Фармакогенетика варфарина: современное состояние вопроса
Фармакогенетика варфарина: современное состояние вопроса
Мубаракшина О.А., Сомова М.Н., Батищева Г.А. Фармакогенетика варфарина: современное состояние вопроса. Consilium Medicum. 2019; 21 (10): 74–78. DOI: 10.26442/20751753.2019.10.190412
________________________________________________
Mubarakshina O.A., Somova M.N., Batishcheva G.A. Pharmacogenetics of warfarin: current status of the issue. Consilium Medicum. 2019; 21 (10): 74–78. DOI: 10.26442/20751753.2019.10.190412
Фармакогенетика варфарина: современное состояние вопроса
Мубаракшина О.А., Сомова М.Н., Батищева Г.А. Фармакогенетика варфарина: современное состояние вопроса. Consilium Medicum. 2019; 21 (10): 74–78. DOI: 10.26442/20751753.2019.10.190412
________________________________________________
Mubarakshina O.A., Somova M.N., Batishcheva G.A. Pharmacogenetics of warfarin: current status of the issue. Consilium Medicum. 2019; 21 (10): 74–78. DOI: 10.26442/20751753.2019.10.190412
Цель. Представить научный обзор по современным данным фармакогенетических аспектов антитромботической терапии варфарином. Материалы и методы. Для написания данного обзора был осуществлен поиск отечественных и зарубежных публикаций в российских и международных системах поиска (PubMed, eLibrary и пр.) с 2000 г. Результаты. В последние годы неуклонно растет социальная и экономическая значимость тромботических осложнений у пациентов с сердечно-сосудистыми заболеваниями. Основными препаратами для длительной, в ряде случаев пожизненной, медикаментозной тромбопрофилактики являются оральные антикоагулянты. Несмотря на появление на фармацевтическом рынке новых пероральных антикоагулянтов прямого действия, не теряет своих позиций и антагонист витамина К варфарин. В ряде клинических ситуаций этот препарат не имеет альтернативы. Недостатком варфарина является узкий терапевтический диапазон и, в связи с этим, необходимость тщательного постоянного лабораторного мониторинга состояния свертывающей системы крови. Передозировка варфарина опасна развитием геморрагических осложнений, которые развиваются чаще в начале лечения. В связи с этим приобретает особую значимость персонализированный подход к выбору начальной дозы варфарина. При подборе дозы препарата помимо клинических факторов большое значение имеют и генетические. Определяющим может быть наличие генетических полиморфизмов генов белков, участвующих в фармакокинетике и фармакодинамике варфарина. Существуют алгоритмы подбора дозы варфарина, однако появляющиеся в последнее время новые данные диктуют необходимость их модификации, в том числе с учетом этнических особенностей пациентов. У лиц разной расовой принадлежности имеются особенности по вкладу различных генов и генетических полиморфизмов в проявление антикоагулянтного эффекта варфарина. Показано, что в определении генетических полимофизмов CYP4F2 у афроамериканцев нет необходимости, тогда как для европейцев это обязательное условие. В то же время у афроамериканцев имеет значение определение генетических вариантов CYP2C rs12777823, у европейцев определять их не следует. Заключение. Варфарин остается одним из наиболее часто назначаемых антикоагулянтов в рутинной клинической практике. Его безопасность обеспечивается индивидуальным подбором начальной и поддерживающих доз на основе алгоритмов с учетом клинических и генетических факторов. Появление новых данных о фармакогенетике варфарина позволяет максимально персонифицировать подбор доз препарата, что обеспечивает эффективность и безопасность антикоагулянтной терапии.
Aim. To provide a scientific review of current data on pharmacogenetic aspects of antithrombotic therapy with warfarin. Materials and methods. To write this review we conducted searching for domestic and foreign publications in Russian and international search systems (PubMed, eLibrary, etc.) since 2000. Results. In recent years a social and economic relevance of thrombotic complications in patients with cardiovascular diseases is steadily increasing. The major drugs for long-term, in some cases life-long, thromboprophylaxis are oral anticoagulants. Despite the appearance of novel direct acting oral anticoagulants on the pharmaceutical market, vitamin K antagonist warfarin does not lose its position. In a number of clinical situations this drug has no alternative. Disadvantages of warfarin include its narrow therapeutic index and therefore the need for careful continuous laboratory monitoring of the blood coagulation system. An overdose of warfarin can cause serious bleeding complications which develop more often at the beginning of treatment. For this reason, a personalized approach to selecting the initial warfarin dose is of particular importance. When selecting the drug dose along with clinical factors genetic ones are also of great importance. The presence of genetic polymorphisms in genes that control warfarin pharmacokinetics and pharmacodynamics can be decisive. Warfarin dosing algorithms are available, however, new data that are recently emerging, dictate the need for their modification, including taking into account ethnic characteristics of patients. Different ethnic groups have features in a contribution of various genes and genetic polymorphisms to manifestation of warfarin’s anticoagulant effect. It was shown that identification of CYP4F2 genetic polymorphisms in African- Americans is not necessary, whereas for Europeans it is a prerequisite. At the same time, determining genetic variants of CYP2C rs12777823 is important for African Americans, but it should not be determined for Europeans. Conclusions. Warfarin remains one of the most commonly prescribed anticoagulants in routine clinical practice. Its safety is ensured by individual selection of initial and maintenance doses by use of algorithms based on clinical and genetic factors. The emergence of new data on warfarin pharmacogenetics allows to personalize the drug dosing to the maximum, which ensures the efficacy and safety of anticoagulant therapy.
1. Российские клинические рекомендации по диагностике, лечению и профилактике венозных тромбоэмболических осложнений (ВТЭО). Флебология. 2015; 9: 4–52.
[Rossiiskie klinicheskie rekomendatsii po diagnostike, lecheniiu i profilaktike venoznykh tromboembolicheskikh oslozhnenii (VTEO). Flebologiia. 2015; 9: 4–52 (in Russian).]
2. Государственный реестр лекарственных средств. http://grls.rosminzdrav.ru/grls.aspx
[Gosudarstvennyi reestr lekarstvennykh sredstv. http://grls.rosminzdrav.ru/grls.aspx (in Russian).]
3. Wann LS, Curtis AB, January CT et al; ACCF/AHA Task Force Members. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (Updating the 2006 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force onPractice Guidelines. Circulation 2011; 123: 104–23.
4. The 2018 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients With Atrial Fibrillation. Eur Heart J 2018; Mar 19.
5. Eikelboom JW, Connolly SJ, Brueckmann M et al. Dabigatran versus Warfarin in Patients with Mechanical Heart Valves. N Engl J Med 2013; 369: 1206–14.
6. Pratt NL, Ramsay E, Kalisch Ellett LM et al. Comparative effectiveness and safety of low-strength and high-strength direct oral anticoagulants compared with warfarin: a sequential cohort study. BMJ Open 2019; 9 (5): e026486.
7. de Souza Lima Bitar Y, Neto MG, Filho JAL et al. Comparison of the New Oral Anticoagulants and Warfarin in Patients with Atrial Fibrillation and Valvular Heart Disease: Systematic Review and Meta-Analysis. Drugs RD 2019 May 4. DOI: 10.1007/s40268-019-0274-z.]
8. Крюков А.В., Сычев Д.А., Савельева М.И. и др. Перспективы персонализации применения новых оральных антикоагулянтов у пациентов с фибрилляцией предсердий на основе оценки фармакокинетики. Сonsilium Medicum. 2015; 17 (1): 41–3.
[Kryukov A.V., Sychev D.A., Saveleva M.I. et al. Prospects for personalized utilization of non-vitamin K anticoagulants based on the assessment of pharmacokinetics in patients with atrial fibrillation. Consilium Medicum. 2015; 17 (1): 41–3 (in Russian).]
9. Сычев Д.А. Персонализированная антикоагулянтная терапия на основе результатов фармакогенетического тестирования. СПб: Алкорбио, 2010.
[Sychev D.A. Personalizirovannaia antikoaguliantnaia terapiia na osnove rezul'tatov farmakogeneticheskogo testirovaniia. Saint Petersburg: Alkorbio, 2010 (in Russian).]
10. https://www.pharmgkb.org
11. Богачев В.Ю. Варфарин …Смерть откладывается. РМЖ. 2013; 15: 797–803.
[Bogachev V.Iu. Varfarin …Smert' otkladyvaetsia. RMZh. 2013; 15: 797–803 (in Russian).]
12. Сычев Д.А., Раменская Г.В., Игнатьев И.В., Кукес В.Г. Клиническая фармакогенетика. М.: ГЭОТАР-Медиа, 2007.
[Sychev D.A., Ramenskaia G.V., Ignat'ev I.V., Kukes V.G. Klinicheskaia farmakogenetika. Moscow: GEOTAR-Media, 2007 (in Russian).]
13. Ohara M, Suzuki Y, Shinohara S et al. Differences in Warfarin Pharmacodynamics and Predictors of Response Among Three Racial Populations. Clin Pharmacokinet 2019. DOI: 10.1007/s40262-019-00745-5
14. Johnson JA, Caudle KE, Gong L et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin Pharmacol Ther 2017; 102 (3): 397–404.
15. Dean L. Ed. In: Pratt V, McLeod H, Rubinstein W et al., ed. Warfarin Therapy and VKORC1 and CYP Genotype. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US), 2012.
16. Sistonen J, Fuselli S, Palo JU et al. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenetics and genomics 2009; 19 (2): 170–9.
17. Solus JF, Arietta BJ, Harris JR et al. Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 2004; 5 (7): 895–931.
18. Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements a systematic review and meta-analysis. Eur J Clin Pharmacol 2009; 65 (4): 365–75.
19. Mizzi C, Dalabira E, Kumuthini J et al. A European Spectrum of Phar-macogenomic Biomarkers: Impli-cations for Clinical Pharmacogenomics. PLoS One 2016; 11 (9): e0162866.
20. Johnson JA, Gong L, Whirl-Carrillo M et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 2011; 90 (4): 625–9.
21. Сычев Д.А., Михеева Ю.А., Кропачева Е.С. и др. Влияние полиморфизма гена CYP2C9 на фармакокинетику и фармакодинамику варфарина у больных с постоянной формой фибрилляции предсердий. Клин. медицина. 2007; 1: 57–60.
[Sychev D.A., Mikheeva Iu.A., Kropacheva E.S. et al. Vliianie polimorfizma gena CYP2C9 na farmakokinetiku i farmakodinamiku varfarina u bol'nykh s postoiannoi formoi fibrilliatsii predserdii. Klin. meditsina. 2007; 1: 57–60 (in Russian).]
22. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM et al. Polymorphisms Of drug-metabolizing enzymes CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 2003; 59 (4): 303–12.
23. Loebstein R, Dvoskin I, Halkin H et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 2007; 109 (6): 2477–80.
24. Ross KA, Bigham AW, Edwards M et al. Worldwide allele frequency distribution of four polymorphisms associated with warfarin dose requirements. J Human Genetics 2010; 55 (9): 582–9.
25. Geisen C, Watzka M, Sittinger K et al. VKORC1 haplotypes and their impact on the interindividual and interethnical variability of oral anticoagulation. Thromb Haemost 2005; 94 (4): 773–9.
26. Obayashi K, Nakamura K, Kawana J et al. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther 2006; 80 (2): 169–78.
27. Rost S, Fregin A, Ivaskevicius V et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427 (6974): 537–41.
28. Загорская В.Л., Игнатьев И.В., Кропачева Е.С. и др. Полиморфный маркер G3673A гена VKORC1 – новый генетический фактор, ассоциированный с развитием геморрагических осложнений при применении непрямых антикоагулянтов. Клин. фармакология и фармакоэкономика. 2008; 1: 29–33.
[Zagorskaia V.L., Ignat'ev I.V., Kropacheva E.S. i dr. Polimorfnyi marker G3673A gena VKORC1 – novyi geneticheskii faktor, assotsiirovannyi s razvitiem gemorragicheskikh oslozhnenii pri primenenii nepriamykh antikoaguliantov. Klin. farmakologiia i farmakoekonomika. 2008; 1: 29–33 (in Russian).]
29. McDonald MG, Rieder MJ, Nakano M et al. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol 2009; 75 (6): 1337–46.
30. Caldwell MD, Awad T, Johnson JA et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008; 111 (8): 4106–12.
31. Danese E, Montagnana M, Johnson JA et al. Impact of the CYP4F2 p.V433M polymorphism on coumarin dose requirement: systematic review and meta-analysis. Clin Pharmacol Ther 2012; 92 (6): 746–56.
32. Liang R, Wang C, Zhao H et al. Influence of CYP4F2 genotype on warfarin dose requirement a systematic review and meta-analysis. Thromb Res 2012; 130 (1): 38–44.
33. Perera MA, Cavallari LH, Limdi NA et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet 2013; 382 (9894): 790–6.
34. Verhoef TI, Redekop WK, Daly AK et al. Pharmacogenetic-guided dosing of coumarin anticoag-ulants: algorithms for warfarin, acenocoumarol and phenprocoumon. Br J Clin Pharmacol 2014; 77 (4): 626–41.
35. Nagai R, Ohara M, Cavallari LH et al. Factors influencing pharmacokinetics of warfarin in African-Americans: implications for pharmacogenetic dosing algorithms. Pharmacogenomics 2015; 16 (3): 217–25.
36. Ramirez AH, Shi Y, Schildcrout JS et al. Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. Pharmacogenomics 2012; 13 (4): 407–18.
37. Shaul C, Blotnick S, Deutsch L et al. The impact of R353Q genetic polymorphism in coagulation factor VII on the initial anticoagulant effect exerted by warfarin. Eur J Clin Pharmacol 2019; 75 (3): 343–50. DOI: 10.1007/s00228-018-2594-2
38. Stergiopoulos K, Brown DL. Genotype-guided vs clinical dosing of warfarin and its analogues: meta-analysis of randomized clinical trials. JAMA Intern Med 2014; 174 (8): 1330–8.
39. Gage BF, Bass AR, Lin H et al. Effect of Genotype-Guided Warfarin Dosing on Clinical Events and Anticoagulation Control Among Patients Undergoing Hip or Knee Arthroplasty: The GIFT Randomized Clinical Trial. JAMA 2017; 318 (12): 1115–24.
________________________________________________
1. Rossiiskie klinicheskie rekomendatsii po diagnostike, lecheniiu i profilaktike venoznykh tromboembolicheskikh oslozhnenii (VTEO). Flebologiia. 2015; 9: 4–52 (in Russian).
2. Gosudarstvennyi reestr lekarstvennykh sredstv. http://grls.rosminzdrav.ru/grls.aspx (in Russian).
3. Wann LS, Curtis AB, January CT et al; ACCF/AHA Task Force Members. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (Updating the 2006 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force onPractice Guidelines. Circulation 2011; 123: 104–23.
4. The 2018 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients With Atrial Fibrillation. Eur Heart J 2018; Mar 19.
5. Eikelboom JW, Connolly SJ, Brueckmann M et al. Dabigatran versus Warfarin in Patients with Mechanical Heart Valves. N Engl J Med 2013; 369: 1206–14.
6. Pratt NL, Ramsay E, Kalisch Ellett LM et al. Comparative effectiveness and safety of low-strength and high-strength direct oral anticoagulants compared with warfarin: a sequential cohort study. BMJ Open 2019; 9 (5): e026486.
7. de Souza Lima Bitar Y, Neto MG, Filho JAL et al. Comparison of the New Oral Anticoagulants and Warfarin in Patients with Atrial Fibrillation and Valvular Heart Disease: Systematic Review and Meta-Analysis. Drugs RD 2019 May 4. DOI: 10.1007/s40268-019-0274-z.]
8. Kryukov A.V., Sychev D.A., Saveleva M.I. et al. Prospects for personalized utilization of non-vitamin K anticoagulants based on the assessment of pharmacokinetics in patients with atrial fibrillation. Consilium Medicum. 2015; 17 (1): 41–3 (in Russian).
9. Sychev D.A. Personalizirovannaia antikoaguliantnaia terapiia na osnove rezul'tatov farmakogeneticheskogo testirovaniia. Saint Petersburg: Alkorbio, 2010 (in Russian).
10. https://www.pharmgkb.org
11. Bogachev V.Iu. Varfarin …Smert' otkladyvaetsia. RMZh. 2013; 15: 797–803 (in Russian).
12. Sychev D.A., Ramenskaia G.V., Ignat'ev I.V., Kukes V.G. Klinicheskaia farmakogenetika. Moscow: GEOTAR-Media, 2007 (in Russian).
13. Ohara M, Suzuki Y, Shinohara S et al. Differences in Warfarin Pharmacodynamics and Predictors of Response Among Three Racial Populations. Clin Pharmacokinet 2019. DOI: 10.1007/s40262-019-00745-5
14. Johnson JA, Caudle KE, Gong L et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin Pharmacol Ther 2017; 102 (3): 397–404.
15. Dean L. Ed. In: Pratt V, McLeod H, Rubinstein W et al., ed. Warfarin Therapy and VKORC1 and CYP Genotype. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US), 2012.
16. Sistonen J, Fuselli S, Palo JU et al. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenetics and genomics 2009; 19 (2): 170–9.
17. Solus JF, Arietta BJ, Harris JR et al. Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 2004; 5 (7): 895–931.
18. Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements a systematic review and meta-analysis. Eur J Clin Pharmacol 2009; 65 (4): 365–75.
19. Mizzi C, Dalabira E, Kumuthini J et al. A European Spectrum of Phar-macogenomic Biomarkers: Impli-cations for Clinical Pharmacogenomics. PLoS One 2016; 11 (9): e0162866.
20. Johnson JA, Gong L, Whirl-Carrillo M et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 2011; 90 (4): 625–9.
21. Sychev D.A., Mikheeva Iu.A., Kropacheva E.S. et al. Vliianie polimorfizma gena CYP2C9 na farmakokinetiku i farmakodinamiku varfarina u bol'nykh s postoiannoi formoi fibrilliatsii predserdii. Klin. meditsina. 2007; 1: 57–60 (in Russian).
22. Gaikovitch EA, Cascorbi I, Mrozikiewicz PM et al. Polymorphisms Of drug-metabolizing enzymes CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 2003; 59 (4): 303–12.
23. Loebstein R, Dvoskin I, Halkin H et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 2007; 109 (6): 2477–80.
24. Ross KA, Bigham AW, Edwards M et al. Worldwide allele frequency distribution of four polymorphisms associated with warfarin dose requirements. J Human Genetics 2010; 55 (9): 582–9.
25. Geisen C, Watzka M, Sittinger K et al. VKORC1 haplotypes and their impact on the interindividual and interethnical variability of oral anticoagulation. Thromb Haemost 2005; 94 (4): 773–9.
26. Obayashi K, Nakamura K, Kawana J et al. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther 2006; 80 (2): 169–78.
27. Rost S, Fregin A, Ivaskevicius V et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427 (6974): 537–41.
28. Zagorskaia V.L., Ignat'ev I.V., Kropacheva E.S. i dr. Polimorfnyi marker G3673A gena VKORC1 – novyi geneticheskii faktor, assotsiirovannyi s razvitiem gemorragicheskikh oslozhnenii pri primenenii nepriamykh antikoaguliantov. Klin. farmakologiia i farmakoekonomika. 2008; 1: 29–33 (in Russian).
29. McDonald MG, Rieder MJ, Nakano M et al. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol 2009; 75 (6): 1337–46.
30. Caldwell MD, Awad T, Johnson JA et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008; 111 (8): 4106–12.
31. Danese E, Montagnana M, Johnson JA et al. Impact of the CYP4F2 p.V433M polymorphism on coumarin dose requirement: systematic review and meta-analysis. Clin Pharmacol Ther 2012; 92 (6): 746–56.
32. Liang R, Wang C, Zhao H et al. Influence of CYP4F2 genotype on warfarin dose requirement a systematic review and meta-analysis. Thromb Res 2012; 130 (1): 38–44.
33. Perera MA, Cavallari LH, Limdi NA et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet 2013; 382 (9894): 790–6.
34. Verhoef TI, Redekop WK, Daly AK et al. Pharmacogenetic-guided dosing of coumarin anticoag-ulants: algorithms for warfarin, acenocoumarol and phenprocoumon. Br J Clin Pharmacol 2014; 77 (4): 626–41.
35. Nagai R, Ohara M, Cavallari LH et al. Factors influencing pharmacokinetics of warfarin in African-Americans: implications for pharmacogenetic dosing algorithms. Pharmacogenomics 2015; 16 (3): 217–25.
36. Ramirez AH, Shi Y, Schildcrout JS et al. Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record. Pharmacogenomics 2012; 13 (4): 407–18.
37. Shaul C, Blotnick S, Deutsch L et al. The impact of R353Q genetic polymorphism in coagulation factor VII on the initial anticoagulant effect exerted by warfarin. Eur J Clin Pharmacol 2019; 75 (3): 343–50. DOI: 10.1007/s00228-018-2594-2
38. Stergiopoulos K, Brown DL. Genotype-guided vs clinical dosing of warfarin and its analogues: meta-analysis of randomized clinical trials. JAMA Intern Med 2014; 174 (8): 1330–8.
39. Gage BF, Bass AR, Lin H et al. Effect of Genotype-Guided Warfarin Dosing on Clinical Events and Anticoagulation Control Among Patients Undergoing Hip or Knee Arthroplasty: The GIFT Randomized Clinical Trial. JAMA 2017; 318 (12): 1115–24.
Авторы
О.А. Мубаракшина*, М.Н. Сомова, Г.А. Батищева
ФГБОУ ВО «Воронежский государственный медицинский университет им. Н.Н. Бурденко», Воронеж, Россия *mubarakshina@mail.ru
________________________________________________
Olga A. Mubarakshina*, Marina N. Somova, Galina A. Batishcheva