Артериальная гипертензия – основной независимый предиктор развития тяжелых сердечно-сосудистых осложнений и смертности. Несмотря на прогресс и успехи лекарственной терапии, число пациентов с неудовлетворительным контролем артериального давления остается стабильно высоким. По данным популяционных исследований, доля резистентных гипертоников составляет от 6 до 12%. В качестве одного из перспективных направлений преодоления лекарственной резистентности рассматривается симпатическая ренальная денервация. В настоящей статье рассмотрены патогенетические механизмы участия симпатической нервной системы в развитии артериальной гипертензии и других сердечно-сосудистых заболеваний, патофизиологические аспекты технологии ренальной денервации. Изложены основополагающие клинические исследования, посвященные оценке их эффективности. Особое внимание уделено подробному анализу результатов исследования Symplicity HTN-3, а также новых исследований, подтверждающих перспективы возвращения ренальной денервации в клиническую практику.
Arterial hypertension is a main independent predictor of cardiovascular morbidity and mortality. Despite recent achievements of antihypertensive therapy, the incidence rate of suboptimal blood pressure control remains high. According to large trials, the prevalence of resistant hypertension is 6–12% among hypertensive patients. Renal sympathetic denervation (RSD) is being considered as a new frontier in the overcoming of drug resistance. The current article reviews recent view of pathophysiology of resistant hypertension and the role of sympathetic nervous system and modern technological developments of RSD. The results of major clinical trials are being discussed in order to reexamine the feasibility and efficacy of RSD to treat hypertension. An extensive post hoc analysis of Symplicity HTN-3 and intermediate results of new ongoing trials predict that RDN will emerge as an effective therapy for the treatment of hypertension and other clinical conditions associated with chronically elevated sympathetic activity.
1. Шальнова С.А., Конради А.О., Карпов Ю.А. и др. Анализ смертности от сердечно-сосудистых заболеваний в 12 регионах Российской Федерации, участвующих в исследовании «Эпидемиология сердечно-сосудистых заболеваний в различных регионах России». Рос. кардиол. журн. 2012; 5: 6–11. / Shal'nova S.A., Konradi A.O., Karpov Iu.A. i dr. Analiz smertnosti ot serdechno-sosudistykh zabolevanii v 12 regionakh Rossiiskoi Federatsii, uchastvuiushchikh v issledovanii “Epidemiologiia serdechno-sosudistykh zabolevanii v razlichnykh regionakh Rossii”. Ros. kardiol. zhurn. 2012; 5: 6–11. [in Russian]
2. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization, 2009; p. 1–62.
3. Kearney PM et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217–23.
4. Freis E. Hypertension: Pathophysiology, Diagnosis and Management. 2nd ed. New York: Raven Press, 1995.
5. Pimenta E, Calhoun DA. Resistant hypertension: incidence, prevalence, and prognosis. Circulation 2012; 125: 1594–6.
6. Daugherty SL et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation 2012; 125 (13): 1635–42. DOI: 10.1161/CIRCULATIONAHA.111.068064
7. Calhoun DA, Jones D, Textor S et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 2008; 51: 1403–19.
8. Calhoun DA, Booth JN 3rd, Oparil S et al. Refractory hypertension: determination of prevalence, risk factors, and comorbidities in a large, population-based cohort. Hypertension 2014; 63: 451–8.
9. Ohman EM, Bhatt DL, Steg PG et al. The REduction of Atherothrombosis for Continued Health (REACH) Registry: an international, prospective, observational investigation in subjects at risk for atherothrombotic events-study design. Am Heart J 2006; 151 (4): 786.e1–10.
10. Achelrod D, Wenzel U, Frey S. Systematic review and meta-analysis of the prevalence of resistant hypertension in treated hypertensive populations. Am J Hypertens 2015; 28: 355–61.
11. Esler M, Jennings G, Korner B et al. Measurement of total and organ-specific nor-epinephrine kinetics in humans. Am J Physiol 1984; 247: 21–8.
12. Kottke FJ, Kubicek WG, Visscher MB. The production of arterial hypertension by chronic renal artery – nerve stimulation. Am J Phisiol 1945; 145: 38–47.
13. Grimson KS, Orgain ES, Anderson B et al. Results of treatment of patients with hypertension by total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy. Ann Surg 1949; 129: 850–71.
14. Smithwick R, Thompson J. Splanchnicectomy for essential hypertension: results in 1,266 cases. J Am Med Assoc 1953; 152: 1501–4.
15. DiBona GF. The sympathetic nervous system and hypertension: recent developments. Hypertension 2004; 43: 147–50.
16. Ланг Г.Ф. Гипертоническая болезнь. М.: Медгиз, 1950; с. 496. / Lang G.F. Gipertonicheskaia bolezn'. M.: Medgiz, 1950; s. 496. [in Russian]
17. Julius S, Krause L, Schork NJ et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertension 1989; 14: 177–83.
18. Müller J, Barajas L. Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J Ultrastruct Res 1972; 41 (5): 533–49.
19. Barajas L, Müller J. The innervation of the juxtaglomerular apparatus and surrounding tubules: a quantitative analysis by serial section electron microscopy. J Ultrastruct Res 1973; 43 (1): 107–32.
20. Esler M, Jennings G, Korner P et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 1988; 11: 3–20.
21. Lambert E, Straznicky N, Schlaich M et al. Differing patterns of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension 2007; 50: 862–8.
22. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999; 34: 724–8.
23. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 2012; 33: 1058–66.
24. DiBona G. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol 2000; 279: R1517–R1524.
25. DiBona G, Kopp U. Neural control of renal function. Physiol Rev 1997; 77: 75–197.
26. Osborn JW, Foss JD. Renal nerves and long-term control of arterial pressure. Compr Physiol 2017; 7: 263–320. DOI: 10.1002/cphy.c150047
27. Campese VM, Ku E, Park J. Sympathetic renal innervations and resistant hypertension. Int J Hypertens 2011; 2011: 814354.
28. Witkowski A, Prejbisz A, Florczak E et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 2011; 58: 559–65.
29. Zaldivia MT, Rivera J, Hering D et al. Renal denervation reduces monocyte activation and monocyte-platelet aggregate formation: an anti-inflammatory effect relevant for cardiovascular risk. Hypertension 2017; 69: 323–31. DOI: 10.1161/HYPERTENSIONAHA.116.08373
30. Bhatt D, Bakris G. The promise of renal denervation. Cleveland Clin J Med 2012; 79: 498–500.
31. Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol 2010; 105: 570–6.
32. Egan B. Renal sympathetic denervation: a novel intervention for resistant hypertension, insulin resistance, and sleep apnea. Hypertension 2011; 58: 542–3.
33. Esler MD, Krum H, Sobotka PA et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 Trial): a randomized controlled trial. Lancet 2010; 376: 1903–9.
34. Rehman J, Landman J, Lee D et al. Needle-based ablation of renal parenchyma using microwave, cryoablation, impedance- and temperature-based monopolar and bipolar radiofrequency, and liquid and gel chemoablation: laboratory studies and review of the literature. J Endourol 2004; 18 (1): 83–104.
35. Koopmann M, Shea J, Kholmovski E et al. Renal sympathetic denervation using MR-guided high-intensity focused ultrasound in a porcine model. J Ther Ultrasound 2016; 4: 3. Published online 2016 Feb 3. DOI: 10.1186/s40349-016-0048-9
36. Rossi NF, Pajewski R, Chen H et al. Hemodynamic and neural responses to renal denervation of the nerve to the clipped kidney by cryoablation in two-kidney, one-clip hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2016; 310: R197–R208. DOI: 10.1152/ajpregu.00331.2015
37. Harris W. Alcohol injection of the Gasserian ganglion for trigeminal neuralgia. Lancet 1912; 179: 218–21.
38. Iaccarino V, Russo D, Niola R et al. Total or partial percutaneous renal ablation in the treatment of renovascular hypertension: radiological and clinical aspects. Br J Radiol 1989; 62: 593–8.
39. Jankovic J, Orman J. Botulinum A toxin for cranial-cervical dystonia: a double-blind, placebo-controlled study. Neurology 1987; 37: 616–23.
40. Manning PT, Powers CW, Schmidt RE et al. Guanethidine induced destruction of peripheral sympathetic neurons occurs by an immune-mediated mechanism. J Neurosci 1983; 3: 714–24.
41. Stefanadis C, Synetos A, Toutouzas K et al. New double balloon delivery catheter for chemical denervation of the renal artery with vincristine. Int J Cardiol 2013; 168: 4346–8.
42. Stefanadis C, Toutouzas K, Vlachopoulos C et al. Chemical denervation of the renal artery with vincristine for the treatment of resistant arterial hypertension: first-in-man application. Hellenic J Cardiol 2013; 54: 318–21.
43. Fischell TA, Ebner A, Gallo S et al. Transcatheter Alcohol-Mediated Perivascular Renal Denervation With the Peregrine System: First-in-Human.
44. Norvell JE. The aorticorenal ganglion and its role in renal innervation. J Comp Neurol 1968; 133: 101–12.
45. Lusch A, Leary R, Heidari E et al. Intrarenal and extrarenal autonomic nervous system redefined. J Urol 2014; 191: 1060–5.
46. Atherton DS, Deep NL, Mendelshon FO. Micro-anatomy of the renal sympathetic nervous system: A human postmortem histologic study. Clin Anat 2011; 25: 628–33.
47. Sakakura K, Ladich E, Cheng Q et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 2014; 64: 635–43.
48. Mompeo B, Maranillo E, Garcia-Touchard et al. The Gross Anatomy of the Renal Sympathetic Nerves Revisited. Clin Anat 2016; 29: 660–4.
49. Okada T, Pellerin O, Savard S et al. Eligibility for renal denervation: Anatomical classification and results in essential resistant hypertension. Cardiovasc Intervent Radiol 2015; 38: 79–87.
50. Ozkan U, Oguzkurt L, Tercan F et al. Renal artery origins and variations: angiographic evaluation of 855 consecutive patients. Diag Interv Radiol 2006; 12: 183–6.
51. Esler M. The sympathetic system and hypertension. Am J Hypertens 2000; 13: 99–105S.
52. Steigerwald K, Titova A, Malle C et al. Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model. J Hypertens 2012; 30: 2230–9.
53. Krum H, Schlaich M, Whitbourn R et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373 (9671): 1275–81.
54. Esler MD, Krum H, Sobotka PA et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 2010; 376: 1903–9.
55. Mahfoud F, Cremers B, Janker J et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 2012; 60: 419–24. DOI: 10.1161/HYPERTENSIONAHA.112.193870
56. Ewen S, Cremers B, Meyer MR et al. Blood pressure changes after catheter-based renal denervation are related to reductions in total peripheral resistance. J Hypertens 2015; 33: 2519–25. DOI: 10.1097/HJH. 0000000000000752
57. Brinkmann J, Heusser K, Schmidt BM et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult to-control hypertensive patients: prospective case series. Hypertension 2012; 60 (6).
58. Pedrosa RP, Drager LF, Gonzaga CC et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 2011; 58: 811–7.
59. Grassi G, Seravalle G, Brambilla G et al. Blood pressure responses to renal denervation precede and are independent of the sympathetic and baroreflex effects. Hypertension 2015; 65: 1209–16. DOI: 10.1161/HYPERTENSIONAHA.114.04823
60. Fink GD, Phelps JT. Can we predict the blood pressure response to renal denervation? Auton Neurosci 2017; 204: 112–8. DOI: 10.1016/j.autneu.2016.07.011
61. Esler M. Illusions of truths in the Symplicity HTN-3 trial: generic design strengths but neuroscience failings. J Am Soc Hypertens 2014; 8: 593–8. DOI: 0.1016 /j.jash.2014. 06.001
62. Kandzari DE, Bhatt DL, Brar S et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 2015; 36: 219–27.
63. Nakagawa H, Yamanashi WS, Pitha JV et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 1995; 91: 2264–73.
64. Ammar S, Ladich E, Steigerwald K et al. Pathophisiology of renal denervation procedures: from renal nerve anatomy to procedural parameters. Eurointervention 2013; 9: R89–R95.
65. Foss JD, Wainford RD, Engeland WC et al. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Physiol Regul Integr Comp Physiol 2015; 308: R112–R122.
66. Kandzari DE, Kario K, Mahfoud F et al. The SPYRAL HTN Global Clinical Trial Program: rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am Heart J 2016; 171: 82–91. DOI: 10.1016/j.ahj.2015.08.021
67. Mahfoud F, Bakris G, Bhatt DL et al. Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. Eur Heart J 2017; 38 (2): 93–100. DOI: 10.1093/eurheartj/ehw325
68. Townsend RR, Mahfoud F, Kandzari DE et al; SPYRAL HTN-OFF MED Trial Investigators. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 2017; 390: 2160–70. DOI: 10.1016/S0140-6736(17)32281-X
69. Pekarskiy SE, Baev AE, Mordovin VF et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. J Hypertens 2017; 35: 369–75.
70. Fengler K, Ewen S, Hollriegel R et al. Blood pressure response to main artery and combined main renal artery plus branch renal denervation in patients with resistant hypertension. J Am Heart Assoc 2017; 6: e006196. DOI: 10.1161/JAHA. 117.006196
71. Azizi M, Sapoval M, Gosse P et al; Renal Denervation for Hypertension (DENERHTN) Investigators. Optimum and stepped care standardized antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomized controlled trial. Lancet 2015; 385: 1957–65. DOI: 10.1016/S0140-6736(14)61942-5
72. Fink GD, Phelps JT. Can we predict the blood pressure response to renal denervation? Auton Neurosci 2017; 204: 112–8. DOI: 10.1016/j.autneu.2016.07.011
73. Dörr O, Liebetrau C, Möllmann H et al. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation. Hypertension 2014; 63: 984–90. DOI: 10.1161/ HYPERTENSIONAHA.113.02266
74. De Jong MR, Adiyaman A, Gal P et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension 2016; 68: 707–14. DOI: 10.1161/HYPERTENSIONAHA.116.07492
________________________________________________
1. Shal'nova S.A., Konradi A.O., Karpov Iu.A. i dr. Analiz smertnosti ot serdechno-sosudistykh zabolevanii v 12 regionakh Rossiiskoi Federatsii, uchastvuiushchikh v issledovanii “Epidemiologiia serdechno-sosudistykh zabolevanii v razlichnykh regionakh Rossii”. Ros. kardiol. zhurn. 2012; 5: 6–11. [in Russian]
2. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization, 2009; p. 1–62.
3. Kearney PM et al. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365: 217–23.
4. Freis E. Hypertension: Pathophysiology, Diagnosis and Management. 2nd ed. New York: Raven Press, 1995.
5. Pimenta E, Calhoun DA. Resistant hypertension: incidence, prevalence, and prognosis. Circulation 2012; 125: 1594–6.
6. Daugherty SL et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation 2012; 125 (13): 1635–42. DOI: 10.1161/CIRCULATIONAHA.111.068064
7. Calhoun DA, Jones D, Textor S et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 2008; 51: 1403–19.
8. Calhoun DA, Booth JN 3rd, Oparil S et al. Refractory hypertension: determination of prevalence, risk factors, and comorbidities in a large, population-based cohort. Hypertension 2014; 63: 451–8.
9. Ohman EM, Bhatt DL, Steg PG et al. The REduction of Atherothrombosis for Continued Health (REACH) Registry: an international, prospective, observational investigation in subjects at risk for atherothrombotic events-study design. Am Heart J 2006; 151 (4): 786.e1–10.
10. Achelrod D, Wenzel U, Frey S. Systematic review and meta-analysis of the prevalence of resistant hypertension in treated hypertensive populations. Am J Hypertens 2015; 28: 355–61.
11. Esler M, Jennings G, Korner B et al. Measurement of total and organ-specific nor-epinephrine kinetics in humans. Am J Physiol 1984; 247: 21–8.
12. Kottke FJ, Kubicek WG, Visscher MB. The production of arterial hypertension by chronic renal artery – nerve stimulation. Am J Phisiol 1945; 145: 38–47.
13. Grimson KS, Orgain ES, Anderson B et al. Results of treatment of patients with hypertension by total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy. Ann Surg 1949; 129: 850–71.
14. Smithwick R, Thompson J. Splanchnicectomy for essential hypertension: results in 1,266 cases. J Am Med Assoc 1953; 152: 1501–4.
15. DiBona GF. The sympathetic nervous system and hypertension: recent developments. Hypertension 2004; 43: 147–50.
16. Lang G.F. Gipertonicheskaia bolezn'. M.: Medgiz, 1950; s. 496. [in Russian]
17. Julius S, Krause L, Schork NJ et al. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertension 1989; 14: 177–83.
18. Müller J, Barajas L. Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J Ultrastruct Res 1972; 41 (5): 533–49.
19. Barajas L, Müller J. The innervation of the juxtaglomerular apparatus and surrounding tubules: a quantitative analysis by serial section electron microscopy. J Ultrastruct Res 1973; 43 (1): 107–32.
20. Esler M, Jennings G, Korner P et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 1988; 11: 3–20.
21. Lambert E, Straznicky N, Schlaich M et al. Differing patterns of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension 2007; 50: 862–8.
22. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999; 34: 724–8.
23. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J 2012; 33: 1058–66.
24. DiBona G. Neural control of the kidney: functionally specific renal sympathetic nerve fibers. Am J Physiol 2000; 279: R1517–R1524.
25. DiBona G, Kopp U. Neural control of renal function. Physiol Rev 1997; 77: 75–197.
26. Osborn JW, Foss JD. Renal nerves and long-term control of arterial pressure. Compr Physiol 2017; 7: 263–320. DOI: 10.1002/cphy.c150047
27. Campese VM, Ku E, Park J. Sympathetic renal innervations and resistant hypertension. Int J Hypertens 2011; 2011: 814354.
28. Witkowski A, Prejbisz A, Florczak E et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 2011; 58: 559–65.
29. Zaldivia MT, Rivera J, Hering D et al. Renal denervation reduces monocyte activation and monocyte-platelet aggregate formation: an anti-inflammatory effect relevant for cardiovascular risk. Hypertension 2017; 69: 323–31. DOI: 10.1161/HYPERTENSIONAHA.116.08373
30. Bhatt D, Bakris G. The promise of renal denervation. Cleveland Clin J Med 2012; 79: 498–500.
31. Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol 2010; 105: 570–6.
32. Egan B. Renal sympathetic denervation: a novel intervention for resistant hypertension, insulin resistance, and sleep apnea. Hypertension 2011; 58: 542–3.
33. Esler MD, Krum H, Sobotka PA et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 Trial): a randomized controlled trial. Lancet 2010; 376: 1903–9.
34. Rehman J, Landman J, Lee D et al. Needle-based ablation of renal parenchyma using microwave, cryoablation, impedance- and temperature-based monopolar and bipolar radiofrequency, and liquid and gel chemoablation: laboratory studies and review of the literature. J Endourol 2004; 18 (1): 83–104.
35. Koopmann M, Shea J, Kholmovski E et al. Renal sympathetic denervation using MR-guided high-intensity focused ultrasound in a porcine model. J Ther Ultrasound 2016; 4: 3. Published online 2016 Feb 3. DOI: 10.1186/s40349-016-0048-9
36. Rossi NF, Pajewski R, Chen H et al. Hemodynamic and neural responses to renal denervation of the nerve to the clipped kidney by cryoablation in two-kidney, one-clip hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2016; 310: R197–R208. DOI: 10.1152/ajpregu.00331.2015
37. Harris W. Alcohol injection of the Gasserian ganglion for trigeminal neuralgia. Lancet 1912; 179: 218–21.
38. Iaccarino V, Russo D, Niola R et al. Total or partial percutaneous renal ablation in the treatment of renovascular hypertension: radiological and clinical aspects. Br J Radiol 1989; 62: 593–8.
39. Jankovic J, Orman J. Botulinum A toxin for cranial-cervical dystonia: a double-blind, placebo-controlled study. Neurology 1987; 37: 616–23.
40. Manning PT, Powers CW, Schmidt RE et al. Guanethidine induced destruction of peripheral sympathetic neurons occurs by an immune-mediated mechanism. J Neurosci 1983; 3: 714–24.
41. Stefanadis C, Synetos A, Toutouzas K et al. New double balloon delivery catheter for chemical denervation of the renal artery with vincristine. Int J Cardiol 2013; 168: 4346–8.
42. Stefanadis C, Toutouzas K, Vlachopoulos C et al. Chemical denervation of the renal artery with vincristine for the treatment of resistant arterial hypertension: first-in-man application. Hellenic J Cardiol 2013; 54: 318–21.
43. Fischell TA, Ebner A, Gallo S et al. Transcatheter Alcohol-Mediated Perivascular Renal Denervation With the Peregrine System: First-in-Human.
44. Norvell JE. The aorticorenal ganglion and its role in renal innervation. J Comp Neurol 1968; 133: 101–12.
45. Lusch A, Leary R, Heidari E et al. Intrarenal and extrarenal autonomic nervous system redefined. J Urol 2014; 191: 1060–5.
46. Atherton DS, Deep NL, Mendelshon FO. Micro-anatomy of the renal sympathetic nervous system: A human postmortem histologic study. Clin Anat 2011; 25: 628–33.
47. Sakakura K, Ladich E, Cheng Q et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 2014; 64: 635–43.
48. Mompeo B, Maranillo E, Garcia-Touchard et al. The Gross Anatomy of the Renal Sympathetic Nerves Revisited. Clin Anat 2016; 29: 660–4.
49. Okada T, Pellerin O, Savard S et al. Eligibility for renal denervation: Anatomical classification and results in essential resistant hypertension. Cardiovasc Intervent Radiol 2015; 38: 79–87.
50. Ozkan U, Oguzkurt L, Tercan F et al. Renal artery origins and variations: angiographic evaluation of 855 consecutive patients. Diag Interv Radiol 2006; 12: 183–6.
51. Esler M. The sympathetic system and hypertension. Am J Hypertens 2000; 13: 99–105S.
52. Steigerwald K, Titova A, Malle C et al. Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model. J Hypertens 2012; 30: 2230–9.
53. Krum H, Schlaich M, Whitbourn R et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009; 373 (9671): 1275–81.
54. Esler MD, Krum H, Sobotka PA et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 2010; 376: 1903–9.
55. Mahfoud F, Cremers B, Janker J et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension 2012; 60: 419–24. DOI: 10.1161/HYPERTENSIONAHA.112.193870
56. Ewen S, Cremers B, Meyer MR et al. Blood pressure changes after catheter-based renal denervation are related to reductions in total peripheral resistance. J Hypertens 2015; 33: 2519–25. DOI: 10.1097/HJH. 0000000000000752
57. Brinkmann J, Heusser K, Schmidt BM et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult to-control hypertensive patients: prospective case series. Hypertension 2012; 60 (6).
58. Pedrosa RP, Drager LF, Gonzaga CC et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension 2011; 58: 811–7.
59. Grassi G, Seravalle G, Brambilla G et al. Blood pressure responses to renal denervation precede and are independent of the sympathetic and baroreflex effects. Hypertension 2015; 65: 1209–16. DOI: 10.1161/HYPERTENSIONAHA.114.04823
60. Fink GD, Phelps JT. Can we predict the blood pressure response to renal denervation? Auton Neurosci 2017; 204: 112–8. DOI: 10.1016/j.autneu.2016.07.011
61. Esler M. Illusions of truths in the Symplicity HTN-3 trial: generic design strengths but neuroscience failings. J Am Soc Hypertens 2014; 8: 593–8. DOI: 0.1016 /j.jash.2014. 06.001
62. Kandzari DE, Bhatt DL, Brar S et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 2015; 36: 219–27.
63. Nakagawa H, Yamanashi WS, Pitha JV et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 1995; 91: 2264–73.
64. Ammar S, Ladich E, Steigerwald K et al. Pathophisiology of renal denervation procedures: from renal nerve anatomy to procedural parameters. Eurointervention 2013; 9: R89–R95.
65. Foss JD, Wainford RD, Engeland WC et al. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Physiol Regul Integr Comp Physiol 2015; 308: R112–R122.
66. Kandzari DE, Kario K, Mahfoud F et al. The SPYRAL HTN Global Clinical Trial Program: rationale and design for studies of renal denervation in the absence (SPYRAL HTN OFF-MED) and presence (SPYRAL HTN ON-MED) of antihypertensive medications. Am Heart J 2016; 171: 82–91. DOI: 10.1016/j.ahj.2015.08.021
67. Mahfoud F, Bakris G, Bhatt DL et al. Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. Eur Heart J 2017; 38 (2): 93–100. DOI: 10.1093/eurheartj/ehw325
68. Townsend RR, Mahfoud F, Kandzari DE et al; SPYRAL HTN-OFF MED Trial Investigators. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet 2017; 390: 2160–70. DOI: 10.1016/S0140-6736(17)32281-X
69. Pekarskiy SE, Baev AE, Mordovin VF et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. J Hypertens 2017; 35: 369–75.
70. Fengler K, Ewen S, Hollriegel R et al. Blood pressure response to main artery and combined main renal artery plus branch renal denervation in patients with resistant hypertension. J Am Heart Assoc 2017; 6: e006196. DOI: 10.1161/JAHA. 117.006196
71. Azizi M, Sapoval M, Gosse P et al; Renal Denervation for Hypertension (DENERHTN) Investigators. Optimum and stepped care standardized antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomized controlled trial. Lancet 2015; 385: 1957–65. DOI: 10.1016/S0140-6736(14)61942-5
72. Fink GD, Phelps JT. Can we predict the blood pressure response to renal denervation? Auton Neurosci 2017; 204: 112–8. DOI: 10.1016/j.autneu.2016.07.011
73. Dörr O, Liebetrau C, Möllmann H et al. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation. Hypertension 2014; 63: 984–90. DOI: 10.1161/ HYPERTENSIONAHA.113.02266
74. De Jong MR, Adiyaman A, Gal P et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension 2016; 68: 707–14. DOI: 10.1161/HYPERTENSIONAHA.116.07492
1 ФГБОУ ДПО «Институт повышения квалификации» ФМБА России. 125310, Россия, Москва, Волоколамское ш., д. 91;
2 ГБУЗ «Городская клиническая больница им. В.В.Вересаева» Департамента здравоохранения г. Москвы. 127644, Россия, Москва, ул. Лобненская, д. 10
*dr.bolotov@mail.ru
1 Institute of Professional Development of FMBA of Russia. 125371, Russian Federation, Moscow, Volokolamskoe sh., d. 91;
2 V.V.Veresaev Сity Clinical Hospital of the Department of Health of Moscow. 127644, Russian Federation, Moscow, ul. Lobnenskaia, d. 10
*dr.bolotov@mail.ru