Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Маркеры и генетические предикторы остеопороза в рутинной клинической практике
________________________________________________
Grebennikova T.A., Troshina V.V., Belaia Zh.E. Markers and genetic predictors of osteoporosis in routine clinical practice. Consilium Medicum. 2019; 21 (4): 97–102. DOI: 10.26442/20751753.2019.4.190323
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: остеокальцин, щелочная фосфатаза, P1NP, COL1A1, CALCR, фосфор, кальций.
________________________________________________
Key words: osteocalcin, alkaline phosphatase, P1NP, COL1A1, CALCR, phosphorus, calcium.
[Mel'nichenko G.A., Belaia Zh.E., Rozhinskaia L.Ia. et al. Federal'nye klinicheskie rekomendatsii po diagnostike, lecheniiu i profilaktike osteoporoza. Problemy endokrinologii. 2017; 63 (6): 392–426 (in Russian).]
2. Zagzag J, Hu MI, Fisher SB, Perrier ND. Hypercalcemia and cancer: Differential diagnosis and treatment. CA Cancer J Clin 2018; 68 (5): 377–86. DOI: 10.3322/caac.21489
3. Попова И.Ю., Гребенникова Т.А., Тюльпаков А.Н. и др. Редкие заболевания костной ткани: клиническое наблюдение семьи с несовершенным остеогенезом и фосфопенической формой остемаляции. Остеопороз и остеопатии. 2018; 21 (1): 28–33.
[Popova I.Iu., Grebennikova T.A., Tiul'pakov A.N. et al. Redkie zabolevaniia kostnoi tkani: klinicheskoe nabliudenie sem'i s nesovershennym osteogenezom i fosfopenicheskoi formoi ostemaliatsii. Osteoporoz i osteopatii. 2018; 21 (1): 28–33 (in Russian).]
4. Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer 2011; 18 (3): R53–77. DOI: 10.1530/ERC-11-0006
5. Hlaing TT, Compston JE. Biochemical markers of bone turnover – uses and limitations. Ann Clin Biochem 2014; 51 (Pt 2): 189–202. DOI: 10.1177/0004563213515190
6. Whyte MP. Hypophosphatasia – aetiology, nosology, pathogenesis, diagnosis and treatment. Nature Reviews Endocrinology 2016; 12 (4): 233–46. DOI: 10.1038/nrendo.2016.14
7. Wheater G, Elshahaly M, Tuck S et al. The clinical utility of bone marker measurements in osteoporosis. J Translat Med 2013; 11: 201.
8. Ларина В.Н., Михайлусова В.П., Распопова Т.Н. Применение биохимических маркеров костного обмена в повседневной деятельности врача. Лечебное дело. 2015; 2: 10–4.
[Larina V.N., Mikhailusova V.P., Raspopova T.N. Primenenie biokhimicheskikh markerov kostnogo obmena v povsednevnoi deiatel'nosti vracha. Lechebnoe delo. 2015; 2: 10–4 (in Russian).]
9. Rathore B, Manisha S, Vishnu K, Aparna M. Osteocalcin: an emerging biomarker for bone turnover. Int J Res Med Sci 2016; 4 (9): 3670–4. doi.org/10.18203/2320-6012.ijrms20162899
10. Панкратова Ю.В., Пигарова Е.А., Дзеранова Л.К. Витамин К-зависимые белки: остеокальцин, матриксный Gla-белок и их внекостные эффекты. Ожирение и метаболизм. 2013; 2: 11–4.
[Pankratova Iu.V., Pigarova E.A., Dzeranova L.K. Vitamin K-zavisimye belki: osteokal'tsin, matriksnyi Gla-belok i ikh vnekostnye effekty. Ozhirenie i metabolizm. 2013; 2: 11–4 (in Russian).]
11. Ivaska KK. Urinary Osteocalcin as a Marker of Bone Metabolism. Clin Chem 2005; 51 (3): 618–8. DOI: 10.1373/clinchem.2004.043901
12. Jagtap VR, Ganu JV, Nagane NS. BMD and Serum Intact Osteocalcin in Postmenopausal Osteoporosis Women. Ind J Clin Biochem 2010; 26 (1): 70–3. DOI: 10.1007/s12291-010-0074-2
13. Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А. и др. Возможности маркера костного обмена – остеокальцина – для диагностики эндогенного гиперкортицизма и вторичного остеопороза. Остеопороз и остеопатии. 2011; 2: 7–10.
[Belaia Zh.E., Rozhinskaia L.Ia., Mel'nichenko G.A. i dr. Vozmozhnosti markera kostnogo obmena – osteokal'tsina – dlia diagnostiki endogennogo giperkortitsizma i vtorichnogo osteoporoza. Osteoporoz i osteopatii. 2011; 2: 7–10 (in Russian).]
14. Ayesha A, Vanitha GMN. Serum osteocalcin levels in metabolic syndrome. Int J Clin Biochem Res 2016; 3 (4): 453–60. DOI: 10.18231/2394-6377.2016.0024
15. Bilotta FL, Arcidiacono B, Messineo S et al. Insulin and osteocalcin: further evidence for a mutual cross-talk. Endocrine 2017; 59 (3): 622–32. DOI: 10.1007/s12020-017-1396-0
16. Reyes García R, Rozas Moreno P, Muñoz-Torres M. Osteocalcin and atherosclerosis: A complex relationship. Diabetes Res Clin Practice 2011; 92 (3); 405–6. DOI: 10.1016/j.diabres.2010.08.019
17. Moser SC, van der Eerden BCJ. Osteocalcin – A Versatile Bone-Derived Hormone. Front Endocrinol 2019; 9: 794. DOI: 10.3389/fendo.2018.00794
18. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 2005; 26: 97–122.
19. Koivula M-K, Ruotsalainen V, Bjorkman M et al. Difference between total and intact assays for N-terminal propeptide of type I procollagen reflects degradation of pN-collagen rather than denaturation of intact propeptide. Ann Clin Biochem 2010; 47: 67–71.
20. Brown JP, Albert C, Nassar BA et al. Bone turnover markers in the management of osteoporosis. Clin Biochem 2009; 42: 929–42.
21. Машейко И.В. Биохимические маркеры в оценке процессов ремоделирования костной ткани при остеопении и остеопорозе. Журн. Гродненского государственного медицинского университета. 2017; 2: 149–53.
[Masheiko I.V. Biokhimicheskie markery v otsenke protsessov remodelirovaniia kostnoi tkani pri osteopenii i osteoporoze. Zhurn. Grodnenskogo gosudarstvennogo meditsinskogo universiteta. 2017; 2: 149–53 (in Russian).]
22. Iftikhar A, Tousif S. Ahmed, Asim T. Review of Bone Turn over Biomarkers for Early Diagnose of Osteoporosis. JAMMR 2018; 26 (8): 1–8.
23. Greenblatt M, Tsai J, Wein M. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 2016; 63: 464–74.
24. Vasikaran S, Cooper C, Eastell R et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine Position on bone marker standards in osteoporosis. Clin Chem Lab Med 2011; 49: 1271–4.
25. Arslan M, Cogendez E, Eken M et al. Serum beta crosslaps as a predictor for osteoporosis in postmenopausal women. Istanbul Tıp Fakultesi Dergisi Cilt 2015; 78 (2): 36–40. DOI: 10.18017/iuitfd.m.13056441.2015.78/2.36-40
26. Riera-Espinoza GS, Cordero Y, Mendoza S et al. Early P1NP Suppression during Treatment of Low Bone Mass Postmenopausal Women with Risedronate 150 mg once-a Month. Ortho Rheum Open Access J 2017; 8 (2): 555732. DOI: 10.19080/OROAJ.2017.08.555732
27. Dal Prá KJ, Lemos CAA, Okamoto R et al. Efficacy of the C-terminal telopeptide test in predicting the development of bisphosphonate-related osteonecrosis of the jaw: a systematic review. Int J Oral Maxillofacial Surg 2017; 46 (2): 151–6. DOI: 10.1016/j.ijom.2016.10.009
28. Wichers M, Schmidt E, Bidlingmaier F, Klingmuller D. Diurnal rhythm of crosslaps in human serum. Clin Chem 1999; 45:1858–60.
29. Delanaye P, Souberbielle J, Lafage-Proust M et al. Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol Dial Transplant 2013; 29: 997–1004.
30. Bardai G, Moffatt P, Glorieux FH, Rauch F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporosis Int 2016; 27 (12): 3607–13. DOI: 10.1007/s00198-016-3709-1
31. Малыгина А.А., Гребенникова Т.А., Тюльпаков А.Н., Белая Ж.Е. Несовершенный остеогенез как причина летального исхода. Остеопороз и остеопатии. 2018; 21 (1): 23–7.
[Malygina A.A., Grebennikova T.A., Tiul'pakov A.N., Belaia Zh.E. Nesovershennyi osteogenez kak prichina letal'nogo iskhoda. Osteoporoz i osteopatii. 2018; 21 (1): 23–7 (in Russian).]
32. Mann V, Ralston S. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone 2003; 32 (6): 711–7. DOI: 10.1016/s8756-3282(03)00087-5
33. Mann V, Hobson EE, Li B et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 2001; 107 (7): 899–907. DOI: 10.1172/JCI10347
34. Москаленко М.В., Асеев М.В., Котова С.М., Баранов В.С. Анализ ассоциации аллелей генов COLLAL, VDR и CALCR с развитием остеопороза. Экологическая генетика человека. 2004; 2 (1): 38–43.
[Moskalenko M.V., Aseev M.V., Kotova S.M., Baranov V.S. Analiz assotsiatsii allelei genov COLLAL, VDR i CALCR s razvitiem osteoporoza. Ekologicheskaia genetika cheloveka. 2004; 2 (1): 38–43 (in Russian).]
35. Huebner AK, Keller J, Catala-Lehnen P et al. The role of calcitonin and a-calcitonin gene-related peptide in bone formation. Arch Biochem Biophys 2008; 473 (2): 210–7. DOI: 10.1016/j.abb.2008.02.013
36. Wimalawansa S. Physiology of Calcitonin and Its Therapeutic Uses. Reference Module Biomed Sci 2018; 1: 178–91. DOI: 10.1016/B978-0-12-801238-3.95758-1
37. Russell FA, King R, Smillie S-J et al. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiological Rev 2014; 94 (4): 1099–142. DOI: 10.1152/physrev.00034.2013
38. Chaiya I, Rattanakul C. An impulsive mathematical model of bone formation and resorption: effects of parathyroid hormone, calcitonin and impulsive estrogen supplement. Adv Difference Equations 2017; 2017 (1): 153. DOI: 10.1186/s13662-017-1206-2
39. Шилина Н.М., Сорокина Е.Ю., Иванушкина Т.А. и др. Изучение полиморфизма rs11801197 гена рецептора кальцитонина (CALCR) у женщин и детей Москвы с различным уровнем костной прочности. Вопр. питания. 2017; 86 (1): 28–34.
[Shilina N.M., Sorokina E.Iu., Ivanushkina T.A. et al. Izuchenie polimorfizma rs11801197 gena retseptora kal'tsitonina (CALCR) u zhenshchin i detei Moskvy s razlichnym urovnem kostnoi prochnosti. Vopr. pitaniia. 2017; 86 (1): 28–34 (in Russian).]
40. Zimmermann A, Popp RA, Rossmann H et al. Gene variants of osteoprotegerin, estrogen-, calcitonin- and vitamin D-receptor genes and serum markers of bone metabolism in patients with Gaucher disease type 1. Ther Clinical Risk Management 2018; 14: 2069–80. DOI: 10.2147/tcrm.s177480
41. Masi L, Becherini L, Gennari L et al. Allelic variants of human calcitonin receptor: distribution and association with bone mass in postmenopausal Italian women. Biochem Biophys Res Commun 1998; 245 (2): 622–6.
42. Taboulet J, Frenkian M, Frendo JL et al. Calcitonin receptor polymorphism is associated with a decreased fracture risk in post-menopausal women. Hum Mol Genet 1998; 7 (13): 2129–33.
43. Мальцев А.В. Исследование генетических факторов развития постменопаузального остеопороза в Волго-Уральском регионе. Автореф. дис. … канд. биол. наук. Уфа, 2014.
[Mal'tsev A.V. Issledovanie geneticheskikh faktorov razvitiia postmenopauzal'nogo osteoporoza v Volgo-Ural'skom regione. Avtoref. dis. … kand. biol. nauk. Ufa, 2014 (in Russian).]
44. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–81.
45. Qin G, Dong Z, Zeng P. Association of vitamin D receptor BsmI gene polymorphism with risk of osteoporosis: a meta-analysis of 41 studies. Mol Biol Rep 2013; 40: 497–506. https://doi.org/10.1007/s11033-012-2086-x
46. Chantarangsu S, Sura T, Mongkornkarn S et al. Vitamin D Receptor Gene Polymorphism and Smoking in the Risk of Chronic Periodontitis. J Periodontology 2016; 87: 1343–51. https://doi.org/10.1902/jop.2016.160222
47. Zhang L, Yin X, Wang J et al. Associations between VDR Gene Polymorphisms and Osteoporosis Risk and Bone Mineral Density in Postmenopausal Women: A systematic review and Meta-Analysis. Sci Rep 2018; 8 (1): 981. DOI: 10.1038/s41598-017-18670-7
48. Jin H, Evangelou E, Ioannidis JPA, Ralston SH. Polymorphisms in the 5′ flank of COL1A1 gene and osteoporosis: meta-analysis of published studies. Osteoporosis Int 2010; 22 (3): 911–21. DOI: 10.1007/s00198-010-1364-5
49. Bustamante M, Nogués X, Enjuanes A et al. COL1A1, ESR1, VDR and TGFB1 polymorphisms and haplotypes in relation to BMD in Spanish postmenopausal women. Osteoporosis Int 2006; 18 (2): 235–43. DOI: 10.1007/s00198-006-0225-8
50. Sowers M, Willing M, Burns T et al. Genetic Markers, Bone Mineral Density, and Serum Osteocalcin Levels. J Bone Min Res 1999; 14 (8): 1411–9. DOI: 10.1359/jbmr.1999.14.8.1411
________________________________________________
1. Mel'nichenko G.A., Belaia Zh.E., Rozhinskaia L.Ia. et al. Federal'nye klinicheskie rekomendatsii po diagnostike, lecheniiu i profilaktike osteoporoza. Problemy endokrinologii. 2017; 63 (6): 392–426 (in Russian).
2. Zagzag J, Hu MI, Fisher SB, Perrier ND. Hypercalcemia and cancer: Differential diagnosis and treatment. CA Cancer J Clin 2018; 68 (5): 377–86. DOI: 10.3322/caac.21489
3. Popova I.Iu., Grebennikova T.A., Tiul'pakov A.N. et al. Redkie zabolevaniia kostnoi tkani: klinicheskoe nabliudenie sem'i s nesovershennym osteogenezom i fosfopenicheskoi formoi ostemaliatsii. Osteoporoz i osteopatii. 2018; 21 (1): 28–33 (in Russian).
4. Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer 2011; 18 (3): R53–77. DOI: 10.1530/ERC-11-0006
5. Hlaing TT, Compston JE. Biochemical markers of bone turnover – uses and limitations. Ann Clin Biochem 2014; 51 (Pt 2): 189–202. DOI: 10.1177/0004563213515190
6. Whyte MP. Hypophosphatasia – aetiology, nosology, pathogenesis, diagnosis and treatment. Nature Reviews Endocrinology 2016; 12 (4): 233–46. DOI: 10.1038/nrendo.2016.14
7. Wheater G, Elshahaly M, Tuck S et al. The clinical utility of bone marker measurements in osteoporosis. J Translat Med 2013; 11: 201.
8. Larina V.N., Mikhailusova V.P., Raspopova T.N. Primenenie biokhimicheskikh markerov kostnogo obmena v povsednevnoi deiatel'nosti vracha. Lechebnoe delo. 2015; 2: 10–4 (in Russian).
9. Rathore B, Manisha S, Vishnu K, Aparna M. Osteocalcin: an emerging biomarker for bone turnover. Int J Res Med Sci 2016; 4 (9): 3670–4. doi.org/10.18203/2320-6012.ijrms20162899
10. Pankratova Iu.V., Pigarova E.A., Dzeranova L.K. Vitamin K-zavisimye belki: osteokal'tsin, matriksnyi Gla-belok i ikh vnekostnye effekty. Ozhirenie i metabolizm. 2013; 2: 11–4 (in Russian).
11. Ivaska KK. Urinary Osteocalcin as a Marker of Bone Metabolism. Clin Chem 2005; 51 (3): 618–8. DOI: 10.1373/clinchem.2004.043901
12. Jagtap VR, Ganu JV, Nagane NS. BMD and Serum Intact Osteocalcin in Postmenopausal Osteoporosis Women. Ind J Clin Biochem 2010; 26 (1): 70–3. DOI: 10.1007/s12291-010-0074-2
13. Belaia Zh.E., Rozhinskaia L.Ia., Mel'nichenko G.A. i dr. Vozmozhnosti markera kostnogo obmena – osteokal'tsina – dlia diagnostiki endogennogo giperkortitsizma i vtorichnogo osteoporoza. Osteoporoz i osteopatii. 2011; 2: 7–10 (in Russian).
14. Ayesha A, Vanitha GMN. Serum osteocalcin levels in metabolic syndrome. Int J Clin Biochem Res 2016; 3 (4): 453–60. DOI: 10.18231/2394-6377.2016.0024
15. Bilotta FL, Arcidiacono B, Messineo S et al. Insulin and osteocalcin: further evidence for a mutual cross-talk. Endocrine 2017; 59 (3): 622–32. DOI: 10.1007/s12020-017-1396-0
16. Reyes García R, Rozas Moreno P, Muñoz-Torres M. Osteocalcin and atherosclerosis: A complex relationship. Diabetes Res Clin Practice 2011; 92 (3); 405–6. DOI: 10.1016/j.diabres.2010.08.019
17. Moser SC, van der Eerden BCJ. Osteocalcin – A Versatile Bone-Derived Hormone. Front Endocrinol 2019; 9: 794. DOI: 10.3389/fendo.2018.00794
18. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 2005; 26: 97–122.
19. Koivula M-K, Ruotsalainen V, Bjorkman M et al. Difference between total and intact assays for N-terminal propeptide of type I procollagen reflects degradation of pN-collagen rather than denaturation of intact propeptide. Ann Clin Biochem 2010; 47: 67–71.
20. Brown JP, Albert C, Nassar BA et al. Bone turnover markers in the management of osteoporosis. Clin Biochem 2009; 42: 929–42.
21. Masheiko I.V. Biokhimicheskie markery v otsenke protsessov remodelirovaniia kostnoi tkani pri osteopenii i osteoporoze. Zhurn. Grodnenskogo gosudarstvennogo meditsinskogo universiteta. 2017; 2: 149–53 (in Russian).
22. Iftikhar A, Tousif S. Ahmed, Asim T. Review of Bone Turn over Biomarkers for Early Diagnose of Osteoporosis. JAMMR 2018; 26 (8): 1–8.
23. Greenblatt M, Tsai J, Wein M. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 2016; 63: 464–74.
24. Vasikaran S, Cooper C, Eastell R et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine Position on bone marker standards in osteoporosis. Clin Chem Lab Med 2011; 49: 1271–4.
25. Arslan M, Cogendez E, Eken M et al. Serum beta crosslaps as a predictor for osteoporosis in postmenopausal women. Istanbul Tıp Fakultesi Dergisi Cilt 2015; 78 (2): 36–40. DOI: 10.18017/iuitfd.m.13056441.2015.78/2.36-40
26. Riera-Espinoza GS, Cordero Y, Mendoza S et al. Early P1NP Suppression during Treatment of Low Bone Mass Postmenopausal Women with Risedronate 150 mg once-a Month. Ortho Rheum Open Access J 2017; 8 (2): 555732. DOI: 10.19080/OROAJ.2017.08.555732
27. Dal Prá KJ, Lemos CAA, Okamoto R et al. Efficacy of the C-terminal telopeptide test in predicting the development of bisphosphonate-related osteonecrosis of the jaw: a systematic review. Int J Oral Maxillofacial Surg 2017; 46 (2): 151–6. DOI: 10.1016/j.ijom.2016.10.009
28. Wichers M, Schmidt E, Bidlingmaier F, Klingmuller D. Diurnal rhythm of crosslaps in human serum. Clin Chem 1999; 45:1858–60.
29. Delanaye P, Souberbielle J, Lafage-Proust M et al. Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol Dial Transplant 2013; 29: 997–1004.
30. Bardai G, Moffatt P, Glorieux FH, Rauch F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporosis Int 2016; 27 (12): 3607–13. DOI: 10.1007/s00198-016-3709-1
31. Malygina A.A., Grebennikova T.A., Tiul'pakov A.N., Belaia Zh.E. Nesovershennyi osteogenez kak prichina letal'nogo iskhoda. Osteoporoz i osteopatii. 2018; 21 (1): 23–7 (in Russian).
32. Mann V, Ralston S. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone 2003; 32 (6): 711–7. DOI: 10.1016/s8756-3282(03)00087-5
33. Mann V, Hobson EE, Li B et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 2001; 107 (7): 899–907. DOI: 10.1172/JCI10347
34. Moskalenko M.V., Aseev M.V., Kotova S.M., Baranov V.S. Analiz assotsiatsii allelei genov COLLAL, VDR i CALCR s razvitiem osteoporoza. Ekologicheskaia genetika cheloveka. 2004; 2 (1): 38–43 (in Russian).
35. Huebner AK, Keller J, Catala-Lehnen P et al. The role of calcitonin and a-calcitonin gene-related peptide in bone formation. Arch Biochem Biophys 2008; 473 (2): 210–7. DOI: 10.1016/j.abb.2008.02.013
36. Wimalawansa S. Physiology of Calcitonin and Its Therapeutic Uses. Reference Module Biomed Sci 2018; 1: 178–91. DOI: 10.1016/B978-0-12-801238-3.95758-1
37. Russell FA, King R, Smillie S-J et al. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiological Rev 2014; 94 (4): 1099–142. DOI: 10.1152/physrev.00034.2013
38. Chaiya I, Rattanakul C. An impulsive mathematical model of bone formation and resorption: effects of parathyroid hormone, calcitonin and impulsive estrogen supplement. Adv Difference Equations 2017; 2017 (1): 153. DOI: 10.1186/s13662-017-1206-2
39. Shilina N.M., Sorokina E.Iu., Ivanushkina T.A. et al. Izuchenie polimorfizma rs11801197 gena retseptora kal'tsitonina (CALCR) u zhenshchin i detei Moskvy s razlichnym urovnem kostnoi prochnosti. Vopr. pitaniia. 2017; 86 (1): 28–34 (in Russian).
40. Zimmermann A, Popp RA, Rossmann H et al. Gene variants of osteoprotegerin, estrogen-, calcitonin- and vitamin D-receptor genes and serum markers of bone metabolism in patients with Gaucher disease type 1. Ther Clinical Risk Management 2018; 14: 2069–80. DOI: 10.2147/tcrm.s177480
41. Masi L, Becherini L, Gennari L et al. Allelic variants of human calcitonin receptor: distribution and association with bone mass in postmenopausal Italian women. Biochem Biophys Res Commun 1998; 245 (2): 622–6.
42. Taboulet J, Frenkian M, Frendo JL et al. Calcitonin receptor polymorphism is associated with a decreased fracture risk in post-menopausal women. Hum Mol Genet 1998; 7 (13): 2129–33.
43. Mal'tsev A.V. Issledovanie geneticheskikh faktorov razvitiia postmenopauzal'nogo osteoporoza v Volgo-Ural'skom regione. Avtoref. dis. … kand. biol. nauk. Ufa, 2014 (in Russian).
44. Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–81.
45. Qin G, Dong Z, Zeng P. Association of vitamin D receptor BsmI gene polymorphism with risk of osteoporosis: a meta-analysis of 41 studies. Mol Biol Rep 2013; 40: 497–506. https://doi.org/10.1007/s11033-012-2086-x
46. Chantarangsu S, Sura T, Mongkornkarn S et al. Vitamin D Receptor Gene Polymorphism and Smoking in the Risk of Chronic Periodontitis. J Periodontology 2016; 87: 1343–51. https://doi.org/10.1902/jop.2016.160222
47. Zhang L, Yin X, Wang J et al. Associations between VDR Gene Polymorphisms and Osteoporosis Risk and Bone Mineral Density in Postmenopausal Women: A systematic review and Meta-Analysis. Sci Rep 2018; 8 (1): 981. DOI: 10.1038/s41598-017-18670-7
48. Jin H, Evangelou E, Ioannidis JPA, Ralston SH. Polymorphisms in the 5′ flank of COL1A1 gene and osteoporosis: meta-analysis of published studies. Osteoporosis Int 2010; 22 (3): 911–21. DOI: 10.1007/s00198-010-1364-5
49. Bustamante M, Nogués X, Enjuanes A et al. COL1A1, ESR1, VDR and TGFB1 polymorphisms and haplotypes in relation to BMD in Spanish postmenopausal women. Osteoporosis Int 2006; 18 (2): 235–43. DOI: 10.1007/s00198-006-0225-8
50. Sowers M, Willing M, Burns T et al. Genetic Markers, Bone Mineral Density, and Serum Osteocalcin Levels. J Bone Min Res 1999; 14 (8): 1411–9. DOI: 10.1359/jbmr.1999.14.8.1411
ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия
*grebennikova@hotmail.com
________________________________________________
Endocrinology Research Centre, Moscow, Russia
*grebennikova@hotmail.com