Препараты, влияющие на обмен аденозина: предпосылки к включению в схему терапии неспецифической боли в спине
Препараты, влияющие на обмен аденозина: предпосылки к включению в схему терапии неспецифической боли в спине
Касаткин Д.С. Препараты, влияющие на обмен аденозина: предпосылки к включению в схему терапии неспецифической боли в спине. Неврология и Ревматология (Прил. к журн. Consilium Medicum). 2019; 1: 37–40. DOI: 10.26442/2414357X.2019.1.190368
________________________________________________
Kasatkin D.S. Drugs that affect adenosine metabolism: prerequisites for inclusion into treatment regimen for non-specific back pain. Neurology and Rheumatology (Suppl. Consilium Medicum). 2019; 1: 37–40. DOI: 10.26442/2414357X.2019.1.190368
Препараты, влияющие на обмен аденозина: предпосылки к включению в схему терапии неспецифической боли в спине
Касаткин Д.С. Препараты, влияющие на обмен аденозина: предпосылки к включению в схему терапии неспецифической боли в спине. Неврология и Ревматология (Прил. к журн. Consilium Medicum). 2019; 1: 37–40. DOI: 10.26442/2414357X.2019.1.190368
________________________________________________
Kasatkin D.S. Drugs that affect adenosine metabolism: prerequisites for inclusion into treatment regimen for non-specific back pain. Neurology and Rheumatology (Suppl. Consilium Medicum). 2019; 1: 37–40. DOI: 10.26442/2414357X.2019.1.190368
Используемые в повседневной практике анальгетики, несмотря на достаточно широкий спектр международных непатентованных и торговых наименований, применяют в качестве мишени ограниченное число патогенетических механизмов. В данной статье обсуждается относительно новый механизм потенциального обезболивания – активация аденозиновых рецепторов в центральной и периферической нервной системе, рассматриваются вопросы включения препаратов, влияющих на обмен аденозина, в схему терапии при острых и хронических болях в спине, а также вероятное негативное влияние кофеинсодержащих препаратов как антагонистов аденозиновых рецепторов на эффективность анальгетиков.
Despite a wide range of international nonproprietary and trade names, commonly used analgesics deal with a limited number of pathogenetic mechanisms as targets. This article provides a relatively new mechanism for potential anesthesia - activation of adenosine receptors in the central and peripheral nervous system. It also considers an inclusion of drugs that affect adenosine metabolism into the treatment regimen for acute and chronic back pain, as well as a likely negative effect of caffeine-containing drugs as adenosine receptor antagonists on the efficacy of analgesics.
1. Burgess G, Williams D. The discovery and development of analgesics: new mechanisms, new modalities. J Clin Invest 2010; 120 (11): 3753–9.
2. Bannwarth B, Kostine M. Biologics in the treatment of chronic pain: a new era of therapy? Clin Pharmacol Ther 2015; 97 (2): 122–4.
3. Wu Q, Inman RD, Davis KD. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates. Pain 2015; 156: 297–304.
4. Kersten C, Cameron MG, Laird B, Mjåland S. Epidermal growth factor receptor-inhibition (EGFR-I) in the treatment of neuropathic pain. Br J Anaesth 2015; 115 (5): 761–7.
5. Yeh JF, Akinci A, Shaker M. Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain 2017; 13: 1744806917740233.
6. Burnstock G. Purinergic nerves. Pharmacol Rev 1972; 24: 509–81.
7. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 2007; 87: 659–797.
8. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in
different systems. Int Rev Cytol 2004; 240: 31–304.
9. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci 2007; 64: 71–1483.
10. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Pharmacology. XXV. Nomenclature and classifi cation of adenosine receptors. Pharmacol Rev 2001; 53:
527–52.
11. Bodin P, Burnstock G. Purinergic signalling: ATP release. Neurochem Res 2001; 26:
959–69.
12. Zimmermann H. Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 2001; 52: 44–56.
13. Vapaatalo H, Onken D, Neuvonen PJ, Westermann E. Stereospecificity in some central and circulatory effects of phenylisopropyladenosine (PIA). Arzneimittelforschung 1975; 25: 407–10.
14. Ho IK, Loh HH, Way EL. Cyclic adenosine monophosphate antagonism of morphine analgesia. J Pharmacol Exp Ther 1973; 185 (2): 336–46.
15. Jurna I. Cyclic nucleotides and aminophylline produce different effects on nociceptive motor and sensory responses in the rat spinal cord. Naunyn-Schmiedeberg's Arch Pharmacol 1984; 327: 23.
16. De Lander GE, Hopkins CJ. Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine. J Pharmacol Exp Ther 1986; 239: 88–93.
17. Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 2003; 69: 313–40.
18. Lewis C, Neidhart S, Holy C et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 1995; 377: 432–5.
19. Lima FO, Souza GR, Verri WA et al. Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 2010; 151: 506–15.
20. Ackley MA, Governo RJM, Cass CE et al. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by nucleoside transporter ENT1. J Physiol 2003; 548: 507–17.
21. Magni G, Ceruti S. The purinergic system and glial cells: emerging costars in nociception. Biomed Res Int 2014; 2014: 495789.
22. Liu XJ, Sawynok J. Peripheral antihyperalgesic effects by adenosine A1 receptor agonists and inhibitors of adenosine metabolism in a rat neuropathic pain model. Analgesia 2000; 5: 19–29.
23. Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn-Schmiedebergs Arch Pharmacol 2000; 362: 375–81.
24. Hurt JK, Zylka MJ. PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol Pain 2012; 8: 28.
25. Carruthers AM, Sellers LA, Jenkins DW et al. Adenosine A1 receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 2001; 59: 1533–41.
26. Kaelin-Lang A, Lauterburg T, Burgunder JM. Expression of adenosine A2a receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 1998; 246 (1): 21–4.
27. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 (Suppl. 1): s10–s28.
28. Taiwo YO, Levine JD. Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 1990; 38 (3): 757–62.
29. Godfrey L, Yan L, Clarke GD et al. Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur J Pharmacol 2006; 531 (1–3): 80–6.
30. Guntz E, Dumont H, Pastijn E et al. Expression of adenosine A 2A receptors in the rat lumbar spinal cord and implications in the modulation of N-methyl-d-aspartate receptor currents. Anesth Analg 2008; 106 (6): 1882–9.
31. Suh HW, Song DK, Kim YH. Differential effects of adenosine receptor antagonists injected intrathecally on antinociception induced by morphine and beta-endorphin administered intracerebroventricularly in the mouse. Neuropeptides 1997; 31 (4): 339–44.
32. Yoon MH, Bae HB, Choi JI et al. Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology 2006; 78 (1): 21–6.
33. Hussey MJ, Clarke GD, Ledent C et al. Deletion of the adenosine A2A receptor in mice enhances spinal cord neurochemical responses to an inflammatory nociceptive stimulus. Neurosci Lett 2012; 506: 198–202.
34. Loram LC, Harrison JA, Sloane EM et al. Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 2009; 29: 14015–25.
35. Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13 (1): 41–51.
36. Feoktistov I, Biaggioni I. Role of adenosine A2B receptors in inflammation. Adv Pharmacol 2011; 61: 115–44.
37. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of adenosine receptors – an update. Pharmacol Rev 2011; 63: 1–34.
38. Loram LC, Taylor FR, Strand KA et al. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun 2013; 33: 112–22.
39. Borea PA, Varani K, Vincenzi F et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2014; 67: 74–102.
40. Chen Z, Janes K, Chen C et al. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB 2012; J26: 1855–65.
41. Rauck RL, North J, Eisenach JC. Intrathecal clonidine and adenosine: effects on pain and sensory processing in patients with chronic regional pain syndrome. Pain 2015; 156 (1): 88–95.
42. Sawynok J, Reid AR, Fredholm BB. Caffeine reverses antinociception by amitriptyline in wild type mice but not in those lacking adenosine A1receptors. Neurosci Lett 2008; 440: 181–4.
43. Tomic MA, Vuckovic SM, Stepanovic-Petrovic M et al. The anti-hyperalgesic effects of carbamazepine and oxcarbazepine are attenuated by treatment with adenosine receptor antagonists. Pain 2004; 111: 253–60.
44. Sawynok J, Reid AR, Liu J. Spinal and peripheral adenosine A1receptors contribute to antinociception by tramadol in the formalintest in mice. Eur J Pharmacol 2013; 714: 373–8.
45. Martins DF, Prado MRB, Daruge E et al. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPSI: evidence for the involvement of spinal adenosine A1receptor. J Peripher Nerv Syst 2015; 20 (4): 403–9.
46. Langevin HM. Acupuncture, connective tissue, and peripheral sensory modulation. Crit Rev Eukaryot Gene Exp 2014; 24: 249–53.
47. Goldman N, Chen M, Fujita T et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neurosci 2010; 13: 883–9.
48. Takano T, Chen XC, Luo F et al. Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 2012; 13: 1215–23.
49. Marchand S, Li J, Charest J. Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. New Eng J Med 1995; 333: 325–6.
50. Mense S. Muscle pain: mechanisms and clinical significance. Dtsch Arztebl Int 2008; 105 (12): 214–9.
51. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159–216.
52. Paryavi E, Jobin CM, Ludwig SC et al. Acute exertional lumbar paraspinal compartment syndrome. Spine (Phila Pa 1976) 2010; 35 (25): E1529–33.
53. Kauppila LI. Atherosclerosis and disc degeneration/low-back pain – a systematic review. Eur J Vasc Endovasc Surg 2009; 37 (6): 661–70.
54. Касаткин Д.С. Боль и мышечный спазм: патогенетическое обоснование использования миорелаксантов в терапии боли. Клин. фармакология и терапия. 2011; 5: 75–8.
/ Kasatkin D.S. Bol' i myshechnyi spazm: patogeneticheskoe obosnovanie ispol'zovaniia miorelaksantov v terapii boli. Klin. farmakologiia i terapiia. 2011; 5: 75–8. [in Russian]
55. Bannwarth B, Allaert FA, Avouac B et al. A randomized, double-blind, placebo controlled triphosphate in study of oral adenosine subacute low back pain. J Rheumatol 2005; 32 (6): 1114–7.
56. Street SE, Walsh PL, Sowa NA et al. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol Pain 2011; 7: 80.
57. Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors.
Br J Clin Pharmacol 2011; 72 (4): 634–46.
58. Chakrabarti S, Freedman JE. Dipyridamole, cerebrovascular disease and the vasculature. Vascul Pharmacol 2008; 48: 143–9.
59. Söderbäck U, Sollevi A, Wallen NH et al. Anti-aggregatory effects of physiological concentrations of adenosine in human whole blood as assessed by filtragometry. Clin Sci (Lond) 1991; 81 (5): 691–4.
________________________________________________
1. Burgess G, Williams D. The discovery and development of analgesics: new mechanisms, new modalities. J Clin Invest 2010; 120 (11): 3753–9.
2. Bannwarth B, Kostine M. Biologics in the treatment of chronic pain: a new era of therapy? Clin Pharmacol Ther 2015; 97 (2): 122–4.
3. Wu Q, Inman RD, Davis KD. Tumor necrosis factor inhibitor therapy in ankylosing spondylitis: differential effects on pain and fatigue and brain correlates. Pain 2015; 156: 297–304.
4. Kersten C, Cameron MG, Laird B, Mjåland S. Epidermal growth factor receptor-inhibition (EGFR-I) in the treatment of neuropathic pain. Br J Anaesth 2015; 115 (5): 761–7.
5. Yeh JF, Akinci A, Shaker M. Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain 2017; 13: 1744806917740233.
6. Burnstock G. Purinergic nerves. Pharmacol Rev 1972; 24: 509–81.
7. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 2007; 87: 659–797.
8. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in
different systems. Int Rev Cytol 2004; 240: 31–304.
9. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci 2007; 64: 71–1483.
10. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Pharmacology. XXV. Nomenclature and classifi cation of adenosine receptors. Pharmacol Rev 2001; 53:
527–52.
11. Bodin P, Burnstock G. Purinergic signalling: ATP release. Neurochem Res 2001; 26:
959–69.
12. Zimmermann H. Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 2001; 52: 44–56.
13. Vapaatalo H, Onken D, Neuvonen PJ, Westermann E. Stereospecificity in some central and circulatory effects of phenylisopropyladenosine (PIA). Arzneimittelforschung 1975; 25: 407–10.
14. Ho IK, Loh HH, Way EL. Cyclic adenosine monophosphate antagonism of morphine analgesia. J Pharmacol Exp Ther 1973; 185 (2): 336–46.
15. Jurna I. Cyclic nucleotides and aminophylline produce different effects on nociceptive motor and sensory responses in the rat spinal cord. Naunyn-Schmiedeberg's Arch Pharmacol 1984; 327: 23.
16. De Lander GE, Hopkins CJ. Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine. J Pharmacol Exp Ther 1986; 239: 88–93.
17. Sawynok J, Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 2003; 69: 313–40.
18. Lewis C, Neidhart S, Holy C et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 1995; 377: 432–5.
19. Lima FO, Souza GR, Verri WA et al. Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 2010; 151: 506–15.
20. Ackley MA, Governo RJM, Cass CE et al. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by nucleoside transporter ENT1. J Physiol 2003; 548: 507–17.
21. Magni G, Ceruti S. The purinergic system and glial cells: emerging costars in nociception. Biomed Res Int 2014; 2014: 495789.
22. Liu XJ, Sawynok J. Peripheral antihyperalgesic effects by adenosine A1 receptor agonists and inhibitors of adenosine metabolism in a rat neuropathic pain model. Analgesia 2000; 5: 19–29.
23. Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn-Schmiedebergs Arch Pharmacol 2000; 362: 375–81.
24. Hurt JK, Zylka MJ. PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol Pain 2012; 8: 28.
25. Carruthers AM, Sellers LA, Jenkins DW et al. Adenosine A1 receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 2001; 59: 1533–41.
26. Kaelin-Lang A, Lauterburg T, Burgunder JM. Expression of adenosine A2a receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 1998; 246 (1): 21–4.
27. Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 (Suppl. 1): s10–s28.
28. Taiwo YO, Levine JD. Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 1990; 38 (3): 757–62.
29. Godfrey L, Yan L, Clarke GD et al. Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur J Pharmacol 2006; 531 (1–3): 80–6.
30. Guntz E, Dumont H, Pastijn E et al. Expression of adenosine A 2A receptors in the rat lumbar spinal cord and implications in the modulation of N-methyl-d-aspartate receptor currents. Anesth Analg 2008; 106 (6): 1882–9.
31. Suh HW, Song DK, Kim YH. Differential effects of adenosine receptor antagonists injected intrathecally on antinociception induced by morphine and beta-endorphin administered intracerebroventricularly in the mouse. Neuropeptides 1997; 31 (4): 339–44.
32. Yoon MH, Bae HB, Choi JI et al. Roles of adenosine receptor subtypes in the antinociceptive effect of intrathecal adenosine in a rat formalin test. Pharmacology 2006; 78 (1): 21–6.
33. Hussey MJ, Clarke GD, Ledent C et al. Deletion of the adenosine A2A receptor in mice enhances spinal cord neurochemical responses to an inflammatory nociceptive stimulus. Neurosci Lett 2012; 506: 198–202.
34. Loram LC, Harrison JA, Sloane EM et al. Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 2009; 29: 14015–25.
35. Cronstein BN, Sitkovsky M. Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13 (1): 41–51.
36. Feoktistov I, Biaggioni I. Role of adenosine A2B receptors in inflammation. Adv Pharmacol 2011; 61: 115–44.
37. Fredholm BB, Ijzerman AP, Jacobson KA et al. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of adenosine receptors – an update. Pharmacol Rev 2011; 63: 1–34.
38. Loram LC, Taylor FR, Strand KA et al. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun 2013; 33: 112–22.
39. Borea PA, Varani K, Vincenzi F et al. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2014; 67: 74–102.
40. Chen Z, Janes K, Chen C et al. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB 2012; J26: 1855–65.
41. Rauck RL, North J, Eisenach JC. Intrathecal clonidine and adenosine: effects on pain and sensory processing in patients with chronic regional pain syndrome. Pain 2015; 156 (1): 88–95.
42. Sawynok J, Reid AR, Fredholm BB. Caffeine reverses antinociception by amitriptyline in wild type mice but not in those lacking adenosine A1receptors. Neurosci Lett 2008; 440: 181–4.
43. Tomic MA, Vuckovic SM, Stepanovic-Petrovic M et al. The anti-hyperalgesic effects of carbamazepine and oxcarbazepine are attenuated by treatment with adenosine receptor antagonists. Pain 2004; 111: 253–60.
44. Sawynok J, Reid AR, Liu J. Spinal and peripheral adenosine A1receptors contribute to antinociception by tramadol in the formalintest in mice. Eur J Pharmacol 2013; 714: 373–8.
45. Martins DF, Prado MRB, Daruge E et al. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPSI: evidence for the involvement of spinal adenosine A1receptor. J Peripher Nerv Syst 2015; 20 (4): 403–9.
46. Langevin HM. Acupuncture, connective tissue, and peripheral sensory modulation. Crit Rev Eukaryot Gene Exp 2014; 24: 249–53.
47. Goldman N, Chen M, Fujita T et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nature Neurosci 2010; 13: 883–9.
48. Takano T, Chen XC, Luo F et al. Traditional acupuncture triggers a local increase in adenosine in human subjects. J Pain 2012; 13: 1215–23.
49. Marchand S, Li J, Charest J. Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. New Eng J Med 1995; 333: 325–6.
50. Mense S. Muscle pain: mechanisms and clinical significance. Dtsch Arztebl Int 2008; 105 (12): 214–9.
51. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity – from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159–216.
52. Paryavi E, Jobin CM, Ludwig SC et al. Acute exertional lumbar paraspinal compartment syndrome. Spine (Phila Pa 1976) 2010; 35 (25): E1529–33.
53. Kauppila LI. Atherosclerosis and disc degeneration/low-back pain – a systematic review. Eur J Vasc Endovasc Surg 2009; 37 (6): 661–70.
54. Kasatkin D.S. Bol' i myshechnyi spazm: patogeneticheskoe obosnovanie ispol'zovaniia miorelaksantov v terapii boli. Klin. farmakologiia i terapiia. 2011; 5: 75–8. [in Russian]
55. Bannwarth B, Allaert FA, Avouac B et al. A randomized, double-blind, placebo controlled triphosphate in study of oral adenosine subacute low back pain. J Rheumatol 2005; 32 (6): 1114–7.
56. Street SE, Walsh PL, Sowa NA et al. PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol Pain 2011; 7: 80.
57. Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol 2011; 72 (4): 634–46.
58. Chakrabarti S, Freedman JE. Dipyridamole, cerebrovascular disease and the vasculature. Vascul Pharmacol 2008; 48: 143–9.
59. Söderbäck U, Sollevi A, Wallen NH et al. Anti-aggregatory effects of physiological concentrations of adenosine in human whole blood as assessed by filtragometry. Clin Sci (Lond) 1991; 81 (5): 691–4.
Авторы
Д.С. Касаткин
ФГБОУ ВО «Ярославский государственный медицинский университет» Минздрава России, Ярославль, Россия