Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Роль нарушения проницаемости слизистой оболочки кишечника в генезе функциональных заболеваний желудочно-кишечного тракта
________________________________________________
Andreev D.N. The role of alterations in permeability of the intestinal mucosa in the genesis of functional gastrointestinal disorders. Consilium Medicum. 2019; 21 (8): 29–34. DOI: 10.26442/20751753.2019.8.190539
Материалы доступны только для специалистов сферы здравоохранения. Авторизуйтесь или зарегистрируйтесь.
Ключевые слова: функциональные заболевания желудочно-кишечного тракта, синдром раздраженного кишечника, функциональная диспепсия, кишечная проницаемость, кишечный барьер, плотные контакты.
________________________________________________
Key words: functional gastrointestinal disorders, irritable bowel syndrome, functional dyspepsia, intestinal permeability, intestinal barrier, tight contacts.
2. Андреев Д.Н., Заборовский А.В., Трухманов А.С. и др. Эволюция представлений о функциональных заболеваниях желудочно-кишечного тракта в свете Римских критериев IV пересмотра (2016 г.). РЖГГК. 2017; 1: 4–11.
[Andreev D.N., Zaborovskii A.V., Trukhmanov A.S. et al. Evoliutsiia predstavlenii o funktsional'nykh zabolevaniiakh zheludochno-kishechnogo trakta v svete Rimskikh kriteriev IV peresmotra (2016 g.). RZhGGK. 2017; 1: 4–11 (in Russian).]
3. De Bortoli N, Tolone S, Frazzoni M et al. Gastroesophageal reflux disease, functional dyspepsia and irritable bowel syndrome: common overlapping gastrointestinal disorders. Ann Gastroenterol 2018; 31 (6): 639–48.
4. Von Wulffen M, Talley NJ, Hammer J et al. Overlap of Irritable Bowel Syndrome and Functional Dyspepsia in the Clinical Setting: Prevalence and Risk Factors. Dig Dis Sci 2019; 64 (2): 480–6.
5. Ford AC, Marwaha A, Lim A, Moayyedi P. Systematic review and meta-analysis of the prevalence of irritable bowel syndrome in individuals with dyspepsia. Clin Gastroenterol Hepatol 2010; 8 (5): 401–9.
6. Choung RS. Natural history and overlap of functional gastrointestinal disorders. Korean J Gastroenterol 2012; 60 (6): 345–8.
7. Keita ÅV, Söderholm JD. Mucosal permeability and mast cells as targets for functional gastrointestinal disorders. Curr Opin Pharmacol 2018; 43: 66–71.
8. Holtmann G, Shah A, Morrison M. Pathophysiology of Functional Gastrointestinal Disorders: A Holistic Overview. Dig Dis 2017; 35 (Suppl. 1): 5–13.
9. Вялов С.С. Нарушение проницаемости слизистой оболочки как фактор патогенеза функциональных нарушений желудочно-кишечного тракта: обоснование и возможности коррекции. Consilium Medicum. 2018; 20 (12): 99–104. DOI: 10.26442/20751753.2018.12.180062
[Vialov S.S. Mucosal permeability disturbances as a pathogenesis factor of gastrointestinal tract functional disorders: rationale and correction possibilities. Consilium Medicum. 2018; 20 (12): 99–104. DOI: 10.26442/20751753.2018.12.180062 (in Russian).]
10. Farré R, Vicario M. Abnormal Barrier Function in Gastrointestinal Disorders. Handb Exp Pharmacol 2017; 239: 193–217.
11. Bischoff SC, Barbara G, Buurman W et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol 2014; 14: 189.
12. Pascual S, Martínez J, Pérez-Mateo M. The intestinal barrier: functional disorders in digestive and non-digestive diseases. Gastroenterol Hepatol 2001; 24 (5): 256–67.
13. Shen L, Turner JR. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol 2006; 290 (4): G577-82.
14. Camara-Lemarroy CR, Metz L, Meddings JB et al. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 2018; 141 (7): 1900–16.
15. Du L, Kim JJ, Shen J, Dai N. Crosstalk between Inflammation and ROCK/MLCK Signaling Pathways in Gastrointestinal Disorders with Intestinal Hyperpermeability. Gastroenterol Res Pract 2016; 2016: 7374197.
16. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011; 9 (5): 356–68.
17. Van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009; 71: 241–60.
18. Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 2016; 17 (9): 564–80.
19. Piche T. Tight junctions and IBS – the link between epithelial permeability, low-grade inflammation, and symptom generation? Neurogastroenterol Motil 2014; 26 (3): 296–302.
20. Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 2007; 127 (11): 2525–32.
21. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008; 1778 (3): 660–9.
22. Hammer AM, Morris NL, Earley ZM, Choudhry MA. The First Line of Defense: The Effects of Alcohol on Post-Burn Intestinal Barrier, Immune Cells, and Microbiome. Alcohol Res 2015; 37 (2): 209–22.
23. Park MY, Kim MY, Seo YR et al. High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity. J Cancer Prev 2016; 21 (2): 95–103.
24. Wilcz-Villega EM, McClean S, O'Sullivan MA. Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am J Gastroenterol 2013; 108 (7): 1140–51.
25. Gunnarsson J, Simrén M. Peripheral factors in the pathophysiology of irritable bowel syndrome. Dig Liver Dis 2009; 41: 788–93.
26. Camilleri M, Oduyebo I, Halawi H. Chemical and molecular factors in irritable bowel syndrome: current knowledge, challenges, and unanswered questions. Am J Physiol Gastrointest Liver Physiol 2016; 311 (5): G777-G784.
27. Ng QX, Soh AYS, Loke W et al. The role of inflammation in irritable bowel syndrome (IBS). J Inflamm Res 2018; 11: 345–9.
28. Самсонов А.А., Андреев Д.Н., Дичева Д.Т. Синдром раздраженного кишечника с позиций современной гастроэнтерологии. Фарматека. 2014; 18: 7–14.
[Samsonov A.A., Andreev D.N., Dicheva D.T. Sindrom razdrazhennogo kishechnika s pozitsii sovremennoi gastroenterologii. Farmateka. 2014; 18: 7–14 (in Russian).]
29. Дичева Д.Т., Андреев Д.Н., Щегланова М.П., Парцваниа-Виноградова Е.В. Синдром раздраженного кишечника в свете Римских критериев IV пересмотра (2016 г.). Мед. совет. 2018; 3: 60–6.
[Dicheva D.T., Andreev D.N., Shcheglanova M.P., Partsvania-Vinogradova E.V. Sindrom razdrazhennogo kishechnika v svete Rimskikh kriteriev IV peresmotra (2016 g.). Med. sovet. 2018; 3: 60–6 (in Russian).]
30. Barbara G, Grover M, Bercik P et al. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology 2019; 156 (1): 46-58.e7.
31. Spiller RC, Jenkins D, Thornley JP et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 2000; 47: 804.
32. Marshall JK, Thabane M, Garg AX et al. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment Pharmacol Ther 2004; 20: 1317–22.
33. Vazquez-Roque MI, Camilleri M, Smyrk T et al. Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea. Am J Physiol Gastrointest Liver Physiol 2012; 303 (11): G1262-9.
34. Shulman RJ, Jarrett ME, Cain KC et al. Associations among gut permeability, inflammatory markers, and symptoms in patients with irritable bowel syndrome. J Gastroenterol 2014; 49 (11): 1467–76.
35. Coëffier M, Gloro R, Boukhettala N et al. Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol 2010; 105 (5): 1181–8.
36. Piche T, Barbara G, Aubert P et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 2009; 58 (2): 196–201.
37. Bertiaux-Vandaële N, Youmba SB, Belmonte L et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol 2011; 106 (12): 2165–73.
38. Bonfiglio F, Henström M, Nag A et al. A GWAS meta-analysis from 5 population-based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterol Motil 2018; 30 (9): e13358.
39. Chadwick VS, Chen W, Shu D et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 2002; 122: 1778.
40. Liebregts T, Adam B, Bredack C et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology 2007; 132: 913.
41. Törnblom H, Lindberg G, Nyberg B, Veress B. Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology 2002; 123: 1972.
42. Ait-Belgnaoui A, Bradesi S, Fioramonti J et al. Acute stress-induced hypersensitivity to colonic distension depends upon increase in paracellular permeability: role of myosin light chain kinase. Pain 2005; 113 (1–2): 141–7.
43. Barbaro MR, Di Sabatino A, Cremon C et al. Interferon-y is increased in the gut of patients with irritable bowel syndrome and modulates serotonin metabolism. Am J Physiol Gastrointest Liver Physiol 2016; 310 (6): G439-47.
44. Chen J, Zhang Y, Deng Z. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Th1/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterol 2012; 12: 91.
45. Lee KN, Lee OY. The Role of Mast Cells in Irritable Bowel Syndrome. Gastroenterol Res Pract 2016; 2016: 2031480.
46. Guilarte M, Santos J, de Torres I et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut 2007; 56: 203.
47. Barbara G, Stanghellini V, De Giorgio R et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 2004; 126: 693.
48. Buhner S, Li Q, Vignali S et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 2009; 137 (4): 1425–34.
49. Barbara G, Wang B, Stanghellini V et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007; 132 (1): 26–37.
50. Schemann M, Camilleri M. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 2013; 144 (4): 698–704.e4.
51. Bueno L. Protease activated receptor 2: a new target for IBS treatment. Eur Rev Med Pharmacol Sci 2008; 12 (Suppl. 1): 95.
52. Gecse K, Róka R, Ferrier L et al. Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut 2008; 57: 591.
53. Edogawa S, Edwinson AL, Peters SA et al. Serine proteases as luminal mediators of intestinal barrier dysfunction and symptom severity in IBS. Gut 2019 Mar 28. pii: gutjnl-2018-317416.
54. Liang WJ, Zhang G, Luo HS et al. Tryptase and Protease-Activated Receptor 2 Expression Levels in Irritable Bowel Syndrome. Gut Liver 2016; 10 (3): 382–90.
55. Du L, Long Y, Kim JJ et al. Protease Activated Receptor-2 Induces Immune Activation and Visceral Hypersensitivity in Post-infectious Irritable Bowel Syndrome Mice. Dig Dis Sci. 2019; 64 (3): 729–739.
56. Stanghellini V, Chan FK, Hasler WL et al. Gastroduodenal Disorders. Gastroenterology 2016; 150 (6): 1380–92.
57. Маев И.В., Андреев Д.Н., Кучерявый Ю.А. Функциональная диспепсия. М.: Ремедиум, 2019.
[Maev I.V., Andreev D.N., Kucheriavyi Iu.A. Functional dyspepsia. Moscow: Remedium, 2019 (in Russian).]
58. Jung HK, Talley NJ. Role of the Duodenum in the Pathogenesis of Functional Dyspepsia: A Paradigm Shift. J Neurogastroenterol Motil 2018; 24 (3): 345–54.
59. Vanheel H, Vicario M, Vanuytsel T et al. Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut 2014; 63 (2): 262–71.
60. Vanheel H, Vicario M, Boesmans W et al. Activation of Eosinophils and Mast Cells in Functional Dyspepsia: an Ultrastructural Evaluation. Sci Rep 2018; 8 (1): 5383.
61. Du L, Chen B, Kim JJ et al. Micro-inflammation in functional dyspepsia: A systematic review and meta-analysis. Neurogastroenterol Motil 2018; 30 (4): e13304.
62. Маев И.В., Андреев Д.Н., Кучерявый Ю.А. и др. Современные представления о патофизиологических основах синдрома функциональной диспепсии. РЖГГК. 2015; 4: 15–22.
[Maev I.V., Andreev D.N., Kucheriavyi Iu.A.et al. Sovremennye predstavleniia o patofiziologicheskikh osnovakh sindroma funktsional'noi dispepsii. RZhGGK. 2015; 4: 15–22. (in Russian).]
63. Дичева Д.Т., Субботина Ю.С., Бектемирова Л.Г., Андреев Д.Н. Функциональная диспепсия: от патогенеза к терапевтическим аспектам. Мед. совет. 2019; 3: 18–25.
[Dicheva D.T., Subbotina Iu.S., Bektemirova L.G., Andreev D.N. Funktsional'naia dispepsiia: ot patogeneza k terapevticheskim aspektam. Med. sovet. 2019; 3: 18–25 (in Russian).]
64. Miwa H, Oshima T, Tomita T et al. Recent understanding of the pathophysiology of functional dyspepsia: role of the duodenum as the pathogenic center. J Gastroenterol 2019; 54 (4): 305–11.
65. Leech B, Schloss J, Steel A. Treatment Interventions for the Management of Intestinal Permeability: A Cross-Sectional Survey of Complementary and Integrative Medicine Practitioners. J Altern Complement Med 2019; 25 (6): 623–36.
66. Leech B, McIntyre E, Steel A, Sibbritt D. Risk factors associated with intestinal permeability in an adult population: A systematic review. Int J Clin Pract 2019: e13385. DOI: 10.1111/ijcp.13385
67. Sturniolo GC, Di Leo V, Ferronato A et al. Zinc supplementation tightens ‘leaky gut’ in Crohn's disease. Inflamm Bowel Dis 2001; 7 (2): 94–8.
68. Sturniolo GC, Fries W, Mazzon E et al. Effect of zinc supplementation on intestinal permeability in experimental colitis. J Lab Clin Med 2002; 139 (5): 311–5.
69. Zhou Q, Verne ML, Fields JZ et al. Randomised placebo-controlled trial of dietary glutamine supplements for postinfectious irritable bowel syndrome. Gut 2019; 68 (6): 996–1002.
70. Bertrand J, Ghouzali I, Guérin C et al. Glutamine Restores Tight Junction Protein Claudin-1 Expression in Colonic Mucosa of Patients With Diarrhea-Predominant Irritable Bowel Syndrome. JPEN J Parenter Enteral Nutr 2016; 40 (8): 1170–6.
71. Kelly CP, Green PH, Murray JA et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther 2013; 37 (2): 252–62.
72. Naito Y, Yoshikawa T. Rebamipide: a gastrointestinal protective drug with pleiotropic activities. Expert Rev Gastroenterol Hepatol 2010; 4 (3): 261–70.
73. Song DU, Ryu MH, Chay KO et al. Effect of rebamipide on the glycosaminoglycan content of the ulcerated rat stomach. Fundam Clin Pharmacol 1998; 12 (5): 546–52.
74. Suzuki T, Yoshida N, Nakabe N et al. Prophylactic effect of rebamipide on aspirin-induced gastric lesions and disruption of tight junctional protein zonula occludens-1 distribution. J Pharmacol Sci 2008; 106 (3): 469–77.
75. Tarnawski AS, Chai J, Pai R, Chiou SK. Rebamipide activates genes encoding angiogenic growth factors and Cox2 and stimulates angiogenesis: a key to its ulcer healing action? Dig Dis Sci 2004; 49 (2): 202–9.
76. Jaafar MH, Safi SZ, Tan MP et al. Efficacy of Rebamipide in Organic and Functional Dyspepsia: A Systematic Review and Meta-Analysis. Dig Dis Sci 2018; 63 (5): 1250–60.
77. Miwa H, Osada T, Nagahara A et al. Effect of a gastro-protective agent, rebamipide, on symptom improvement in patients with functional dyspepsia: a double-blind placebo-controlled study in Japan. J Gastroenterol Hepatol 2006; 21 (12): 1826–31.
78. Matysiak-Budnik T, Heyman M, Mégraud F. Review article: rebamipide and the digestive epithelial barrier. Aliment Pharmacol Ther 2003; 18 (Suppl. 1): 55–62.
79. Pittayanon R, Leelakusolvong S, Vilaichone RK et al. Thailand Dyspepsia Guidelines: 2018. J Neurogastroenterol Motil 2019; 25 (1): 15–26.
________________________________________________
1. Drossman DA, Hasler WL. Rome IV-Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology 2016; 150 (6): 1257–61.
2. Andreev D.N., Zaborovskii A.V., Trukhmanov A.S. et al. Evoliutsiia predstavlenii o funktsional'nykh zabolevaniiakh zheludochno-kishechnogo trakta v svete Rimskikh kriteriev IV peresmotra (2016 g.). RZhGGK. 2017; 1: 4–11 (in Russian).
3. De Bortoli N, Tolone S, Frazzoni M et al. Gastroesophageal reflux disease, functional dyspepsia and irritable bowel syndrome: common overlapping gastrointestinal disorders. Ann Gastroenterol 2018; 31 (6): 639–48.
4. Von Wulffen M, Talley NJ, Hammer J et al. Overlap of Irritable Bowel Syndrome and Functional Dyspepsia in the Clinical Setting: Prevalence and Risk Factors. Dig Dis Sci 2019; 64 (2): 480–6.
5. Ford AC, Marwaha A, Lim A, Moayyedi P. Systematic review and meta-analysis of the prevalence of irritable bowel syndrome in individuals with dyspepsia. Clin Gastroenterol Hepatol 2010; 8 (5): 401–9.
6. Choung RS. Natural history and overlap of functional gastrointestinal disorders. Korean J Gastroenterol 2012; 60 (6): 345–8.
7. Keita ÅV, Söderholm JD. Mucosal permeability and mast cells as targets for functional gastrointestinal disorders. Curr Opin Pharmacol 2018; 43: 66–71.
8. Holtmann G, Shah A, Morrison M. Pathophysiology of Functional Gastrointestinal Disorders: A Holistic Overview. Dig Dis 2017; 35 (Suppl. 1): 5–13.
9. Vialov S.S. Mucosal permeability disturbances as a pathogenesis factor of gastrointestinal tract functional disorders: rationale and correction possibilities. Consilium Medicum. 2018; 20 (12): 99–104. DOI: 10.26442/20751753.2018.12.180062 (in Russian).
10. Farré R, Vicario M. Abnormal Barrier Function in Gastrointestinal Disorders. Handb Exp Pharmacol 2017; 239: 193–217.
11. Bischoff SC, Barbara G, Buurman W et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterol 2014; 14: 189.
12. Pascual S, Martínez J, Pérez-Mateo M. The intestinal barrier: functional disorders in digestive and non-digestive diseases. Gastroenterol Hepatol 2001; 24 (5): 256–67.
13. Shen L, Turner JR. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol 2006; 290 (4): G577-82.
14. Camara-Lemarroy CR, Metz L, Meddings JB et al. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 2018; 141 (7): 1900–16.
15. Du L, Kim JJ, Shen J, Dai N. Crosstalk between Inflammation and ROCK/MLCK Signaling Pathways in Gastrointestinal Disorders with Intestinal Hyperpermeability. Gastroenterol Res Pract 2016; 2016: 7374197.
16. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011; 9 (5): 356–68.
17. Van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009; 71: 241–60.
18. Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 2016; 17 (9): 564–80.
19. Piche T. Tight junctions and IBS – the link between epithelial permeability, low-grade inflammation, and symptom generation? Neurogastroenterol Motil 2014; 26 (3): 296–302.
20. Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 2007; 127 (11): 2525–32.
21. Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008; 1778 (3): 660–9.
22. Hammer AM, Morris NL, Earley ZM, Choudhry MA. The First Line of Defense: The Effects of Alcohol on Post-Burn Intestinal Barrier, Immune Cells, and Microbiome. Alcohol Res 2015; 37 (2): 209–22.
23. Park MY, Kim MY, Seo YR et al. High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity. J Cancer Prev 2016; 21 (2): 95–103.
24. Wilcz-Villega EM, McClean S, O'Sullivan MA. Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am J Gastroenterol 2013; 108 (7): 1140–51.
25. Gunnarsson J, Simrén M. Peripheral factors in the pathophysiology of irritable bowel syndrome. Dig Liver Dis 2009; 41: 788–93.
26. Camilleri M, Oduyebo I, Halawi H. Chemical and molecular factors in irritable bowel syndrome: current knowledge, challenges, and unanswered questions. Am J Physiol Gastrointest Liver Physiol 2016; 311 (5): G777-G784.
27. Ng QX, Soh AYS, Loke W et al. The role of inflammation in irritable bowel syndrome (IBS). J Inflamm Res 2018; 11: 345–9.
28. Samsonov A.A., Andreev D.N., Dicheva D.T. Sindrom razdrazhennogo kishechnika s pozitsii sovremennoi gastroenterologii. Farmateka. 2014; 18: 7–14 (in Russian).
29. Dicheva D.T., Andreev D.N., Shcheglanova M.P., Partsvania-Vinogradova E.V. Sindrom razdrazhennogo kishechnika v svete Rimskikh kriteriev IV peresmotra (2016 g.). Med. sovet. 2018; 3: 60–6 (in Russian).
30. Barbara G, Grover M, Bercik P et al. Rome Foundation Working Team Report on Post-Infection Irritable Bowel Syndrome. Gastroenterology 2019; 156 (1): 46-58.e7.
31. Spiller RC, Jenkins D, Thornley JP et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 2000; 47: 804.
32. Marshall JK, Thabane M, Garg AX et al. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment Pharmacol Ther 2004; 20: 1317–22.
33. Vazquez-Roque MI, Camilleri M, Smyrk T et al. Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea. Am J Physiol Gastrointest Liver Physiol 2012; 303 (11): G1262-9.
34. Shulman RJ, Jarrett ME, Cain KC et al. Associations among gut permeability, inflammatory markers, and symptoms in patients with irritable bowel syndrome. J Gastroenterol 2014; 49 (11): 1467–76.
35. Coëffier M, Gloro R, Boukhettala N et al. Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol 2010; 105 (5): 1181–8.
36. Piche T, Barbara G, Aubert P et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 2009; 58 (2): 196–201.
37. Bertiaux-Vandaële N, Youmba SB, Belmonte L et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol 2011; 106 (12): 2165–73.
38. Bonfiglio F, Henström M, Nag A et al. A GWAS meta-analysis from 5 population-based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterol Motil 2018; 30 (9): e13358.
39. Chadwick VS, Chen W, Shu D et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 2002; 122: 1778.
40. Liebregts T, Adam B, Bredack C et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology 2007; 132: 913.
41. Törnblom H, Lindberg G, Nyberg B, Veress B. Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology 2002; 123: 1972.
42. Ait-Belgnaoui A, Bradesi S, Fioramonti J et al. Acute stress-induced hypersensitivity to colonic distension depends upon increase in paracellular permeability: role of myosin light chain kinase. Pain 2005; 113 (1–2): 141–7.
43. Barbaro MR, Di Sabatino A, Cremon C et al. Interferon-y is increased in the gut of patients with irritable bowel syndrome and modulates serotonin metabolism. Am J Physiol Gastrointest Liver Physiol 2016; 310 (6): G439-47.
44. Chen J, Zhang Y, Deng Z. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Th1/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterol 2012; 12: 91.
45. Lee KN, Lee OY. The Role of Mast Cells in Irritable Bowel Syndrome. Gastroenterol Res Pract 2016; 2016: 2031480.
46. Guilarte M, Santos J, de Torres I et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut 2007; 56: 203.
47. Barbara G, Stanghellini V, De Giorgio R et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 2004; 126: 693.
48. Buhner S, Li Q, Vignali S et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 2009; 137 (4): 1425–34.
49. Barbara G, Wang B, Stanghellini V et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007; 132 (1): 26–37.
50. Schemann M, Camilleri M. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 2013; 144 (4): 698–704.e4.
51. Bueno L. Protease activated receptor 2: a new target for IBS treatment. Eur Rev Med Pharmacol Sci 2008; 12 (Suppl. 1): 95.
52. Gecse K, Róka R, Ferrier L et al. Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut 2008; 57: 591.
53. Edogawa S, Edwinson AL, Peters SA et al. Serine proteases as luminal mediators of intestinal barrier dysfunction and symptom severity in IBS. Gut 2019 Mar 28. pii: gutjnl-2018-317416.
54. Liang WJ, Zhang G, Luo HS et al. Tryptase and Protease-Activated Receptor 2 Expression Levels in Irritable Bowel Syndrome. Gut Liver 2016; 10 (3): 382–90.
55. Du L, Long Y, Kim JJ et al. Protease Activated Receptor-2 Induces Immune Activation and Visceral Hypersensitivity in Post-infectious Irritable Bowel Syndrome Mice. Dig Dis Sci. 2019; 64 (3): 729–739.
56. Stanghellini V, Chan FK, Hasler WL et al. Gastroduodenal Disorders. Gastroenterology 2016; 150 (6): 1380–92.
57. Maev I.V., Andreev D.N., Kucheriavyi Iu.A. Functional dyspepsia. Moscow: Remedium, 2019 (in Russian).
58. Jung HK, Talley NJ. Role of the Duodenum in the Pathogenesis of Functional Dyspepsia: A Paradigm Shift. J Neurogastroenterol Motil 2018; 24 (3): 345–54.
59. Vanheel H, Vicario M, Vanuytsel T et al. Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut 2014; 63 (2): 262–71.
60. Vanheel H, Vicario M, Boesmans W et al. Activation of Eosinophils and Mast Cells in Functional Dyspepsia: an Ultrastructural Evaluation. Sci Rep 2018; 8 (1): 5383.
61. Du L, Chen B, Kim JJ et al. Micro-inflammation in functional dyspepsia: A systematic review and meta-analysis. Neurogastroenterol Motil 2018; 30 (4): e13304.
62. Maev I.V., Andreev D.N., Kucheriavyi Iu.A.et al. Sovremennye predstavleniia o patofiziologicheskikh osnovakh sindroma funktsional'noi dispepsii. RZhGGK. 2015; 4: 15–22. (in Russian).
63. Dicheva D.T., Subbotina Iu.S., Bektemirova L.G., Andreev D.N. Funktsional'naia dispepsiia: ot patogeneza k terapevticheskim aspektam. Med. sovet. 2019; 3: 18–25 (in Russian).
64. Miwa H, Oshima T, Tomita T et al. Recent understanding of the pathophysiology of functional dyspepsia: role of the duodenum as the pathogenic center. J Gastroenterol 2019; 54 (4): 305–11.
65. Leech B, Schloss J, Steel A. Treatment Interventions for the Management of Intestinal Permeability: A Cross-Sectional Survey of Complementary and Integrative Medicine Practitioners. J Altern Complement Med 2019; 25 (6): 623–36.
66. Leech B, McIntyre E, Steel A, Sibbritt D. Risk factors associated with intestinal permeability in an adult population: A systematic review. Int J Clin Pract 2019: e13385. DOI: 10.1111/ijcp.13385
67. Sturniolo GC, Di Leo V, Ferronato A et al. Zinc supplementation tightens ‘leaky gut’ in Crohn's disease. Inflamm Bowel Dis 2001; 7 (2): 94–8.
68. Sturniolo GC, Fries W, Mazzon E et al. Effect of zinc supplementation on intestinal permeability in experimental colitis. J Lab Clin Med 2002; 139 (5): 311–5.
69. Zhou Q, Verne ML, Fields JZ et al. Randomised placebo-controlled trial of dietary glutamine supplements for postinfectious irritable bowel syndrome. Gut 2019; 68 (6): 996–1002.
70. Bertrand J, Ghouzali I, Guérin C et al. Glutamine Restores Tight Junction Protein Claudin-1 Expression in Colonic Mucosa of Patients With Diarrhea-Predominant Irritable Bowel Syndrome. JPEN J Parenter Enteral Nutr 2016; 40 (8): 1170–6.
71. Kelly CP, Green PH, Murray JA et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther 2013; 37 (2): 252–62.
72. Naito Y, Yoshikawa T. Rebamipide: a gastrointestinal protective drug with pleiotropic activities. Expert Rev Gastroenterol Hepatol 2010; 4 (3): 261–70.
73. Song DU, Ryu MH, Chay KO et al. Effect of rebamipide on the glycosaminoglycan content of the ulcerated rat stomach. Fundam Clin Pharmacol 1998; 12 (5): 546–52.
74. Suzuki T, Yoshida N, Nakabe N et al. Prophylactic effect of rebamipide on aspirin-induced gastric lesions and disruption of tight junctional protein zonula occludens-1 distribution. J Pharmacol Sci 2008; 106 (3): 469–77.
75. Tarnawski AS, Chai J, Pai R, Chiou SK. Rebamipide activates genes encoding angiogenic growth factors and Cox2 and stimulates angiogenesis: a key to its ulcer healing action? Dig Dis Sci 2004; 49 (2): 202–9.
76. Jaafar MH, Safi SZ, Tan MP et al. Efficacy of Rebamipide in Organic and Functional Dyspepsia: A Systematic Review and Meta-Analysis. Dig Dis Sci 2018; 63 (5): 1250–60.
77. Miwa H, Osada T, Nagahara A et al. Effect of a gastro-protective agent, rebamipide, on symptom improvement in patients with functional dyspepsia: a double-blind placebo-controlled study in Japan. J Gastroenterol Hepatol 2006; 21 (12): 1826–31.
78. Matysiak-Budnik T, Heyman M, Mégraud F. Review article: rebamipide and the digestive epithelial barrier. Aliment Pharmacol Ther 2003; 18 (Suppl. 1): 55–62.
79. Pittayanon R, Leelakusolvong S, Vilaichone RK et al. Thailand Dyspepsia Guidelines: 2018. J Neurogastroenterol Motil 2019; 25 (1): 15–26.
ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России, Москва, Россия
*dna-mit8@mail.ru
________________________________________________
Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
*dna-mit8@mail.ru