Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Эффективность Реамберина в программе лечения острого панкреатита тяжелой степени
Эффективность Реамберина в программе лечения острого панкреатита тяжелой степени
Орлов Ю.П., Говорова Н.В., Глущенко А.В. и др. Эффективность Реамберина в программе лечения острого панкреатита тяжелой степени. Гастроэнтерология. Хирургия. Интенсивная терапия. Consilium Medicum. 2019; 2: 24–27. DOI: 10.26442/26583739.2019.2.190389
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Острый панкреатит остается актуальной проблемой не только для хирургии, но и для реаниматологии. Тяжесть острого панкреатита, независимо от этиологического фактора, в общем аспекте обусловлена гипоксическим компонентом на уровне панкреатоцита, что является следствием расстройств микроциркуляции на фоне воспаления, активации свободно-радикального окисления и митохондриальной дисфункции. Использование у пациентов в программе интенсивной патогенетически обоснованной терапии препаратов, содержащих янтарную кислоту, как раз и решает проблему на уровне митохондрий. Это позволяет достичь не только положительной динамики со стороны электролитов плазмы крови, восстановления реологических ее параметров, но и эффективной динамики снижения уровня активности ферментов (как в крови, так и в моче) и уровня воспалительного компонента, что косвенно является следствием восстановления микроциркуляции, устранения эффектов гипоксии на уровне митохондрий в структуре железы.
Ключевые слова: острый панкреатит, митохондриальная дисфункция, сукцинаты.
Key words: acute pancreatitis, mitochondrial dysfunction, suсcinatе.
Ключевые слова: острый панкреатит, митохондриальная дисфункция, сукцинаты.
________________________________________________
Key words: acute pancreatitis, mitochondrial dysfunction, suсcinatе.
Полный текст
Список литературы
1. Papachristou GI. Prediction of severe acute pancreatitis: current knowledge and novel insights. World J Gastroenterol 2008; 14: 6273–5.
2. Zhang H, Neuhöfer P, Song L et al. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest 2013; 123: 1019–31.
3. Carrasco C, Rodriguez AB, Pariente JA. Effects of melatonin on the oxidative damage and pancreatic antioxidant defenses in cerulein-induced acute pancreatitis in rats. Hepatobiliary Pancreatic Dis Int 2014; 13 (4): 442–6.
4. Park BK, Chung JB, Lee JH et al. Role of oxygen free radicals in patients with acute pancreatitis. World J Gastroenterol 2003; 9 (10): 2266–9.
5. Maciejczyk M, Skutnik-Radziszewska A, Zieniewska I et al. Antioxidant Defense, Oxidative Modification. Functioninan Early Phase of Cerulein Pancreatitis. Oxid Med Cell Longev 2019; 2019: 8403578.
6. Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: Where are we now? J Lab Clin Med 1992; 119: 598–620.
7. Lukyanova LD. Current issues of adaptation to hypoxia. Signal mechanisms and their role in system regulation. Patol Fiziologiia Eksperim Terapiia 2011; 1: 3–19.
8. Chance B, Williams GR. A method for the localization of sites for oxidative phosphorylation. Nature 1955; 176 (4475): 250–4.
9. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 1956; 221 (1): 477–89.
10. Ranson JH et al. Prognostic signs and the role of operativemanagement in acute pancreatitis. Surg Gynecol Obstet 1974; 139 (1): 69–81.
11. Singer M, Deuschman CS, Seymour CW et al. The Third International Consensus definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (8): 801–10.
12. Toouli J, Brooke-Smith M, Bassi C et al. Guidelines for the management of acute pancreatitis. J Gastroenterol Hepatol 2002; 17: 15–39.
13. Peti-Peterdi J, Kishore BK, Pluznick JL et al. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2016; 78: 391–414.
14. He W, Miao FJ, Lin DC. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004; 429 (6988): 188–93.
15. Krebs HA. Rate control of the tricarboxylic acid cycle. Adv Enzyme Regul 1970; 8: 335–53.
16. Pell VR, Chouchani ET, Frezza C et al. Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovasc Res 2016; 111 (2): 134–41.
17. Hawkins BJ, Levin MD, Doonan PJ et al. Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J Biol Chem 2010; 285 (34): 26494–505.
18. Zhang J, Wang YT, Miller JH et al. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Rep 2018; 23 (9): 2617–28.
2. Zhang H, Neuhöfer P, Song L et al. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest 2013; 123: 1019–31.
3. Carrasco C, Rodriguez AB, Pariente JA. Effects of melatonin on the oxidative damage and pancreatic antioxidant defenses in cerulein-induced acute pancreatitis in rats. Hepatobiliary Pancreatic Dis Int 2014; 13 (4): 442–6.
4. Park BK, Chung JB, Lee JH et al. Role of oxygen free radicals in patients with acute pancreatitis. World J Gastroenterol 2003; 9 (10): 2266–9.
5. Maciejczyk M, Skutnik-Radziszewska A, Zieniewska I et al. Antioxidant Defense, Oxidative Modification. Functioninan Early Phase of Cerulein Pancreatitis. Oxid Med Cell Longev 2019; 2019: 8403578.
6. Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: Where are we now? J Lab Clin Med 1992; 119: 598–620.
7. Lukyanova LD. Current issues of adaptation to hypoxia. Signal mechanisms and their role in system regulation. Patol Fiziologiia Eksperim Terapiia 2011; 1: 3–19.
8. Chance B, Williams GR. A method for the localization of sites for oxidative phosphorylation. Nature 1955; 176 (4475): 250–4.
9. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 1956; 221 (1): 477–89.
10. Ranson JH et al. Prognostic signs and the role of operativemanagement in acute pancreatitis. Surg Gynecol Obstet 1974; 139 (1): 69–81.
11. Singer M, Deuschman CS, Seymour CW et al. The Third International Consensus definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (8): 801–10.
12. Toouli J, Brooke-Smith M, Bassi C et al. Guidelines for the management of acute pancreatitis. J Gastroenterol Hepatol 2002; 17: 15–39.
13. Peti-Peterdi J, Kishore BK, Pluznick JL et al. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2016; 78: 391–414.
14. He W, Miao FJ, Lin DC. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004; 429 (6988): 188–93.
15. Krebs HA. Rate control of the tricarboxylic acid cycle. Adv Enzyme Regul 1970; 8: 335–53.
16. Pell VR, Chouchani ET, Frezza C et al. Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovasc Res 2016; 111 (2): 134–41.
17. Hawkins BJ, Levin MD, Doonan PJ et al. Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J Biol Chem 2010; 285 (34): 26494–505.
18. Zhang J, Wang YT, Miller JH et al. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Rep 2018; 23 (9): 2617–28.
2. Zhang H, Neuhöfer P, Song L et al. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest 2013; 123: 1019–31.
3. Carrasco C, Rodriguez AB, Pariente JA. Effects of melatonin on the oxidative damage and pancreatic antioxidant defenses in cerulein-induced acute pancreatitis in rats. Hepatobiliary Pancreatic Dis Int 2014; 13 (4): 442–6.
4. Park BK, Chung JB, Lee JH et al. Role of oxygen free radicals in patients with acute pancreatitis. World J Gastroenterol 2003; 9 (10): 2266–9.
5. Maciejczyk M, Skutnik-Radziszewska A, Zieniewska I et al. Antioxidant Defense, Oxidative Modification. Functioninan Early Phase of Cerulein Pancreatitis. Oxid Med Cell Longev 2019; 2019: 8403578.
6. Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: Where are we now? J Lab Clin Med 1992; 119: 598–620.
7. Lukyanova LD. Current issues of adaptation to hypoxia. Signal mechanisms and their role in system regulation. Patol Fiziologiia Eksperim Terapiia 2011; 1: 3–19.
8. Chance B, Williams GR. A method for the localization of sites for oxidative phosphorylation. Nature 1955; 176 (4475): 250–4.
9. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 1956; 221 (1): 477–89.
10. Ranson JH et al. Prognostic signs and the role of operativemanagement in acute pancreatitis. Surg Gynecol Obstet 1974; 139 (1): 69–81.
11. Singer M, Deuschman CS, Seymour CW et al. The Third International Consensus definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (8): 801–10.
12. Toouli J, Brooke-Smith M, Bassi C et al. Guidelines for the management of acute pancreatitis. J Gastroenterol Hepatol 2002; 17: 15–39.
13. Peti-Peterdi J, Kishore BK, Pluznick JL et al. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2016; 78: 391–414.
14. He W, Miao FJ, Lin DC. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004; 429 (6988): 188–93.
15. Krebs HA. Rate control of the tricarboxylic acid cycle. Adv Enzyme Regul 1970; 8: 335–53.
16. Pell VR, Chouchani ET, Frezza C et al. Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovasc Res 2016; 111 (2): 134–41.
17. Hawkins BJ, Levin MD, Doonan PJ et al. Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J Biol Chem 2010; 285 (34): 26494–505.
18. Zhang J, Wang YT, Miller JH et al. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Rep 2018; 23 (9): 2617–28.
________________________________________________
2. Zhang H, Neuhöfer P, Song L et al. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest 2013; 123: 1019–31.
3. Carrasco C, Rodriguez AB, Pariente JA. Effects of melatonin on the oxidative damage and pancreatic antioxidant defenses in cerulein-induced acute pancreatitis in rats. Hepatobiliary Pancreatic Dis Int 2014; 13 (4): 442–6.
4. Park BK, Chung JB, Lee JH et al. Role of oxygen free radicals in patients with acute pancreatitis. World J Gastroenterol 2003; 9 (10): 2266–9.
5. Maciejczyk M, Skutnik-Radziszewska A, Zieniewska I et al. Antioxidant Defense, Oxidative Modification. Functioninan Early Phase of Cerulein Pancreatitis. Oxid Med Cell Longev 2019; 2019: 8403578.
6. Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease: Where are we now? J Lab Clin Med 1992; 119: 598–620.
7. Lukyanova LD. Current issues of adaptation to hypoxia. Signal mechanisms and their role in system regulation. Patol Fiziologiia Eksperim Terapiia 2011; 1: 3–19.
8. Chance B, Williams GR. A method for the localization of sites for oxidative phosphorylation. Nature 1955; 176 (4475): 250–4.
9. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 1956; 221 (1): 477–89.
10. Ranson JH et al. Prognostic signs and the role of operativemanagement in acute pancreatitis. Surg Gynecol Obstet 1974; 139 (1): 69–81.
11. Singer M, Deuschman CS, Seymour CW et al. The Third International Consensus definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (8): 801–10.
12. Toouli J, Brooke-Smith M, Bassi C et al. Guidelines for the management of acute pancreatitis. J Gastroenterol Hepatol 2002; 17: 15–39.
13. Peti-Peterdi J, Kishore BK, Pluznick JL et al. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2016; 78: 391–414.
14. He W, Miao FJ, Lin DC. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004; 429 (6988): 188–93.
15. Krebs HA. Rate control of the tricarboxylic acid cycle. Adv Enzyme Regul 1970; 8: 335–53.
16. Pell VR, Chouchani ET, Frezza C et al. Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovasc Res 2016; 111 (2): 134–41.
17. Hawkins BJ, Levin MD, Doonan PJ et al. Mitochondrial complex II prevents hypoxic but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial membrane potential loss. J Biol Chem 2010; 285 (34): 26494–505.
18. Zhang J, Wang YT, Miller JH et al. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Rep 2018; 23 (9): 2617–28.
Авторы
Ю.П. Орлов, Н.В. Говорова, А.В. Глущенко, С.Д. Леготина, О.Е. Меликов
ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России, Омск, Россия
*orlov-up@mail.ru
Omsk State Medical University, Omsk, Russia
*orlov-up@mail.ru
ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России, Омск, Россия
*orlov-up@mail.ru
________________________________________________
Omsk State Medical University, Omsk, Russia
*orlov-up@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
