Взаимосвязи компонентов JAK/STAT- и MAPK/SAPK-сигнальных путей, а также NF-kB и содержания в мононуклеарных клетках цельной крови тиоредоксинредуктазы в постклиническую стадию внебольничной пневмонии
Взаимосвязи компонентов JAK/STAT- и MAPK/SAPK-сигнальных путей, а также NF-kB и содержания в мононуклеарных клетках цельной крови тиоредоксинредуктазы в постклиническую стадию внебольничной пневмонии
Бондарь С.С., Терехов И.В., Никифоров В.С. и др. Взаимосвязи компонентов JAK/STAT- и MAPK/SAPK-сигнальных путей, а также NF-kB и содержания в мононуклеарных клетках цельной крови тиоредоксинредуктазы в постклиническую стадию внебольничной пневмонии. Consilium Medicum. 2018; 20 (11): 61–65. DOI: 10.26442/20751753.2018.11.180091
________________________________________________
Bondar S.S., Terekhov I.V., Nikiforov V.S. et al. The relationship of JAK/STAT and MAPK/SAPK signaling pathways, NF-kB and content in the mononuclear cells of whole blood thioredoxins in the post-clinical stage of community-acquired pneumonia. Consilium Medicum. 2018; 20 (11): 61–65. DOI: 10.26442/20751753.2018.11.180091
Взаимосвязи компонентов JAK/STAT- и MAPK/SAPK-сигнальных путей, а также NF-kB и содержания в мононуклеарных клетках цельной крови тиоредоксинредуктазы в постклиническую стадию внебольничной пневмонии
Бондарь С.С., Терехов И.В., Никифоров В.С. и др. Взаимосвязи компонентов JAK/STAT- и MAPK/SAPK-сигнальных путей, а также NF-kB и содержания в мононуклеарных клетках цельной крови тиоредоксинредуктазы в постклиническую стадию внебольничной пневмонии. Consilium Medicum. 2018; 20 (11): 61–65. DOI: 10.26442/20751753.2018.11.180091
________________________________________________
Bondar S.S., Terekhov I.V., Nikiforov V.S. et al. The relationship of JAK/STAT and MAPK/SAPK signaling pathways, NF-kB and content in the mononuclear cells of whole blood thioredoxins in the post-clinical stage of community-acquired pneumonia. Consilium Medicum. 2018; 20 (11): 61–65. DOI: 10.26442/20751753.2018.11.180091
В исследовании обсуждается взаимосвязь содержания в мононуклеарных клетках (МНК) периферической крови реконвалесцентов внебольничной пневмонии (ВП) отдельных компонентов МАРК/SAPK- и JAK/STAT-сигнальных путей, ядерного фактора транскрипции NF-kB, а также тиоредоксинредуктазы (ТРР). Методом иммуноферментного анализа в МНК определяли содержание и уровень фосфорилирования сигнальных трансдукторов и активаторов транскрипции STAT3, STAT5A, STAT6, ингибитора ядерного фактора транскрипции NF-kB (IkBa), стресс-активируемых протеинкиназ JNK, ERK, митогенактивируемой протеинкиназы p38, уровень субъединицы р65 ядерного фактора транскрипции NF-kB. Результаты проведенного исследования свидетельствуют о том, что стадия реконвалесценции ВП характеризуется дефицитом антиоксидантной защиты, проявляющейся снижением концентрации в супернатанте антиоксидантов на 6,7% (р=0,051), несмотря на имеющее место повышение уровня в МНК ТРР на 16,3% (р=0,028). Указанное обстоятельство свидетельствует о необходимости коррекции состояния антиоксидантной защиты у пациентов, перенесших ВП. Проведенный анализ выявил достоверную связь уровня ТРР и STAT5A, а также содержания р65 и STAT6, характеризующуюся положительной корреляцией с указанными факторами.
The study discusses the relationship between the content of mononuclear cells in peripheral blood (MNC) of the MAPK/SAPK and JAK/STAT-signaling pathways, nuclear transcription factor NF-kB, and thioredoxin reductase. The content and level of phosphorylation of signal transducers and transcription activators STAT3, STAT5A, STAT6, nuclear transcription factor NF-kB (IkBa), stress-activated protein kinases JNK, ERK, mitogen-activated protein kinase p38, the level of nuclear transcription factor NF-kB subunit p65 were determined by enzyme immunoassay in MNCs. The results of the study indicate that the stage of reconvalescence of VP is characterized by a deficiency of antioxidant protection, manifested by a decrease in the concentration of antioxidants by 6.7% (p=0.051), despite the existing increase in the level of MNC thioredoxin reductase by 16.3% (p=0.028). This fact indicates the need for correction of the state of AOSIS in patients who have undergone EAP. The analysis revealed a significant relationship between the level of TR and STAT5A, as well as the content of P65 and STAT6, characterized by a positive correlation with these factors.
1. Степовая Е.А., Жаворонок Т.В., Петина Г.В. и др. Участие тиолдисульфидной системы в регуляции окислительной модификации белков в нейтрофилах при окислительном стрессе. Сиб. науч. мед. журн. 2010; 30 (5): 64–9. / Stepovaia E.A., Zhavoronok T.V., Petina G.V. i dr. Uchastie tioldisul'fidnoi sistemy v reguliatsii okislitel'noi modifikatsii belkov v neitrofilakh pri okislitel'nom stresse. Sib. nauch. med. zhurn. 2010; 30 (5): 64–9. [in Russian]
2. Калинина Е.В., Чернов Н.Н., Саприн А.Н. Участие тио-, перокси- и глутаредоксинов в клеточных редокс-зависимых процессах. Успехи биол. химии. 2008; 48: 319–58. / Kalinina E.V., Chernov N.N., Saprin A.N. Uchastie tio-, peroksi- i glutaredoksinov v kletochnykh redoks-zavisimykh protsessakh. Uspekhi biol. khimii. 2008; 48: 319–58. [in Russian]
3. Conrad M, Jakupoglu C, Moreno SG. Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis, Heart Development, and Heart Function. Mol Cel Biol 2004; 24 (21): 9414–23. DOI: 10.1128/MCB.24.21.9414-9423.2004
4. Dagnell M, Pace PE, Cheng Q et al. Thioredoxin reductase 1 and NADPH directly protect protein tyrosine phosphatase 1B from inactivation during H2O2 exposure. J Biol Chem 2017; 292 (35): 14371–80. DOI: 10.1074/jbc.M117.793745
5. Bassi R, Burgoyne JR, DeNicola GF et al. Redox-dependent dimerization of p38a mitogen-activated protein kinase with mitogen-activated protein kinase kinase 3. J Biol Chem 2017; 292 (39): 16161–73. DOI: 10.1074/jbc.M117.785410
6. Kesarwani P, Murali AK, Al-Khami AA, Mehrotra S. Redox Regulation of T-Cell Function: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants Redox Signal 2013; 18 (12): 1497–534. DOI: 10.1089/ars.2011.4073
7. Kim S-H, Oh J, Choi J-Y et al. Identification of human thioredoxin as a novel IFN-gamma-induced factor: Mechanism of induction and its role in cytokine production. BMC Immunol 2008; 9: 64. DOI: 10.1186/1471-2172-9-64
8. Matthews JR, Wakasugi N, Virelizier JL et al. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 1992; 20 (15): 3821–30.
9. Громов М.С., Терехов И.В. Характеристика системного воспалительного ответа у больных внебольничной пневмонией в динамике при помощи активной СВЧ-радиометрии. Казанский мед. журн. 2010; 91 (5): 611–4. / Gromov M.S., Terekhov I.V. Kharakteristika sistemnogo vospalitel'nogo otveta u bol'nykh vnebol'nichnoi pnevmoniei v dinamike pri pomoshchi aktivnoi SVCh-radiometrii. Kazanskii med. zhurn. 2010; 91 (5): 611–4. [in Russian]
10. Терехов И.В., Бондарь С.С., Хадарцев А.А. Лабораторное определение внутриклеточных факторов противовирусной защиты при внебольничной пневмонии в оценке эффектов низкоинтенсивного СВЧ-излучения. Клин. лабораторная диагностика. 2016; 61 (6): 380–4. / Terekhov I.V., Bondar' S.S., Khadartsev A.A. Laboratornoe opredelenie vnutrikletochnykh faktorov protivovirusnoi zashchity pri vnebol'nichnoi pnevmonii v otsenke effektov nizkointensivnogo SVCh-izlucheniia. Klin. laboratornaia diagnostika. 2016; 61 (6): 380–4. [in Russian]
11. Lee S, Kim SM, Lee RT. Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance. Antioxidants Redox Signal 2013; 18 (10): 1165–207. DOI: 10.1089/ars.2011.4322
12. Солодухин К.А., Никифоров В.С., Громов М.С. и др. Влияние низкоинтенсивного СВЧ-облучения на внутриклеточные процессы в мононуклеарах при пневмонии. Мед. иммунология. 2012; 14 (6): 541–4. / Solodukhin K.A., Nikiforov V.S., Gromov M.S. i dr. Vliianie nizkointensivnogo SVCh-oblucheniia na vnutrikletochnye protsessy v mononuklearakh pri pnevmonii. Med. immunologiia. 2012; 14 (6): 541–4. [in Russian]
13. Linher-Melville K, Singh G. The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cel Endocrinol 2017; 451: 40–52. DOI: 10.1016/j.mce.2017.02.014
14. Dwivedi G, Gran MA, Bagchi P, Kemp ML. Dynamic Redox Regulation of IL-4 Signaling. Saucerman JJ, ed. PLoS Computational Biol 2015; 11 (11): e1004582. DOI: 10.1371/journal.pcbi.1004582
15. Muri J, Heer S, Matsushita M et al. The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat Commun 2018; 9 (1): 1851. DOI: 10.1038/s41467-018-04274-w
________________________________________________
1. Stepovaia E.A., Zhavoronok T.V., Petina G.V. i dr. Uchastie tioldisul'fidnoi sistemy v reguliatsii okislitel'noi modifikatsii belkov v neitrofilakh pri okislitel'nom stresse. Sib. nauch. med. zhurn. 2010; 30 (5): 64–9. [in Russian]
2. Kalinina E.V., Chernov N.N., Saprin A.N. Uchastie tio-, peroksi- i glutaredoksinov v kletochnykh redoks-zavisimykh protsessakh. Uspekhi biol. khimii. 2008; 48: 319–58. [in Russian]
3. Conrad M, Jakupoglu C, Moreno SG. Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis, Heart Development, and Heart Function. Mol Cel Biol 2004; 24 (21): 9414–23. DOI: 10.1128/MCB.24.21.9414-9423.2004
4. Dagnell M, Pace PE, Cheng Q et al. Thioredoxin reductase 1 and NADPH directly protect protein tyrosine phosphatase 1B from inactivation during H2O2 exposure. J Biol Chem 2017; 292 (35): 14371–80. DOI: 10.1074/jbc.M117.793745
5. Bassi R, Burgoyne JR, DeNicola GF et al. Redox-dependent dimerization of p38a mitogen-activated protein kinase with mitogen-activated protein kinase kinase 3. J Biol Chem 2017; 292 (39): 16161–73. DOI: 10.1074/jbc.M117.785410
6. Kesarwani P, Murali AK, Al-Khami AA, Mehrotra S. Redox Regulation of T-Cell Function: From Molecular Mechanisms to Significance in Human Health and Disease. Antioxidants Redox Signal 2013; 18 (12): 1497–534. DOI: 10.1089/ars.2011.4073
7. Kim S-H, Oh J, Choi J-Y et al. Identification of human thioredoxin as a novel IFN-gamma-induced factor: Mechanism of induction and its role in cytokine production. BMC Immunol 2008; 9: 64. DOI: 10.1186/1471-2172-9-64
8. Matthews JR, Wakasugi N, Virelizier JL et al. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 1992; 20 (15): 3821–30.
9. Gromov M.S., Terekhov I.V. Kharakteristika sistemnogo vospalitel'nogo otveta u bol'nykh vnebol'nichnoi pnevmoniei v dinamike pri pomoshchi aktivnoi SVCh-radiometrii. Kazanskii med. zhurn. 2010; 91 (5): 611–4. [in Russian]
10. Terekhov I.V., Bondar' S.S., Khadartsev A.A. Laboratornoe opredelenie vnutrikletochnykh faktorov protivovirusnoi zashchity pri vnebol'nichnoi pnevmonii v otsenke effektov nizkointensivnogo SVCh-izlucheniia. Klin. laboratornaia diagnostika. 2016; 61 (6): 380–4. [in Russian]
11. Lee S, Kim SM, Lee RT. Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance. Antioxidants Redox Signal 2013; 18 (10): 1165–207. DOI: 10.1089/ars.2011.4322
12. Solodukhin K.A., Nikiforov V.S., Gromov M.S. i dr. Vliianie nizkointensivnogo SVCh-oblucheniia na vnutrikletochnye protsessy v mononuklearakh pri pnevmonii. Med. immunologiia. 2012; 14 (6): 541–4. [in Russian]
13. Linher-Melville K, Singh G. The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cel Endocrinol 2017; 451: 40–52. DOI: 10.1016/j.mce.2017.02.014
14. Dwivedi G, Gran MA, Bagchi P, Kemp ML. Dynamic Redox Regulation of IL-4 Signaling. Saucerman JJ, ed. PLoS Computational Biol 2015; 11 (11): e1004582. DOI: 10.1371/journal.pcbi.1004582
15. Muri J, Heer S, Matsushita M et al. The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Nat Commun 2018; 9 (1): 1851. DOI: 10.1038/s41467-018-04274-w
1 ФГБОУ ВО «Тульский государственный университет». 300012, Россия, Тула, пр. Ленина, д. 92;
2 ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И.Мечникова» Минздрава России. 191015, Россия, Санкт-Петербург, ул. Кирочная, д. 41;
3 ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И.Разумовского» Минздрава России. 410012, Россия, Саратов, ул. Большая Казачья, д. 112;
4 ФГБОУ ВО «Орловский государственный университет им. И.С.Тургенева». 302026, Россия, Орел, ул. Комсомольская, д. 95
*trft@mail.ru
1Tula State University. 300012, Russian Federation, Tula, pr. Lenina, d. 92;
2 I.I.Mechnikov North-West State Medical University of the Ministry of Health of the Russian Federation. 191015, Russian Federation, Saint Petersburg, ul. Kirochnaia, d. 41;
3 V.I.Razumovsky Saratov State Medical University of the Ministry of Health of the Russian Federation. 410012, Russian Federation, Saratov, ul. Bol'shaia Kazach'ia, d. 112;
4 I.S.Turgenev Orel State University. 302026, Russian Federation, Orel, ul. Komsomolskaya, d. 95
*trft@mail.ru