. Acta Derm Venereol 2012; 92 (3): 241–6.
14. Bulkley LD. Acne, its Etiology, Pathology and Treatment. NY: GP Putnam’s Sons; 1885.
15. Ismail NH, Manaf ZA, Azizan NZ. High glycemic load diet, milk and ice cream consumption are related to acne vulgaris in Malaysian young adults: a case control study. BMC Dermatol 2012; 12: 13.
16. Di Landro A, Cazzaniga S, Parazzini F et al. Family history, body mass index, selected dietary factors, menstrual history, and risk of moderate to severe acne in adolescents and young adults. J Am Acad Dermatol 2012; 67 (6): 1129–35.
17. Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J 2013; 12: 103.
18. Melnik BC. The pathogenic role of persistent milk signaling in mTORC1- and milk-microRNA-driven type 2 diabetes mellitus. Curr Diabetes Rev 2015; 11 (1): 46–62.
19. Baier SR, Nguyen C, Xie F et al. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr 2014; 144 (10): 1495–500.
20. Regal P, Cepeda A, Fente C. Development of an LC-MS/MS method to quantify sex hormones in bovine milk and influence of pregnancy in their levels. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29 (5): 770–79.
21. Yasuda M, Tanaka Y, Kume S et al. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim Biophys Acta 2014; 1842 (7): 1097–108.
22. Di Landro A, Cazzaniga S, Parazzini F et al. Family history, body mass index, selected dietary factors, menstrual history, and risk of moderate to severe acne in adolescents and young adults. J Am Acad Dermatol 2012; 67 (6): 1129–135.
23. Lwin SM, Kimber I, McFadden JP. Acne, quorum sensing and danger. Clin Exp Dermatol 2014; 39 (2): 162–7.
Авторы
Е.В.Дворянкова*
ФГБУН «Центр теоретических проблем физико-химической фармакологии» Российской академии наук. 119991, Россия, Москва, ул. Косыгина, д. 4
*dvoriankova@mail.ru
________________________________________________
Ye.V.Dvoryankova*
Center for Theoretical Problems in Physico-Chemical Pharmacology Russian Academy of Sciences. 119991, Russian Federation, Moscow,
ul. Kosygina, d. 4
*dvoriankova@mail.ru