Представлен научный обзор современных данных о роли фармакогенетики в фармакокинетике и фармакодинамике статинов, липидснижающей эффективности и токсичности. Показано влияние генетического полиморфизма метаболизирующих ферментов CYP3А4/5, CYP2С9 на фармакокинетику статинов и эффективность. Показано влияние транспортеров (семейства ОАТР и АВС) на липидснижающее действие и токсичность, в частности доказанную ассоциацию полиморфизма SLCO1B1 с фармакокинетикой статинов, а также риск развития статининдуцированной миопатии симвастатином, аторвастатином, что нашло отражение в рекомендациях Управления по контролю пищевых продуктов и лекарств в США. Транспортеры Р-гликопротеин и ABCG2 также влияют на клиническую эффективность статинов. Встречаемость генетического полиморфизма в российской популяции достаточно высока, особенно по транспортерам OATP и ABC (Р-гликопротеина), что может объяснять применение препаратов в меньших дозировках, чем рекомендовано для клинической практики. Поэтому для оптимизации фармакотерапии статинами следует индивидуализировать подходы выбора препаратов и доз с учетом фармакогенетических аспектов.
The article presents a review of present data on pharmacogenetics role in statins pharmacokinetics and pharmacodynamics, their lipid-lowering activity and toxicity. The influence of genetic polymorphism of metabolizing ferments CYP3А4/5 and CYP2С9 on statins pharmacokinetics and effectiveness is shown. The influence of transporters (ОАТР and АВС families) on lipid-lowering activity and toxicity, particularly on confirmed association of SLCO1B1 polymorphism on statins pharmacokinetics as well as on risk of statin induced myopathy development after simvastatin or atorvastatin use that was reported in Food and Drug Administration guidelines is demonstrated. Р-glucoprotein and ABCG2 transporters also influence statins clinical effectiveness. The incidence of genetic polymorphism in Russian population is quite high, especially in OATP and ABC transporters, that can explain the use of medications in lower dosage than it is recommended for clinical practice. That is why the approaches for medication choices and dosage should be individualized for statin therapy optimization taking into account pharmacogenetic aspects.
1. Kapur NK, Musunuru K. Clinical efficacy and safety of statins in managing cardiovascular risk. Vasc Health Risk Manag 2008; 4: 341–53.
2. Vaughan CJ, Gotto AM Jr. Update on statins: 2003. Circulation 2004; 110: 886–92.
3. Tonelli M, Lloyd A, Clement F et al. Efficacy of statins for primary prevention in people at low cardiovascular risk: a meta-analysis. CMAJ 2011; 183 (16): Е1189–Е1202.
4. Cholesterol Treatment Trialists (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90056 participants in 14 randomized trials of statins. Lancet 2005; 366 (9493): 1267–78.
5. Mills EJ, Wu P, Chong G et al. Efficacy and safety of statin treatment for cardiovascular disease: a network meta-analysis of 170 255 patients from 76 randomized trials. Q J Med 2011; 104 (2): 109–24.
6. Zineh I. Pharmacogenetics of Response to Statins. Curr Аtheroscler Rep 2007; 9 (3): 187–94.
7. Pazzucconi F, Dorigotti F, Gianfranceschi G et al. Therapy with HMG CoA reductase inhibitors: characteristics of the long-term permanence of hypocholesterolemic activity. Atherosclerosis 1995; 117: 189–98.
8. Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002; 41 (5): 343–70.
9. Neuvonen PJ. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr Opin Investig Drugs 2010; 11 (3): 323–32.
10. Geisel J, Kivistö KT, Griese EU, Eichelbaum M. The efficacy of simvastatin is not influenced by CYP2D6 polymorphism. Clin Pharmacol Ther 2002; 72 (5): 595–6.
11. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54 (10): 1271–94.
12. Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol 2004; 93: 104–7.
13. Kivisto KT, Niemi M, Schaeffeler E et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004; 14: 523–5.
14. Kolovou G, Kolovou V, Ragia G et al. CYP3A5 genotyping for assessing the efficacy of treatment with simvastatin and atorvastatin. Genet Mol Biol 2015; 38 (2): 129–37.
15. Willrich MA, Hirata MH, Genvigir FD et al. CYP3A53A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin Chim Acta 2008; 398: 15–20
16. Bailey KM, Romaine SP, Jackson BM et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet 2010; 3: 276–85.
17. Kirchheiner J, Kudlicz D, Meisel C et al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther 2003; 74 (2): 186–94.
18. Lin J, Zhang Y, Zhou H et al. CYP2C9 genetic polymorphism is a potential predictive marker for the efficacy of rosuvastatin therapy. Clin Lab 2015; 61: 1317–24.
19. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011; 63: 157–81.
20. Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther 2006; 80: 356–66.
21. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 2006; 16: 873–9.
22. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2007; 82: 726–33.
23. Deng JW, Song IS, Shin HJ et al. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics 2008; 18: 424–33.
24. Tachibana-Iimori R, Tabara Y, Kusuhara H et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004; 19: 375–80.
25. Семенов А.В., Сычев Д.А., Кукес В.Г. Влияние полиморфизма генов SLCO1B1 и MDR1 на фармакокинетику и фармакодинамику аторвастатина у пациентов с первичной гиперхолестеринемией. Результаты пилотного фармакогенетического исследования. Рациональная фармакотерапия в кардиологии. 2008; 2: 47–50. / Semenov A.V., Sychev D.A., Kukes V.G. Vliyanie polimorfizma genov SLCO1B1 i MDR1 na farmakokinetiku i farmakodinamiku atorvastatina u pacientov s pervichnoj giperholesterinemiej. Rezul'taty pilotnogo farmakogeneticheskogo issledovaniya. Racional'naya farmakoterapiya v kardiologii. 2008; 2: 47–50. [in Russian]
26. Fu Q, Li YP, Gao Y et al. Lack of association between SLCO1B1 polymorphism and the lipid-lowering effects of atorvastatin and simvastatin in Chinese individuals. Eur J Clin Pharmacol 2013; 69: 1269–74.
27. Yang GP, Yuan H, Tang B et al. Lack of effect of genetic polymorphisms of SLCO1B1 on the lipid-lowering response to pitavastatin in Chinese patients. Acta Pharmacol Sin 2010; 31: 382–6.
28. Dou Y, Zhu X, Wang Q et al. Meta-analysis of the SLCO1B1 c.521T>C variant reveals slight influence on the lipid-lowering efficacy of statins. Ann Lab Med 2015; 35: 329–35.
29. Dai R, Feng J, Wang Y et al. Association between SLCO1B1 521T>C and 388A>G polymorphisms and statin effectiveness: a meta-analysis. J Ahteroscler Thrombos 2015; 22 (8): 796–815.
30. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA 2003; 289 (13): 1681–90.
31. Stroes ES, Thompson PD, Corsini A et al. Statin-associated muscle symptoms: impact on statin therapy–European Atherosclerosis Society consensus panel statement on assessment, aetiology and management. Eur Heart J 2015; 36 (17): 1012–22.
32. SEARCH Collaborative Group, Link E, Parish S, Armitage J et al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med 2008; 359: 789–99.
33. Voora D, Shah SH, Spasojevic I et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol 2009; 54: 1609–16.
34. Puccetti L, Ciani F, Auteri A. Genetic involvement in statins induced myopathy. Preliminary data from an observational case-control study. Atherosclerosis 2010; 211 (1): 28–9.
35. Santos PC, Gagliardi AC, Miname MH et al. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. Eur J Clin Pharmacol 2012; 68 (3): 273–9.
36. Danik JS, Chasman DI, MacFadyen JG et al. Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am Heart J 2013; 165 (6): 1008–14.
37. Canestaro WJ, Austin MA, Thummel KE. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review. Genet Мed 2014; 16 (11): 810–9.
38. Ferrari M, Guasti L, Maresca A et al. Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1, ABCB1 and ABCG2. Eur J Clin Pharmacol 2014; 70 (5): 539–47.
39. Hou Q, Li S, Li L et al. Association Between SLCO1B1 Gene T521C Polymorphism and Statin-Related Myopathy Risk: A Meta-Analysis of Case-Control Studies. Medicine 2015; 94 (37): e1268.
40. Jiang J, Tang Q, Feng J et al. Association between SLCO1B1 -521T>C and -388A>G polymorphisms and risk of statin-induced adverse drug reactions: A meta-analysis. Springerplus 2016; 5: 1368.
41. US Food and Drug Administration FDA Drug Safety Communication: Ongoing safety review of high-dose Zocor (simvastatin) and increased risk of muscle injury. 2010 http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm204882....
42. Wilke RA, Ramsey LB, Johnson SG et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 2012; 92 (1): 112–7.
43. Ramsey LB, Johnson SG, Caudle KE et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther 2014; 96: 423–8.
44. Hu M, To KKW, Mak VWL, Tomlinson B. The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin Drug Metab Toxicol 2011; 7 (1): 49–62.
45. Kitzmiller JP, Mikulik EB, Dauki AM et al. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmacogenom Personalized Medicine 2016; 9: 97–106.
46. Brambila-Tapia AJ. MDR1 (ABCB1) polymorphisms: functional effects and clinical implications. Rev Invest Clin 2013; 65 (5): 445–54.
47. Сычев Д.А., Игнатьев И.В., Андреев Д.А. и др. Носительство полиморфного маркера С3435Т гена MDR1 как фактор риска развития гликозидной интоксикации у больных хронической недостаточностью, длительно принимающих дигоксин. Материалы VI конференции «Сердечная недостаточность 2005». 2005; с. 9–10. / Sychev D.A., Ignat'ev I.V., Andreev D.A. i dr. Nositel'stvo polimorfnogo markera S3435T gena MDR1 kak faktor riska razvitiya glikozidnoj intoksikacii u bol'nyh hronicheskoj nedostatochnost'yu, dlitel'no prinimayushchih digoksin. Materialy VI konferencii “Serdechnaya nedostatochnost' 2005”. 2005; s. 9–10. [in Russian]
48. Keskitalo J, Kurkinen K, Neuvonen P, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther 2008; 84 (4): 457–61.
49. Zhou Q, Ruan ZR, Yuan H et al. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c > A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie 2013; 68 (2): 129–34.
50. Keskitalo JE, Kurkinen KJ, Neuvonen M et al. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br J Clin Pharmacol 2009; 68: 207–13.
51. Fiegenbaum M, da Silveira FR, Van der Sand CR et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther 2005; 78 (5): 551–8.
52. Маль Г.С., Кувшинова Ю.А. Применение гиполипидемических препаратов с помощью генетических маркеров у больных ИБС. LJournal.ru. 2013; 3. / Mal' G.S., Kuvshinova Yu.A. Primenenie gipolipidemicheskih preparatov s pomoshch'yu geneticheskih markerov u bol'nyh IBS. LJournal.ru. 2013; 3. [in Russian]
53. Su J, Xu H, Yang J et al. ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: a meta-analysis. Lipids Health Dis 2015; 14: 1–10.
54. Tomlinson B, Hu M, Lee VW et al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 2010; 87: 558–62.
________________________________________________
1. Kapur NK, Musunuru K. Clinical efficacy and safety of statins in managing cardiovascular risk. Vasc Health Risk Manag 2008; 4: 341–53.
2. Vaughan CJ, Gotto AM Jr. Update on statins: 2003. Circulation 2004; 110: 886–92.
3. Tonelli M, Lloyd A, Clement F et al. Efficacy of statins for primary prevention in people at low cardiovascular risk: a meta-analysis. CMAJ 2011; 183 (16): Е1189–Е1202.
4. Cholesterol Treatment Trialists (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90056 participants in 14 randomized trials of statins. Lancet 2005; 366 (9493): 1267–78.
5. Mills EJ, Wu P, Chong G et al. Efficacy and safety of statin treatment for cardiovascular disease: a network meta-analysis of 170 255 patients from 76 randomized trials. Q J Med 2011; 104 (2): 109–24.
6. Zineh I. Pharmacogenetics of Response to Statins. Curr Аtheroscler Rep 2007; 9 (3): 187–94.
7. Pazzucconi F, Dorigotti F, Gianfranceschi G et al. Therapy with HMG CoA reductase inhibitors: characteristics of the long-term permanence of hypocholesterolemic activity. Atherosclerosis 1995; 117: 189–98.
8. Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002; 41 (5): 343–70.
9. Neuvonen PJ. Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr Opin Investig Drugs 2010; 11 (3): 323–32.
10. Geisel J, Kivistö KT, Griese EU, Eichelbaum M. The efficacy of simvastatin is not influenced by CYP2D6 polymorphism. Clin Pharmacol Ther 2002; 72 (5): 595–6.
11. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54 (10): 1271–94.
12. Kajinami K, Brousseau ME, Ordovas JM, Schaefer EJ. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am J Cardiol 2004; 93: 104–7.
13. Kivisto KT, Niemi M, Schaeffeler E et al. Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 2004; 14: 523–5.
14. Kolovou G, Kolovou V, Ragia G et al. CYP3A5 genotyping for assessing the efficacy of treatment with simvastatin and atorvastatin. Genet Mol Biol 2015; 38 (2): 129–37.
15. Willrich MA, Hirata MH, Genvigir FD et al. CYP3A53A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin Chim Acta 2008; 398: 15–20
16. Bailey KM, Romaine SP, Jackson BM et al. Hepatic metabolism and transporter gene variants enhance response to rosuvastatin in patients with acute myocardial infarction: the GEOSTAT-1 Study. Circ Cardiovasc Genet 2010; 3: 276–85.
17. Kirchheiner J, Kudlicz D, Meisel C et al. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers. Clin Pharmacol Ther 2003; 74 (2): 186–94.
18. Lin J, Zhang Y, Zhou H et al. CYP2C9 genetic polymorphism is a potential predictive marker for the efficacy of rosuvastatin therapy. Clin Lab 2015; 61: 1317–24.
19. Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011; 63: 157–81.
20. Niemi M, Pasanen MK, Neuvonen PJ. SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther 2006; 80: 356–66.
21. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 2006; 16: 873–9.
22. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 2007; 82: 726–33.
23. Deng JW, Song IS, Shin HJ et al. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics 2008; 18: 424–33.
24. Tachibana-Iimori R, Tabara Y, Kusuhara H et al. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet 2004; 19: 375–80.
25. Semenov A.V., Sychev D.A., Kukes V.G. Vliyanie polimorfizma genov SLCO1B1 i MDR1 na farmakokinetiku i farmakodinamiku atorvastatina u pacientov s pervichnoj giperholesterinemiej. Rezul'taty pilotnogo farmakogeneticheskogo issledovaniya. Racional'naya farmakoterapiya v kardiologii. 2008; 2: 47–50. [in Russian]
26. Fu Q, Li YP, Gao Y et al. Lack of association between SLCO1B1 polymorphism and the lipid-lowering effects of atorvastatin and simvastatin in Chinese individuals. Eur J Clin Pharmacol 2013; 69: 1269–74.
27. Yang GP, Yuan H, Tang B et al. Lack of effect of genetic polymorphisms of SLCO1B1 on the lipid-lowering response to pitavastatin in Chinese patients. Acta Pharmacol Sin 2010; 31: 382–6.
28. Dou Y, Zhu X, Wang Q et al. Meta-analysis of the SLCO1B1 c.521T>C variant reveals slight influence on the lipid-lowering efficacy of statins. Ann Lab Med 2015; 35: 329–35.
29. Dai R, Feng J, Wang Y et al. Association between SLCO1B1 521T>C and 388A>G polymorphisms and statin effectiveness: a meta-analysis. J Ahteroscler Thrombos 2015; 22 (8): 796–815.
30. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA 2003; 289 (13): 1681–90.
31. Stroes ES, Thompson PD, Corsini A et al. Statin-associated muscle symptoms: impact on statin therapy–European Atherosclerosis Society consensus panel statement on assessment, aetiology and management. Eur Heart J 2015; 36 (17): 1012–22.
32. SEARCH Collaborative Group, Link E, Parish S, Armitage J et al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med 2008; 359: 789–99.
33. Voora D, Shah SH, Spasojevic I et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol 2009; 54: 1609–16.
34. Puccetti L, Ciani F, Auteri A. Genetic involvement in statins induced myopathy. Preliminary data from an observational case-control study. Atherosclerosis 2010; 211 (1): 28–9.
35. Santos PC, Gagliardi AC, Miname MH et al. SLCO1B1 haplotypes are not associated with atorvastatin-induced myalgia in Brazilian patients with familial hypercholesterolemia. Eur J Clin Pharmacol 2012; 68 (3): 273–9.
36. Danik JS, Chasman DI, MacFadyen JG et al. Lack of association between SLCO1B1 polymorphisms and clinical myalgia following rosuvastatin therapy. Am Heart J 2013; 165 (6): 1008–14.
37. Canestaro WJ, Austin MA, Thummel KE. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review. Genet Мed 2014; 16 (11): 810–9.
38. Ferrari M, Guasti L, Maresca A et al. Association between statin-induced creatine kinase elevation and genetic polymorphisms in SLCO1B1, ABCB1 and ABCG2. Eur J Clin Pharmacol 2014; 70 (5): 539–47.
39. Hou Q, Li S, Li L et al. Association Between SLCO1B1 Gene T521C Polymorphism and Statin-Related Myopathy Risk: A Meta-Analysis of Case-Control Studies. Medicine 2015; 94 (37): e1268.
40. Jiang J, Tang Q, Feng J et al. Association between SLCO1B1 -521T>C and -388A>G polymorphisms and risk of statin-induced adverse drug reactions: A meta-analysis. Springerplus 2016; 5: 1368.
41. US Food and Drug Administration FDA Drug Safety Communication: Ongoing safety review of high-dose Zocor (simvastatin) and increased risk of muscle injury. 2010 http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm204882....
42. Wilke RA, Ramsey LB, Johnson SG et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 2012; 92 (1): 112–7.
43. Ramsey LB, Johnson SG, Caudle KE et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther 2014; 96: 423–8.
44. Hu M, To KKW, Mak VWL, Tomlinson B. The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin Drug Metab Toxicol 2011; 7 (1): 49–62.
45. Kitzmiller JP, Mikulik EB, Dauki AM et al. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmacogenom Personalized Medicine 2016; 9: 97–106.
46. Brambila-Tapia AJ. MDR1 (ABCB1) polymorphisms: functional effects and clinical implications. Rev Invest Clin 2013; 65 (5): 445–54.
47. Sychev D.A., Ignat'ev I.V., Andreev D.A. i dr. Nositel'stvo polimorfnogo markera S3435T gena MDR1 kak faktor riska razvitiya glikozidnoj intoksikacii u bol'nyh hronicheskoj nedostatochnost'yu, dlitel'no prinimayushchih digoksin. Materialy VI konferencii “Serdechnaya nedostatochnost' 2005”. 2005; s. 9–10. [in Russian]
48. Keskitalo J, Kurkinen K, Neuvonen P, Niemi M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin Pharmacol Ther 2008; 84 (4): 457–61.
49. Zhou Q, Ruan ZR, Yuan H et al. ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c > A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie 2013; 68 (2): 129–34.
50. Keskitalo JE, Kurkinen KJ, Neuvonen M et al. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. Br J Clin Pharmacol 2009; 68: 207–13.
51. Fiegenbaum M, da Silveira FR, Van der Sand CR et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment. Clin Pharmacol Ther 2005; 78 (5): 551–8.
52. Mal' G.S., Kuvshinova Yu.A. Primenenie gipolipidemicheskih preparatov s pomoshch'yu geneticheskih markerov u bol'nyh IBS. LJournal.ru. 2013; 3. [in Russian]
53. Su J, Xu H, Yang J et al. ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: a meta-analysis. Lipids Health Dis 2015; 14: 1–10.
54. Tomlinson B, Hu M, Lee VW et al. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 2010; 87: 558–62.
Авторы
М.В.Леонова*1, О.В.Гайсенок2, А.С.Леонов2
1 Межрегиональная общественная организация «Ассоциация клинических фармакологов России»;
2 ФГБУ «Объединенная больница с поликлиникой» Управления делами Президента РФ. 119285, Россия, Москва, Мичуринский пр-т, д. 6
*anti23@mail.ru
________________________________________________
M.V.Leonova*1, O.V.Gaysenok2, A.S.Leonov2
1 Interregional Public Organization «Russian Association of Clinical Pharmacologists»
2 Joint Hospital with Polyclinic of the Administrative Department of the President of the Russian Federation. 119285, Russian Federation, Michurinskiy pr-t, d. 6
*anti23@mail.ru