Ткачев А.М., Епифанов А.В., Акарачкова Е.С. и др. Патофизиологические аспекты резорбции грыж межпозвонкового диска. Consilium Medicum. 2019; 21 (2): 59–63. DOI: 10.26442/20751753.2019.2.180147
________________________________________________
Tkachev A.M., Epifanov A.V., Akarachkova E.S. et al. Pathophysiologic aspects of resorption of intervertebral disk hernia. Consilium Medicum. 2019; 21 (2): 59–63. DOI: 10.26442/20751753.2019.2.180147
Ткачев А.М., Епифанов А.В., Акарачкова Е.С. и др. Патофизиологические аспекты резорбции грыж межпозвонкового диска. Consilium Medicum. 2019; 21 (2): 59–63. DOI: 10.26442/20751753.2019.2.180147
________________________________________________
Tkachev A.M., Epifanov A.V., Akarachkova E.S. et al. Pathophysiologic aspects of resorption of intervertebral disk hernia. Consilium Medicum. 2019; 21 (2): 59–63. DOI: 10.26442/20751753.2019.2.180147
Межпозвонковая грыжа – это патологическое анатомическое нарушение, которое определяется локализованным смещением диска за пределы межпозвоночного промежутка. Хотя в большинстве случаев операция не считается необходимым условием для выздоровления, оперативное вмешательство играет важную роль в лечении этого заболевания. У большинства пациентов улучшается состояние после консервативного лечения, а некоторые полностью избавляются от симптомов болезни. Тем не менее механизмы, лежащие в основе такого спонтанного улучшения состояния, все еще мало изучены, но они открывают терапевтические потенциалы, которые могут ускорить процесс восстановления и предотвратить долгосрочные осложнения. Подробно рассмотрена природа воспалительной реакции при образовании межпозвонковой грыжи, описано химическое обоснование поясничной радикулопатии, а также взаимосвязь между резорбцией межпозвонковой грыжи и симптоматическим улучшением. Показана необходимость проведения дальнейших исследований роли воспалительной реакции в формировании и резорбции межпозвонковых грыж, так как понимание, почему большинство пациентов восстанавливаются без операции, поможет ускорить процесс восстановления и избавит многих пациентов от хирургического вмешательства, что также будет способствовать улучшению качества жизни данной категории пациентов.
Spinal disc herniation is a pathological anatomical disorder that is associated with localized disk displacement beyond the intervertebral space. Although in most cases surgical intervention is not necessary for recovery, it still has an important role in this disorder treatment. In most patients a course of conservative treatment results in symptoms improvement and in some patients it allows to eliminate symptoms completely. Nevertheless the underlying mechanisms of this spontaneous improvement are still underexplored, though they may provide therapeutic potential that may speed up the recovery process and prevent development of long-term complications. The article considers in detail the origins of inflammatory response in spinal disc herniation development as well as interrelation between spinal disc herniation resorption and symptomatic improvement. Necessity for conduction of future research on the role of inflammatory response in spinal disc herniation formation and resorption is shown. It is important because understanding the reason why most of the patients recover without surgical intervention can speed up the recovery processes and allow many patients to avoid surgical treatment that will also result in improvement of quality of life in this group.
1. Кадырова Л.Р., Акарачкова Е.С., Керимова К.С. и др. Мультидисциплинарный подход к пациенту с хронической болью. РМЖ. 2018; 7: 28–32.
[Kadyrova L.R., Akarachkova E.S., Kerimova K.S. et al. Mul'tidistsiplinarnyi podkhod k patsientu s khronicheskoi bol'iu. RMZh. 2018; 7: 28–32 (in Russian).]
2. Rajasekaran S, Bajaj N, Tubaki V et al. ISSLS Prize winner: The anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine 2013; 38 (17): 1491–500.
3. Brinjikji W, Luetmer PH, Comstock B et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 2015; 36 (4): 811–6.
4. Голубенко Е.О., Силина Е.В., Орлова А.С. Персонифицированный подход в лечении болевых синдромов. Современная наука: актуальные проблемы теории и практики. 2017; 7–8: 107–12.
[Golubenko E.O., Silina E.V., Orlova A.S. Personifitsirovannyi podkhod v lechenii bolevykh sindromov. Sovremennaia nauka: aktual'nye problemy teorii i praktiki. 2017; 7–8: 107–12 (in Russian).]
5. Ma CJ, Liu X, Che L et al. Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery. Curr Stem Cell Res Ther 2015; 10 (4): 285–95.
6. Zhang Y, Liu L, Wang S et al. Production of CCL20 on nucleus pulposus cells recruits IL-17-producing cells to degenerated IVD tissues in rat models. J Mol Histol 2016; 47 (1): 81–9.
7. Fadda A, Oevermann A, Vandevelde M et al. Clinical and pathological analysis of epidural inflammation in intervertebral disk extrusion in dogs. J Vet Intern Med 2013; 27: 924–34.
8. Autio RA, Karppinen J, Niinimäki J et al. Determinants of spontaneous resorption of intervertebral disc herniations. Spine 2006; 31: 1247–52.
9. Rätsep T, Minajeva A, Asser T. Relationship between neovascularization and degenerative changes in herniated lumbar intervertebral discs. Eur Spine J 2013; 22 (11): 2474–80.
10. Jia CQ, Zhao JG, Zhang SF, Qi F. Stromal cell-derived factor-1 and vascular endothelial growth factor may play an important role in the process of neovascularization of herniated intervertebral discs. J Int Med Res 2009; 37 (1): 136–44.
11. Ткачев А.М., Акарачкова Е.С., Смирнова А.В. и др. Спонтанный регресс грыж межпозвонковых дисков поясничного отдела на фоне терапии габапентином. Фарматека. 2017; 19 (352): 20–5.
[Tkachev A.M., Akarachkova E.S., Smirnova A.V. et al. Spontannyi regress gryzh mezhpozvonkovykh diskov poiasnichnogo otdela na fone terapii gabapentinom. Farmateka. 2017; 19 (352): 20–5 (in Russian).]
12. Ikeda T, Nakamura T, Kikuchi T et al. Pathomechanism of spontaneous regression of the herniated lumbar disc: histologic and immunohistochemical study. J Spinal Disord 1996; 9 (2): 136–40.
13. Virri J, Grönblad M, Seitsalo S et al. Comparison of the prevalence of inflammatory cells in subtypes of disc herniations and associations with straight leg raising. Spine 2001; 26: 2311–5.
14. Haro H, Komori H, Kato T et al. Experimental studies on the effects of recombinant human matrix metalloproteinases on herniated disc tissues - how to facilitate the natural resorption process of herniated discs. J Orthop Res 2005; 23: 412–9.
15. Mantovani A, Biswas SK, Galdiero MR et al. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 2013; 229: 176–85.
16. Zhu Z, Huang P, Chong Y et al. Nucleus pulposus cells derived IGF-1 and MCP-1 enhance osteoclastogenesis and vertebrae disruption in lumbar disc herniation. Int J Clin Exp Pathol 2014; 7 (12): 8520–31.
17. Sonnemann KJK, Bement WMW. Wound repair. toward understanding and integration of single-cell and multicellular wound responses. Annu Rev Cell Dev Biol 2011; 27: 237–63.
18. Tsuru M, Nagata K, Ueno T et al. Electron microscopic observation of established chondrocytes derived from human intervertebral disc hernia (KTN-1) and role of macrophages in spontaneous regression of degenerated tissues. Spine J 2001; 1 (6): 422–31.
19. Haro H, Shinomiya K, Komori H et al. Upregulated expression of chemokines in herniated nucleus pulposus resorption. Spine 1996; 21 (14): 1647–52.
20. Peul WC, van Houwelingen HC, van den Hout WB et al. Surgery versus prolonged conservative treatment for sciatica. N Engl J Med 2007; 356: 2245–56.
21. van Rijn JC, Klemetso N, Reitsma JB et al. Symptomatic and asymptomatic abnormalities in patients with lumbosacral radicular syndrome: Clinical examination compared with MRI. Clin Neurol Neurosurg 2006; 108 (6): 553–7.
22. Tarantino UU, Fanucci EE, Iundusi RR et al. Lumbar spine MRI in upright position for diagnosing acute and chronic low back pain: statistical analysis of morphological changes. J Orthop Traumatol 2013; 14: 15–22.
23. Benson RT, Tavares SP, Robertson SC et al. Conservatively treated massive prolapsed discs: a 7-year follow-up. Ann R Coll Surg Engl 2010; 92: 147–53.
24. Gibson JNA, Waddell G. Surgical interventions for lumbar disc prolapse: updated Cochrane Review. Spine 2007; 32: 1735–47.
25. Barzouhi el A, Vleggeert-Lankamp CLAM, Lycklama à Nijeholt GJ et al. Magnetic resonance imaging in follow-up assessment of sciatica. N Engl J Med 2013; 368: 999–1007.
26. Stich S, Stolk M, Girod PP et al. Regenerative and immunogenic characteristics of cultured nucleus pulposus cells from human cervical intervertebral discs. PLoS One 2015; 10 (5): e0126954.
27. Andrade P, Hoogland G, Garcia MA et al. Elevated IL-1β and IL-6 levels in lumbar herniated discs in patients with sciatic pain. Eur Spine J 2013; 22: 714–20.
28. Peng B, Wu W, Li Z et al. Chemical radiculitis. Pain 2007; 127: 11–6.
29. Schäfers M, Sorkin LS, Geis C, Shubayev VI. Spinal nerve ligation induces transient upregulation of tumor necrosis factor receptors 1 and 2 in injured and adjacent uninjured dorsal root ganglia in the rat. Neuroscience Letters 2003; 347: 179–82.
30. Adams MA, Stefanakis M, Dolan P. Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: implications for physical therapies for discogenic back pain. Clin Biomech (Bristol, Avon) 2010; 25: 961–71.
31. Inoue G, Ohtori S, Aoki Y et al. Exposure of the nucleus pulposus to the outside of the anulus fibrosus induces nerve injury and regeneration of the afferent fibers innervating the lumbar intervertebral discs in rats. Spine (Phila Pa 1976) 2006; 31 (13): 1433–8.
32. Peng B, Wu W, Hou S et al. The pathogenesis of discogenic low back pain. J Bone Joint Surg Br 2005; 87: 62–7.
33. Ahn S-H, Cho Y-W, Ahn M-W et al. mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs. Spine 2002; 27: 911–7.
34. Martin P. Wound healing-aiming for perfect skin regeneration. Science 1997; 276: 75–81.
35. Peng B, Hao J, Hou S et al. Possible pathogenesis of painful intervertebral disc degeneration. Spine 2006; 31: 560–6.
36. Andrade P, Visser-Vandewalle V, Philippens M et al. Tumor necrosis factor-a levels correlate with postoperative pain severity in lumbar disc hernia patients: opposite clinical effects between tumor necrosis factor receptor 1 and 2. Pain 2011; 152: 2645–52.
37. Shamji MF, Setton LA, Jarvis W et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 2010; 62 (7): 1974–82.
38. Burke JG, Watson RW, McCormack D et al. Spontaneous production of monocyte chemoattractant protein-1 and interleukin-8 by the human lumbar intervertebral disc. Spine 2002; 27 (13): 1402–7.
39. Kang JD, Stefanovic-Racic M, McIntyre LA et al. Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine 1997; 22 (10): 1065–73.
40. Takada T, Nishida K, Doita M et al. Interleukin-6 production is upregulated by interaction between disc tissue and macrophages. Spine 2004; 29 (10): 1089–92.
41. Yoshida M, Nakamura T, Sei A et al. Intervertebral disc cells produce tumor necrosis factor α, interleukin-1β, and monocyte chemoattractant protein-1 immediately after herniation: an experimental study using a new hernia model. Spine 2005; 30: 55–61.
42. Doita M, Kanatani T, Ozaki T et al. Influence of macrophage infiltration of herniated disc tissue on the production of matrix metalloproteinases leading to disc resorption. Spine 2001; 26 (14): 1522–7.
________________________________________________
1. Kadyrova L.R., Akarachkova E.S., Kerimova K.S. et al. Mul'tidistsiplinarnyi podkhod k patsientu s khronicheskoi bol'iu. RMZh. 2018; 7: 28–32 (in Russian).
2. Rajasekaran S, Bajaj N, Tubaki V et al. ISSLS Prize winner: The anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine 2013; 38 (17): 1491–500.
3. Brinjikji W, Luetmer PH, Comstock B et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 2015; 36 (4): 811–6.
4. Golubenko E.O., Silina E.V., Orlova A.S. Personifitsirovannyi podkhod v lechenii bolevykh sindromov. Sovremennaia nauka: aktual'nye problemy teorii i praktiki. 2017; 7–8: 107–12 (in Russian).
5. Ma CJ, Liu X, Che L et al. Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery. Curr Stem Cell Res Ther 2015; 10 (4): 285–95.
6. Zhang Y, Liu L, Wang S et al. Production of CCL20 on nucleus pulposus cells recruits IL-17-producing cells to degenerated IVD tissues in rat models. J Mol Histol 2016; 47 (1): 81–9.
7. Fadda A, Oevermann A, Vandevelde M et al. Clinical and pathological analysis of epidural inflammation in intervertebral disk extrusion in dogs. J Vet Intern Med 2013; 27: 924–34.
8. Autio RA, Karppinen J, Niinimäki J et al. Determinants of spontaneous resorption of intervertebral disc herniations. Spine 2006; 31: 1247–52.
9. Rätsep T, Minajeva A, Asser T. Relationship between neovascularization and degenerative changes in herniated lumbar intervertebral discs. Eur Spine J 2013; 22 (11): 2474–80.
10. Jia CQ, Zhao JG, Zhang SF, Qi F. Stromal cell-derived factor-1 and vascular endothelial growth factor may play an important role in the process of neovascularization of herniated intervertebral discs. J Int Med Res 2009; 37 (1): 136–44.
11. Tkachev A.M., Akarachkova E.S., Smirnova A.V. et al. Spontannyi regress gryzh mezhpozvonkovykh diskov poiasnichnogo otdela na fone terapii gabapentinom. Farmateka. 2017; 19 (352): 20–5 (in Russian).
12. Ikeda T, Nakamura T, Kikuchi T et al. Pathomechanism of spontaneous regression of the herniated lumbar disc: histologic and immunohistochemical study. J Spinal Disord 1996; 9 (2): 136–40.
13. Virri J, Grönblad M, Seitsalo S et al. Comparison of the prevalence of inflammatory cells in subtypes of disc herniations and associations with straight leg raising. Spine 2001; 26: 2311–5.
14. Haro H, Komori H, Kato T et al. Experimental studies on the effects of recombinant human matrix metalloproteinases on herniated disc tissues - how to facilitate the natural resorption process of herniated discs. J Orthop Res 2005; 23: 412–9.
15. Mantovani A, Biswas SK, Galdiero MR et al. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 2013; 229: 176–85.
16. Zhu Z, Huang P, Chong Y et al. Nucleus pulposus cells derived IGF-1 and MCP-1 enhance osteoclastogenesis and vertebrae disruption in lumbar disc herniation. Int J Clin Exp Pathol 2014; 7 (12): 8520–31.
17. Sonnemann KJK, Bement WMW. Wound repair. toward understanding and integration of single-cell and multicellular wound responses. Annu Rev Cell Dev Biol 2011; 27: 237–63.
18. Tsuru M, Nagata K, Ueno T et al. Electron microscopic observation of established chondrocytes derived from human intervertebral disc hernia (KTN-1) and role of macrophages in spontaneous regression of degenerated tissues. Spine J 2001; 1 (6): 422–31.
19. Haro H, Shinomiya K, Komori H et al. Upregulated expression of chemokines in herniated nucleus pulposus resorption. Spine 1996; 21 (14): 1647–52.
20. Peul WC, van Houwelingen HC, van den Hout WB et al. Surgery versus prolonged conservative treatment for sciatica. N Engl J Med 2007; 356: 2245–56.
21. van Rijn JC, Klemetso N, Reitsma JB et al. Symptomatic and asymptomatic abnormalities in patients with lumbosacral radicular syndrome: Clinical examination compared with MRI. Clin Neurol Neurosurg 2006; 108 (6): 553–7.
22. Tarantino UU, Fanucci EE, Iundusi RR et al. Lumbar spine MRI in upright position for diagnosing acute and chronic low back pain: statistical analysis of morphological changes. J Orthop Traumatol 2013; 14: 15–22.
23. Benson RT, Tavares SP, Robertson SC et al. Conservatively treated massive prolapsed discs: a 7-year follow-up. Ann R Coll Surg Engl 2010; 92: 147–53.
24. Gibson JNA, Waddell G. Surgical interventions for lumbar disc prolapse: updated Cochrane Review. Spine 2007; 32: 1735–47.
25. Barzouhi el A, Vleggeert-Lankamp CLAM, Lycklama à Nijeholt GJ et al. Magnetic resonance imaging in follow-up assessment of sciatica. N Engl J Med 2013; 368: 999–1007.
26. Stich S, Stolk M, Girod PP et al. Regenerative and immunogenic characteristics of cultured nucleus pulposus cells from human cervical intervertebral discs. PLoS One 2015; 10 (5): e0126954.
27. Andrade P, Hoogland G, Garcia MA et al. Elevated IL-1β and IL-6 levels in lumbar herniated discs in patients with sciatic pain. Eur Spine J 2013; 22: 714–20.
28. Peng B, Wu W, Li Z et al. Chemical radiculitis. Pain 2007; 127: 11–6.
29. Schäfers M, Sorkin LS, Geis C, Shubayev VI. Spinal nerve ligation induces transient upregulation of tumor necrosis factor receptors 1 and 2 in injured and adjacent uninjured dorsal root ganglia in the rat. Neuroscience Letters 2003; 347: 179–82.
30. Adams MA, Stefanakis M, Dolan P. Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: implications for physical therapies for discogenic back pain. Clin Biomech (Bristol, Avon) 2010; 25: 961–71.
31. Inoue G, Ohtori S, Aoki Y et al. Exposure of the nucleus pulposus to the outside of the anulus fibrosus induces nerve injury and regeneration of the afferent fibers innervating the lumbar intervertebral discs in rats. Spine (Phila Pa 1976) 2006; 31 (13): 1433–8.
32. Peng B, Wu W, Hou S et al. The pathogenesis of discogenic low back pain. J Bone Joint Surg Br 2005; 87: 62–7.
33. Ahn S-H, Cho Y-W, Ahn M-W et al. mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs. Spine 2002; 27: 911–7.
34. Martin P. Wound healing-aiming for perfect skin regeneration. Science 1997; 276: 75–81.
35. Peng B, Hao J, Hou S et al. Possible pathogenesis of painful intervertebral disc degeneration. Spine 2006; 31: 560–6.
36. Andrade P, Visser-Vandewalle V, Philippens M et al. Tumor necrosis factor-a levels correlate with postoperative pain severity in lumbar disc hernia patients: opposite clinical effects between tumor necrosis factor receptor 1 and 2. Pain 2011; 152: 2645–52.
37. Shamji MF, Setton LA, Jarvis W et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 2010; 62 (7): 1974–82.
38. Burke JG, Watson RW, McCormack D et al. Spontaneous production of monocyte chemoattractant protein-1 and interleukin-8 by the human lumbar intervertebral disc. Spine 2002; 27 (13): 1402–7.
39. Kang JD, Stefanovic-Racic M, McIntyre LA et al. Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine 1997; 22 (10): 1065–73.
40. Takada T, Nishida K, Doita M et al. Interleukin-6 production is upregulated by interaction between disc tissue and macrophages. Spine 2004; 29 (10): 1089–92.
41. Yoshida M, Nakamura T, Sei A et al. Intervertebral disc cells produce tumor necrosis factor α, interleukin-1β, and monocyte chemoattractant protein-1 immediately after herniation: an experimental study using a new hernia model. Spine 2005; 30: 55–61.
42. Doita M, Kanatani T, Ozaki T et al. Influence of macrophage infiltration of herniated disc tissue on the production of matrix metalloproteinases leading to disc resorption. Spine 2001; 26 (14): 1522–7.