Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Препараты, влияющие на обмен аденозина: предпосылки к включению в схему терапии неспецифической боли в спине
Препараты, влияющие на обмен аденозина: предпосылки к включению в схему терапии неспецифической боли в спине
Касаткин Д.С. Препараты, влияющие на обмен аденозина: предпосылки к включению в схему терапии неспецифической боли в спине. Неврология и Ревматология (Прил. к журн. Consilium Medicum). 2019; 1: 37–40. DOI: 10.26442/2414357X.2019.1.190368
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Используемые в повседневной практике анальгетики, несмотря на достаточно широкий спектр международных непатентованных и торговых наименований, применяют в качестве мишени ограниченное число патогенетических механизмов. В данной статье обсуждается относительно новый механизм потенциального обезболивания – активация аденозиновых рецепторов в центральной и периферической нервной системе, рассматриваются вопросы включения препаратов, влияющих на обмен аденозина, в схему терапии при острых и хронических болях в спине, а также вероятное негативное влияние кофеинсодержащих препаратов как антагонистов аденозиновых рецепторов на эффективность анальгетиков.
Ключевые слова: аденозин, антиноцицепция, анальгетик, дипиридамол, кофеин.
Key words: adenosine, antinociception, analgesic, dipyridamole, caffeine.
Ключевые слова: аденозин, антиноцицепция, анальгетик, дипиридамол, кофеин.
________________________________________________
Key words: adenosine, antinociception, analgesic, dipyridamole, caffeine.
Полный текст
Список литературы
1. Burgess G, Williams D. The discovery and development of analgesics: new mechanisms, new modalities. J Clin Invest 2010; 120 (11): 3753–9.
2. Bannwarth B, Kostine M. Biologics in the treatment of chronic pain: a new era of therapy? Clin Pharmacol Ther 2015; 97 (2): 122–4.
3. Wu Q, Inman RD, Davis KD. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates. Pain 2015; 156: 297–304.
4. Kersten C, Cameron MG, Laird B, Mjåland S. Epidermal growth factor receptor-inhibition (EGFR-I) in the treatment of neuropathic pain. Br J Anaesth 2015; 115 (5): 761–7.
5. Yeh JF, Akinci A, Shaker M. Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain 2017; 13: 1744806917740233.
6. Burnstock G. Purinergic nerves. Pharmacol Rev 1972; 24: 509–81.
7. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 2007; 87: 659–797.
8. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in
different systems. Int Rev Cytol 2004; 240: 31–304.
9. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci 2007; 64: 71–1483.
10. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Pharmacology. XXV. Nomenclature and classifi cation of adenosine receptors. Pharmacol Rev 2001; 53:
527–52.
11. Bodin P, Burnstock G. Purinergic signalling: ATP release. Neurochem Res 2001; 26:
959–69.
12. Zimmermann H. Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 2001; 52: 44–56.
13. Vapaatalo H, Onken D, Neuvonen PJ, Westermann E. Stereospecificity in some central and circulatory effects of phenylisopropyladenosine (PIA). Arzneimittelforschung 1975; 25: 407–10.
14. Ho IK, Loh HH, Way EL. Cyclic adenosine monophosphate antagonism of morphine analgesia. J Pharmacol Exp Ther 1973; 185 (2): 336–46.
15. Jurna I. Cyclic nucleotides and aminophylline produce different effects on nociceptive motor and sensory responses in the rat spinal cord. Naunyn-Schmiedeberg's Arch Pharmacol 1984; 327: 23.
16. De Lander GE, Hopkins CJ. Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine. J Pharmacol Exp Ther 1986; 239: 88–93.
17. Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 2003; 69: 313–40.
18. Lewis C, Neidhart S, Holy C et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 1995; 377: 432–5.
19. Lima FO, Souza GR, Verri WA et al. Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 2010; 151: 506–15.
20. Ackley MA, Governo RJM, Cass CE et al. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by nucleoside transporter ENT1. J Physiol 2003; 548: 507–17.
21. Magni G, Ceruti S. The purinergic system and glial cells: emerging costars in nociception. Biomed Res Int 2014; 2014: 495789.
22. Liu XJ, Sawynok J. Peripheral antihyperalgesic effects by adenosine A1 receptor agonists and inhibitors of adenosine metabolism in a rat neuropathic pain model. Analgesia 2000; 5: 19–29.
23. Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn-Schmiedebergs Arch Pharmacol 2000; 362: 375–81.
24. Hurt JK, Zylka MJ. PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol Pain 2012; 8: 28.
25. Carruthers AM, Sellers LA, Jenkins DW et al. Adenosine A1 receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 2001; 59: 1533–41.
26. Kaelin-Lang A, Lauterburg T, Burgunder JM. Expression of adenosine A2a receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 1998; 246 (1): 21–4.
27. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 (Suppl. 1): s10–s28.
28. Taiwo YO, Levine JD. Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 1990; 38 (3): 757–62.
29. Godfrey L, Yan L, Clarke GD et al. Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur J Pharmacol 2006; 531 (1–3): 80–6.
30. Guntz E, Dumont H, Pastijn E et al. Expression of adenosine A 2A receptors in the rat lumbar spinal cord and implications in the modulation of N-methyl-d-aspartate receptor currents. Anesth Analg 2008; 106 (6): 1882–9.
31. Suh HW, Song DK, Kim YH. Differential effects of adenosine receptor antagonists injected intrathecally on antinociception induced by morphine and beta-endorphin administered intracerebroventricularly in the mouse. Neuropeptides 1997; 31 (4): 339–44.
32. Yoon MH, Bae HB, Choi JI et al. Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology 2006; 78 (1): 21–6.
33. Hussey MJ, Clarke GD, Ledent C et al. Deletion of the adenosine A2A receptor in mice enhances spinal cord neurochemical responses to an inflammatory nociceptive stimulus. Neurosci Lett 2012; 506: 198–202.
34. Loram LC, Harrison JA, Sloane EM et al. Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 2009; 29: 14015–25.
35. Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13 (1): 41–51.
36. Feoktistov I, Biaggioni I. Role of adenosine A2B receptors in inflammation. Adv Pharmacol 2011; 61: 115–44.
37. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of adenosine receptors – an update. Pharmacol Rev 2011; 63: 1–34.
38. Loram LC, Taylor FR, Strand KA et al. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun 2013; 33: 112–22.
39. Borea PA, Varani K, Vincenzi F et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2014; 67: 74–102.
40. Chen Z, Janes K, Chen C et al. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB 2012; J26: 1855–65.
41. Rauck RL, North J, Eisenach JC. Intrathecal clonidine and adenosine: effects on pain and sensory processing in patients with chronic regional pain syndrome. Pain 2015; 156 (1): 88–95.
42. Sawynok J, Reid AR, Fredholm BB. Caffeine reverses antinociception by amitriptyline in wild type mice but not in those lacking adenosine A1receptors. Neurosci Lett 2008; 440: 181–4.
43. Tomic MA, Vuckovic SM, Stepanovic-Petrovic M et al. The anti-hyperalgesic effects of carbamazepine and oxcarbazepine are attenuated by treatment with adenosine receptor antagonists. Pain 2004; 111: 253–60.
44. Sawynok J, Reid AR, Liu J. Spinal and peripheral adenosine A1receptors contribute to antinociception by tramadol in the formalintest in mice. Eur J Pharmacol 2013; 714: 373–8.
45. Martins DF, Prado MRB, Daruge E et al. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPSI: evidence for the involvement of spinal adenosine A1receptor. J Peripher Nerv Syst 2015; 20 (4): 403–9.
46. Langevin HM. Acupuncture, connective tissue, and peripheral sensory modulation. Crit Rev Eukaryot Gene Exp 2014; 24: 249–53.
47. Goldman N, Chen M, Fujita T et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neurosci 2010; 13: 883–9.
48. Takano T, Chen XC, Luo F et al. Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 2012; 13: 1215–23.
49. Marchand S, Li J, Charest J. Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. New Eng J Med 1995; 333: 325–6.
50. Mense S. Muscle pain: mechanisms and clinical significance. Dtsch Arztebl Int 2008; 105 (12): 214–9.
51. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159–216.
52. Paryavi E, Jobin CM, Ludwig SC et al. Acute exertional lumbar paraspinal compartment syndrome. Spine (Phila Pa 1976) 2010; 35 (25): E1529–33.
53. Kauppila LI. Atherosclerosis and disc degeneration/low-back pain – a systematic review. Eur J Vasc Endovasc Surg 2009; 37 (6): 661–70.
54. Касаткин Д.С. Боль и мышечный спазм: патогенетическое обоснование использования миорелаксантов в терапии боли. Клин. фармакология и терапия. 2011; 5: 75–8.
/ Kasatkin D.S. Bol' i myshechnyi spazm: patogeneticheskoe obosnovanie ispol'zovaniia miorelaksantov v terapii boli. Klin. farmakologiia i terapiia. 2011; 5: 75–8. [in Russian]
55. Bannwarth B, Allaert FA, Avouac B et al. A randomized, double-blind, placebo controlled triphosphate in study of oral adenosine subacute low back pain. J Rheumatol 2005; 32 (6): 1114–7.
56. Street SE, Walsh PL, Sowa NA et al. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol Pain 2011; 7: 80.
57. Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors.
Br J Clin Pharmacol 2011; 72 (4): 634–46.
58. Chakrabarti S, Freedman JE. Dipyridamole, cerebrovascular disease and the vasculature. Vascul Pharmacol 2008; 48: 143–9.
59. Söderbäck U, Sollevi A, Wallen NH et al. Anti-aggregatory effects of physiological concentrations of adenosine in human whole blood as assessed by filtragometry. Clin Sci (Lond) 1991; 81 (5): 691–4.
2. Bannwarth B, Kostine M. Biologics in the treatment of chronic pain: a new era of therapy? Clin Pharmacol Ther 2015; 97 (2): 122–4.
3. Wu Q, Inman RD, Davis KD. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates. Pain 2015; 156: 297–304.
4. Kersten C, Cameron MG, Laird B, Mjåland S. Epidermal growth factor receptor-inhibition (EGFR-I) in the treatment of neuropathic pain. Br J Anaesth 2015; 115 (5): 761–7.
5. Yeh JF, Akinci A, Shaker M. Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain 2017; 13: 1744806917740233.
6. Burnstock G. Purinergic nerves. Pharmacol Rev 1972; 24: 509–81.
7. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 2007; 87: 659–797.
8. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in
different systems. Int Rev Cytol 2004; 240: 31–304.
9. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci 2007; 64: 71–1483.
10. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Pharmacology. XXV. Nomenclature and classifi cation of adenosine receptors. Pharmacol Rev 2001; 53:
527–52.
11. Bodin P, Burnstock G. Purinergic signalling: ATP release. Neurochem Res 2001; 26:
959–69.
12. Zimmermann H. Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 2001; 52: 44–56.
13. Vapaatalo H, Onken D, Neuvonen PJ, Westermann E. Stereospecificity in some central and circulatory effects of phenylisopropyladenosine (PIA). Arzneimittelforschung 1975; 25: 407–10.
14. Ho IK, Loh HH, Way EL. Cyclic adenosine monophosphate antagonism of morphine analgesia. J Pharmacol Exp Ther 1973; 185 (2): 336–46.
15. Jurna I. Cyclic nucleotides and aminophylline produce different effects on nociceptive motor and sensory responses in the rat spinal cord. Naunyn-Schmiedeberg's Arch Pharmacol 1984; 327: 23.
16. De Lander GE, Hopkins CJ. Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine. J Pharmacol Exp Ther 1986; 239: 88–93.
17. Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 2003; 69: 313–40.
18. Lewis C, Neidhart S, Holy C et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 1995; 377: 432–5.
19. Lima FO, Souza GR, Verri WA et al. Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 2010; 151: 506–15.
20. Ackley MA, Governo RJM, Cass CE et al. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by nucleoside transporter ENT1. J Physiol 2003; 548: 507–17.
21. Magni G, Ceruti S. The purinergic system and glial cells: emerging costars in nociception. Biomed Res Int 2014; 2014: 495789.
22. Liu XJ, Sawynok J. Peripheral antihyperalgesic effects by adenosine A1 receptor agonists and inhibitors of adenosine metabolism in a rat neuropathic pain model. Analgesia 2000; 5: 19–29.
23. Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn-Schmiedebergs Arch Pharmacol 2000; 362: 375–81.
24. Hurt JK, Zylka MJ. PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol Pain 2012; 8: 28.
25. Carruthers AM, Sellers LA, Jenkins DW et al. Adenosine A1 receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 2001; 59: 1533–41.
26. Kaelin-Lang A, Lauterburg T, Burgunder JM. Expression of adenosine A2a receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 1998; 246 (1): 21–4.
27. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 (Suppl. 1): s10–s28.
28. Taiwo YO, Levine JD. Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 1990; 38 (3): 757–62.
29. Godfrey L, Yan L, Clarke GD et al. Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur J Pharmacol 2006; 531 (1–3): 80–6.
30. Guntz E, Dumont H, Pastijn E et al. Expression of adenosine A 2A receptors in the rat lumbar spinal cord and implications in the modulation of N-methyl-d-aspartate receptor currents. Anesth Analg 2008; 106 (6): 1882–9.
31. Suh HW, Song DK, Kim YH. Differential effects of adenosine receptor antagonists injected intrathecally on antinociception induced by morphine and beta-endorphin administered intracerebroventricularly in the mouse. Neuropeptides 1997; 31 (4): 339–44.
32. Yoon MH, Bae HB, Choi JI et al. Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology 2006; 78 (1): 21–6.
33. Hussey MJ, Clarke GD, Ledent C et al. Deletion of the adenosine A2A receptor in mice enhances spinal cord neurochemical responses to an inflammatory nociceptive stimulus. Neurosci Lett 2012; 506: 198–202.
34. Loram LC, Harrison JA, Sloane EM et al. Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 2009; 29: 14015–25.
35. Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13 (1): 41–51.
36. Feoktistov I, Biaggioni I. Role of adenosine A2B receptors in inflammation. Adv Pharmacol 2011; 61: 115–44.
37. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of adenosine receptors – an update. Pharmacol Rev 2011; 63: 1–34.
38. Loram LC, Taylor FR, Strand KA et al. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun 2013; 33: 112–22.
39. Borea PA, Varani K, Vincenzi F et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2014; 67: 74–102.
40. Chen Z, Janes K, Chen C et al. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB 2012; J26: 1855–65.
41. Rauck RL, North J, Eisenach JC. Intrathecal clonidine and adenosine: effects on pain and sensory processing in patients with chronic regional pain syndrome. Pain 2015; 156 (1): 88–95.
42. Sawynok J, Reid AR, Fredholm BB. Caffeine reverses antinociception by amitriptyline in wild type mice but not in those lacking adenosine A1receptors. Neurosci Lett 2008; 440: 181–4.
43. Tomic MA, Vuckovic SM, Stepanovic-Petrovic M et al. The anti-hyperalgesic effects of carbamazepine and oxcarbazepine are attenuated by treatment with adenosine receptor antagonists. Pain 2004; 111: 253–60.
44. Sawynok J, Reid AR, Liu J. Spinal and peripheral adenosine A1receptors contribute to antinociception by tramadol in the formalintest in mice. Eur J Pharmacol 2013; 714: 373–8.
45. Martins DF, Prado MRB, Daruge E et al. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPSI: evidence for the involvement of spinal adenosine A1receptor. J Peripher Nerv Syst 2015; 20 (4): 403–9.
46. Langevin HM. Acupuncture, connective tissue, and peripheral sensory modulation. Crit Rev Eukaryot Gene Exp 2014; 24: 249–53.
47. Goldman N, Chen M, Fujita T et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neurosci 2010; 13: 883–9.
48. Takano T, Chen XC, Luo F et al. Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 2012; 13: 1215–23.
49. Marchand S, Li J, Charest J. Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. New Eng J Med 1995; 333: 325–6.
50. Mense S. Muscle pain: mechanisms and clinical significance. Dtsch Arztebl Int 2008; 105 (12): 214–9.
51. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159–216.
52. Paryavi E, Jobin CM, Ludwig SC et al. Acute exertional lumbar paraspinal compartment syndrome. Spine (Phila Pa 1976) 2010; 35 (25): E1529–33.
53. Kauppila LI. Atherosclerosis and disc degeneration/low-back pain – a systematic review. Eur J Vasc Endovasc Surg 2009; 37 (6): 661–70.
54. Kasatkin D.S. Bol' i myshechnyi spazm: patogeneticheskoe obosnovanie ispol'zovaniia miorelaksantov v terapii boli. Klin. farmakologiia i terapiia. 2011; 5: 75–8. [in Russian]
55. Bannwarth B, Allaert FA, Avouac B et al. A randomized, double-blind, placebo controlled triphosphate in study of oral adenosine subacute low back pain. J Rheumatol 2005; 32 (6): 1114–7.
56. Street SE, Walsh PL, Sowa NA et al. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol Pain 2011; 7: 80.
57. Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol 2011; 72 (4): 634–46.
58. Chakrabarti S, Freedman JE. Dipyridamole, cerebrovascular disease and the vasculature. Vascul Pharmacol 2008; 48: 143–9.
59. Söderbäck U, Sollevi A, Wallen NH et al. Anti-aggregatory effects of physiological concentrations of adenosine in human whole blood as assessed by filtragometry. Clin Sci (Lond) 1991; 81 (5): 691–4.
2. Bannwarth B, Kostine M. Biologics in the treatment of chronic pain: a new era of therapy? Clin Pharmacol Ther 2015; 97 (2): 122–4.
3. Wu Q, Inman RD, Davis KD. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates. Pain 2015; 156: 297–304.
4. Kersten C, Cameron MG, Laird B, Mjåland S. Epidermal growth factor receptor-inhibition (EGFR-I) in the treatment of neuropathic pain. Br J Anaesth 2015; 115 (5): 761–7.
5. Yeh JF, Akinci A, Shaker M. Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain 2017; 13: 1744806917740233.
6. Burnstock G. Purinergic nerves. Pharmacol Rev 1972; 24: 509–81.
7. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 2007; 87: 659–797.
8. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in
different systems. Int Rev Cytol 2004; 240: 31–304.
9. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci 2007; 64: 71–1483.
10. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Pharmacology. XXV. Nomenclature and classifi cation of adenosine receptors. Pharmacol Rev 2001; 53:
527–52.
11. Bodin P, Burnstock G. Purinergic signalling: ATP release. Neurochem Res 2001; 26:
959–69.
12. Zimmermann H. Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 2001; 52: 44–56.
13. Vapaatalo H, Onken D, Neuvonen PJ, Westermann E. Stereospecificity in some central and circulatory effects of phenylisopropyladenosine (PIA). Arzneimittelforschung 1975; 25: 407–10.
14. Ho IK, Loh HH, Way EL. Cyclic adenosine monophosphate antagonism of morphine analgesia. J Pharmacol Exp Ther 1973; 185 (2): 336–46.
15. Jurna I. Cyclic nucleotides and aminophylline produce different effects on nociceptive motor and sensory responses in the rat spinal cord. Naunyn-Schmiedeberg's Arch Pharmacol 1984; 327: 23.
16. De Lander GE, Hopkins CJ. Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine. J Pharmacol Exp Ther 1986; 239: 88–93.
17. Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 2003; 69: 313–40.
18. Lewis C, Neidhart S, Holy C et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 1995; 377: 432–5.
19. Lima FO, Souza GR, Verri WA et al. Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 2010; 151: 506–15.
20. Ackley MA, Governo RJM, Cass CE et al. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by nucleoside transporter ENT1. J Physiol 2003; 548: 507–17.
21. Magni G, Ceruti S. The purinergic system and glial cells: emerging costars in nociception. Biomed Res Int 2014; 2014: 495789.
22. Liu XJ, Sawynok J. Peripheral antihyperalgesic effects by adenosine A1 receptor agonists and inhibitors of adenosine metabolism in a rat neuropathic pain model. Analgesia 2000; 5: 19–29.
23. Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn-Schmiedebergs Arch Pharmacol 2000; 362: 375–81.
24. Hurt JK, Zylka MJ. PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol Pain 2012; 8: 28.
25. Carruthers AM, Sellers LA, Jenkins DW et al. Adenosine A1 receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 2001; 59: 1533–41.
26. Kaelin-Lang A, Lauterburg T, Burgunder JM. Expression of adenosine A2a receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 1998; 246 (1): 21–4.
27. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 (Suppl. 1): s10–s28.
28. Taiwo YO, Levine JD. Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 1990; 38 (3): 757–62.
29. Godfrey L, Yan L, Clarke GD et al. Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur J Pharmacol 2006; 531 (1–3): 80–6.
30. Guntz E, Dumont H, Pastijn E et al. Expression of adenosine A 2A receptors in the rat lumbar spinal cord and implications in the modulation of N-methyl-d-aspartate receptor currents. Anesth Analg 2008; 106 (6): 1882–9.
31. Suh HW, Song DK, Kim YH. Differential effects of adenosine receptor antagonists injected intrathecally on antinociception induced by morphine and beta-endorphin administered intracerebroventricularly in the mouse. Neuropeptides 1997; 31 (4): 339–44.
32. Yoon MH, Bae HB, Choi JI et al. Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology 2006; 78 (1): 21–6.
33. Hussey MJ, Clarke GD, Ledent C et al. Deletion of the adenosine A2A receptor in mice enhances spinal cord neurochemical responses to an inflammatory nociceptive stimulus. Neurosci Lett 2012; 506: 198–202.
34. Loram LC, Harrison JA, Sloane EM et al. Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 2009; 29: 14015–25.
35. Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13 (1): 41–51.
36. Feoktistov I, Biaggioni I. Role of adenosine A2B receptors in inflammation. Adv Pharmacol 2011; 61: 115–44.
37. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of adenosine receptors – an update. Pharmacol Rev 2011; 63: 1–34.
38. Loram LC, Taylor FR, Strand KA et al. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun 2013; 33: 112–22.
39. Borea PA, Varani K, Vincenzi F et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2014; 67: 74–102.
40. Chen Z, Janes K, Chen C et al. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB 2012; J26: 1855–65.
41. Rauck RL, North J, Eisenach JC. Intrathecal clonidine and adenosine: effects on pain and sensory processing in patients with chronic regional pain syndrome. Pain 2015; 156 (1): 88–95.
42. Sawynok J, Reid AR, Fredholm BB. Caffeine reverses antinociception by amitriptyline in wild type mice but not in those lacking adenosine A1receptors. Neurosci Lett 2008; 440: 181–4.
43. Tomic MA, Vuckovic SM, Stepanovic-Petrovic M et al. The anti-hyperalgesic effects of carbamazepine and oxcarbazepine are attenuated by treatment with adenosine receptor antagonists. Pain 2004; 111: 253–60.
44. Sawynok J, Reid AR, Liu J. Spinal and peripheral adenosine A1receptors contribute to antinociception by tramadol in the formalintest in mice. Eur J Pharmacol 2013; 714: 373–8.
45. Martins DF, Prado MRB, Daruge E et al. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPSI: evidence for the involvement of spinal adenosine A1receptor. J Peripher Nerv Syst 2015; 20 (4): 403–9.
46. Langevin HM. Acupuncture, connective tissue, and peripheral sensory modulation. Crit Rev Eukaryot Gene Exp 2014; 24: 249–53.
47. Goldman N, Chen M, Fujita T et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neurosci 2010; 13: 883–9.
48. Takano T, Chen XC, Luo F et al. Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 2012; 13: 1215–23.
49. Marchand S, Li J, Charest J. Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. New Eng J Med 1995; 333: 325–6.
50. Mense S. Muscle pain: mechanisms and clinical significance. Dtsch Arztebl Int 2008; 105 (12): 214–9.
51. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159–216.
52. Paryavi E, Jobin CM, Ludwig SC et al. Acute exertional lumbar paraspinal compartment syndrome. Spine (Phila Pa 1976) 2010; 35 (25): E1529–33.
53. Kauppila LI. Atherosclerosis and disc degeneration/low-back pain – a systematic review. Eur J Vasc Endovasc Surg 2009; 37 (6): 661–70.
54. Касаткин Д.С. Боль и мышечный спазм: патогенетическое обоснование использования миорелаксантов в терапии боли. Клин. фармакология и терапия. 2011; 5: 75–8.
/ Kasatkin D.S. Bol' i myshechnyi spazm: patogeneticheskoe obosnovanie ispol'zovaniia miorelaksantov v terapii boli. Klin. farmakologiia i terapiia. 2011; 5: 75–8. [in Russian]
55. Bannwarth B, Allaert FA, Avouac B et al. A randomized, double-blind, placebo controlled triphosphate in study of oral adenosine subacute low back pain. J Rheumatol 2005; 32 (6): 1114–7.
56. Street SE, Walsh PL, Sowa NA et al. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol Pain 2011; 7: 80.
57. Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors.
Br J Clin Pharmacol 2011; 72 (4): 634–46.
58. Chakrabarti S, Freedman JE. Dipyridamole, cerebrovascular disease and the vasculature. Vascul Pharmacol 2008; 48: 143–9.
59. Söderbäck U, Sollevi A, Wallen NH et al. Anti-aggregatory effects of physiological concentrations of adenosine in human whole blood as assessed by filtragometry. Clin Sci (Lond) 1991; 81 (5): 691–4.
________________________________________________
2. Bannwarth B, Kostine M. Biologics in the treatment of chronic pain: a new era of therapy? Clin Pharmacol Ther 2015; 97 (2): 122–4.
3. Wu Q, Inman RD, Davis KD. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates. Pain 2015; 156: 297–304.
4. Kersten C, Cameron MG, Laird B, Mjåland S. Epidermal growth factor receptor-inhibition (EGFR-I) in the treatment of neuropathic pain. Br J Anaesth 2015; 115 (5): 761–7.
5. Yeh JF, Akinci A, Shaker M. Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain 2017; 13: 1744806917740233.
6. Burnstock G. Purinergic nerves. Pharmacol Rev 1972; 24: 509–81.
7. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 2007; 87: 659–797.
8. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in
different systems. Int Rev Cytol 2004; 240: 31–304.
9. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci 2007; 64: 71–1483.
10. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Pharmacology. XXV. Nomenclature and classifi cation of adenosine receptors. Pharmacol Rev 2001; 53:
527–52.
11. Bodin P, Burnstock G. Purinergic signalling: ATP release. Neurochem Res 2001; 26:
959–69.
12. Zimmermann H. Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 2001; 52: 44–56.
13. Vapaatalo H, Onken D, Neuvonen PJ, Westermann E. Stereospecificity in some central and circulatory effects of phenylisopropyladenosine (PIA). Arzneimittelforschung 1975; 25: 407–10.
14. Ho IK, Loh HH, Way EL. Cyclic adenosine monophosphate antagonism of morphine analgesia. J Pharmacol Exp Ther 1973; 185 (2): 336–46.
15. Jurna I. Cyclic nucleotides and aminophylline produce different effects on nociceptive motor and sensory responses in the rat spinal cord. Naunyn-Schmiedeberg's Arch Pharmacol 1984; 327: 23.
16. De Lander GE, Hopkins CJ. Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine. J Pharmacol Exp Ther 1986; 239: 88–93.
17. Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 2003; 69: 313–40.
18. Lewis C, Neidhart S, Holy C et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 1995; 377: 432–5.
19. Lima FO, Souza GR, Verri WA et al. Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 2010; 151: 506–15.
20. Ackley MA, Governo RJM, Cass CE et al. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by nucleoside transporter ENT1. J Physiol 2003; 548: 507–17.
21. Magni G, Ceruti S. The purinergic system and glial cells: emerging costars in nociception. Biomed Res Int 2014; 2014: 495789.
22. Liu XJ, Sawynok J. Peripheral antihyperalgesic effects by adenosine A1 receptor agonists and inhibitors of adenosine metabolism in a rat neuropathic pain model. Analgesia 2000; 5: 19–29.
23. Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn-Schmiedebergs Arch Pharmacol 2000; 362: 375–81.
24. Hurt JK, Zylka MJ. PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol Pain 2012; 8: 28.
25. Carruthers AM, Sellers LA, Jenkins DW et al. Adenosine A1 receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 2001; 59: 1533–41.
26. Kaelin-Lang A, Lauterburg T, Burgunder JM. Expression of adenosine A2a receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 1998; 246 (1): 21–4.
27. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 (Suppl. 1): s10–s28.
28. Taiwo YO, Levine JD. Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 1990; 38 (3): 757–62.
29. Godfrey L, Yan L, Clarke GD et al. Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur J Pharmacol 2006; 531 (1–3): 80–6.
30. Guntz E, Dumont H, Pastijn E et al. Expression of adenosine A 2A receptors in the rat lumbar spinal cord and implications in the modulation of N-methyl-d-aspartate receptor currents. Anesth Analg 2008; 106 (6): 1882–9.
31. Suh HW, Song DK, Kim YH. Differential effects of adenosine receptor antagonists injected intrathecally on antinociception induced by morphine and beta-endorphin administered intracerebroventricularly in the mouse. Neuropeptides 1997; 31 (4): 339–44.
32. Yoon MH, Bae HB, Choi JI et al. Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology 2006; 78 (1): 21–6.
33. Hussey MJ, Clarke GD, Ledent C et al. Deletion of the adenosine A2A receptor in mice enhances spinal cord neurochemical responses to an inflammatory nociceptive stimulus. Neurosci Lett 2012; 506: 198–202.
34. Loram LC, Harrison JA, Sloane EM et al. Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 2009; 29: 14015–25.
35. Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13 (1): 41–51.
36. Feoktistov I, Biaggioni I. Role of adenosine A2B receptors in inflammation. Adv Pharmacol 2011; 61: 115–44.
37. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of adenosine receptors – an update. Pharmacol Rev 2011; 63: 1–34.
38. Loram LC, Taylor FR, Strand KA et al. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun 2013; 33: 112–22.
39. Borea PA, Varani K, Vincenzi F et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2014; 67: 74–102.
40. Chen Z, Janes K, Chen C et al. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB 2012; J26: 1855–65.
41. Rauck RL, North J, Eisenach JC. Intrathecal clonidine and adenosine: effects on pain and sensory processing in patients with chronic regional pain syndrome. Pain 2015; 156 (1): 88–95.
42. Sawynok J, Reid AR, Fredholm BB. Caffeine reverses antinociception by amitriptyline in wild type mice but not in those lacking adenosine A1receptors. Neurosci Lett 2008; 440: 181–4.
43. Tomic MA, Vuckovic SM, Stepanovic-Petrovic M et al. The anti-hyperalgesic effects of carbamazepine and oxcarbazepine are attenuated by treatment with adenosine receptor antagonists. Pain 2004; 111: 253–60.
44. Sawynok J, Reid AR, Liu J. Spinal and peripheral adenosine A1receptors contribute to antinociception by tramadol in the formalintest in mice. Eur J Pharmacol 2013; 714: 373–8.
45. Martins DF, Prado MRB, Daruge E et al. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPSI: evidence for the involvement of spinal adenosine A1receptor. J Peripher Nerv Syst 2015; 20 (4): 403–9.
46. Langevin HM. Acupuncture, connective tissue, and peripheral sensory modulation. Crit Rev Eukaryot Gene Exp 2014; 24: 249–53.
47. Goldman N, Chen M, Fujita T et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neurosci 2010; 13: 883–9.
48. Takano T, Chen XC, Luo F et al. Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 2012; 13: 1215–23.
49. Marchand S, Li J, Charest J. Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. New Eng J Med 1995; 333: 325–6.
50. Mense S. Muscle pain: mechanisms and clinical significance. Dtsch Arztebl Int 2008; 105 (12): 214–9.
51. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159–216.
52. Paryavi E, Jobin CM, Ludwig SC et al. Acute exertional lumbar paraspinal compartment syndrome. Spine (Phila Pa 1976) 2010; 35 (25): E1529–33.
53. Kauppila LI. Atherosclerosis and disc degeneration/low-back pain – a systematic review. Eur J Vasc Endovasc Surg 2009; 37 (6): 661–70.
54. Kasatkin D.S. Bol' i myshechnyi spazm: patogeneticheskoe obosnovanie ispol'zovaniia miorelaksantov v terapii boli. Klin. farmakologiia i terapiia. 2011; 5: 75–8. [in Russian]
55. Bannwarth B, Allaert FA, Avouac B et al. A randomized, double-blind, placebo controlled triphosphate in study of oral adenosine subacute low back pain. J Rheumatol 2005; 32 (6): 1114–7.
56. Street SE, Walsh PL, Sowa NA et al. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol Pain 2011; 7: 80.
57. Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol 2011; 72 (4): 634–46.
58. Chakrabarti S, Freedman JE. Dipyridamole, cerebrovascular disease and the vasculature. Vascul Pharmacol 2008; 48: 143–9.
59. Söderbäck U, Sollevi A, Wallen NH et al. Anti-aggregatory effects of physiological concentrations of adenosine in human whole blood as assessed by filtragometry. Clin Sci (Lond) 1991; 81 (5): 691–4.
Авторы
Д.С. Касаткин
ФГБОУ ВО «Ярославский государственный медицинский университет» Минздрава России, Ярославль, Россия
*mirsil@mail.ru
Yaroslavl State Medical University, Yaroslavl, Russia
*mirsil@mail.ru
ФГБОУ ВО «Ярославский государственный медицинский университет» Минздрава России, Ярославль, Россия
*mirsil@mail.ru
________________________________________________
Yaroslavl State Medical University, Yaroslavl, Russia
*mirsil@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
