Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Биомаркеры воспаления при заболеваниях органов дыхания: клиническая практика и перспективы
Биомаркеры воспаления при заболеваниях органов дыхания: клиническая практика и перспективы
Зайцев А.А., Кондратьева Т.В. Биомаркеры воспаления при заболеваниях органов дыхания: клиническая практика и перспективы. Consilium Medicum. 2020; 22 (3): 34–39. DOI: 10.26442/20751753.2020.3.200065
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Острые и хронические респираторные заболевания воспалительного генеза представляют собой колоссальное бремя для системы здравоохранения во всем мире. Настоящий обзор зарубежных и отечественных исследований посвящен анализу практического применения диагностических и прогностических возможностей плазменных биомаркеров воспалительного ответа, таких как С-реактивный белок, прокальцитонин и пресепсин, перспективам их использования при инфекциях нижних дыхательных путей, включая внебольничную пневмонию, а также при обострениях хронической обструктивной болезни легких и бронхиальной астмы.
Ключевые слова: плазменные биомаркеры воспаления, С-реактивный белок, прокальцитонин, пресепсин, инфекции нижних дыхательных путей, хроническая обструктивная болезнь легких, бронхиальная астма, внебольничная пневмония.
Key words: serum biomarkers of inflammation, C-reactive protein, procalcitonin, presepsin, lower respiratory tract infections, chronic obstructive pulmonary
disease, asthma, community-acquired pneumonia.
Ключевые слова: плазменные биомаркеры воспаления, С-реактивный белок, прокальцитонин, пресепсин, инфекции нижних дыхательных путей, хроническая обструктивная болезнь легких, бронхиальная астма, внебольничная пневмония.
________________________________________________
Key words: serum biomarkers of inflammation, C-reactive protein, procalcitonin, presepsin, lower respiratory tract infections, chronic obstructive pulmonary
disease, asthma, community-acquired pneumonia.
Полный текст
Список литературы
1. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, allcause mortality, and cause-specifi c mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1459–544.
2. World Health Report 2016. Health systems: improving performance. Annex table 3. 2016 World Health Organization. Geneva, Switzerland. https://www.who.int/images/default-source/infographics/10-causes-2016-ru.png?sfvrsn=56e8d56c_2
3. Chuchalin A, Khaltaev N, Аntonov N. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int J COPD 2014; 9: 963–74.
4. Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др. Внебольничная пневмония. Клинические рекомендации РРО и МАКМАХ, 2018. www.antibiotic.ru
[Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. i dr. Vnebol'nichnaia pnevmoniia. Klinicheskie rekomendatsii RRO i MAKMAKh, 2018. www.antibiotic.ru (in Russian).]
5. Зайцев А.А., Овчинников Ю.В., Кондратьева Т.В. Биологические маркеры воспаления при внебольничной пневмонии. Consilium Medicum. 2014; 16 (11): 36–41.
[Zaytsev A.A., Ovchinnikov Yu.V., Kondrateva T.V. Biological markers of inflammation in community-acquired pneumonia. Consilium Medicum. 2014; 16 (11): 36–41 (in Russian).]
6. Jaye DL, Waites KB. Clinical applications of C-reactive protein in pediatrics. Pediatr Infect
Dis J 1997; 16: 735–46.
7. Young B, Bauer S, Lamy O. Role of C-reactive protein in the diagnosis, prognosis and follow-up of community-acquired pneumonia. Rev Med Suisse 2010; 6 (269): 2068–70, 2072–3.
8. Van der Meer V, Neven A et al. Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review. BMJ 2005; 331 (7507): 26.
9. Flanders S et al. Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. Am J Med 2004; 116: 529–35.
10. Macfarlane J, Holmes W et al. Prospective study of the incidence, aetiology and outcome of adult lower respiratory tract illness in the community. Thorax 2001; 56: 109–14.
11. Almirall J, Bolíbar I et al. Contribution of C-reactive protein to the diagnosis and assessment of severity of community-acquired pneumonia. Chest 2004; 125: 1335–42.
12. Castro-Guardiola A, Armengou-Arxé A et al. Differential diagnosis between community-acquired pneumonia and non-pneumonia diseases of the chest in the emergency ward. Eur J Intern Med 2000; 11: 334–9.
13. Garcia Vazquez E, Martínez J et al. C-reactive protein levels in community-acquired pneumonia. Eur Respir J 2003; 21: 702–5.
14. Lehtomaki K. Clinical diagnosis of pneumococcal, adenoviral, mycoplasmal and mixed pneumonias in young men. Eur Respir J 1988; 1: 324–9.
15. Krüger S, Ewig S, Papassotiriou J et al. CAPNETZ Study Group. Inflammatory parameters predict etiologic patterns but do not allow for individual prediction of etiology in patients with CAP: results from the German competence network CAPNETZ. Respir Res 2009; 10 (1): 65.
16. España P, Capelastegui A et al. Population Study of Pneumonia (PSoP) Group. Utility of two biomarkers for directing care among patients with non-severe community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 2012; 31 (12): 3397–405.
17. Brink AJ, Van Wyk J et al. The role of appropriate diagnostic testing in acute respiratory tract infections: An antibiotic stewardship strategy to minimise diagnostic uncertainty in primary care. S Afr Med J 2016; 106 (6): 30–7.
18. Agapakis D, Tsantilas D et al. Coagulation and inflammation biomarkers may help predict the severity of community-acquired pneumonia. Respirology 2010; 15 (5): 796–803.
19. Hohenthal U, Hurme S et al. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin Microbiol Infect 2009; 15 (11): 1026–32.
20. Bruns A, Oosterheert J et al. Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. Eur Respir J 2008; 32: 726–32.
21. Ruiz-González A, Falguera M et al. C-reactive protein for discriminating treatment failure from slow responding pneumonia. Eur J Int Med 2010; 21: 548–52.
22. Зайцев А.А., Овчинников Ю.В., Чернов С.А., Кондратьева Т.В. Применение шкал оценки тяжести состояния больных внебольничной пневмонией у пациентов молодого возраста. Военно-медицинский журн. 2014; 335 (3): 31–8.
[Zaitsev A.A., Ovchinnikov Iu.V., Chernov S.A., Kondrat'eva T.V. Primenenie shkal otsenki tiazhesti sostoianiia bol'nykh vnebol'nichnoi pnevmoniei u patsientov molodogo vozrasta. Voenno-meditsinskii zhurn. 2014; 335 (3): 31–8 (in Russian).]
23. Ménendez R, Martínez R et al. Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 2009; 64 (7): 587–91.
24. Chalmers J, Singanayagam A. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med 2008; 121: 219–25.
25. Lobo S, Lobo F, Bota D et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 2003; 123: 2043–9.
26. Coelho L, Póvoa P et al. Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course. Crit Care 2007; 11 (4): 92.
27. Woodhead M, Blasi F et al. New guidelines for the management of adult lover respiratory tract infections. Clin Microbiol Infect 2011; 17 (6): 1–59.
28. Chang C-H, Tsao K-C et al. Procalcitonin and C-reactive protein cannot differentiate bacterial or viral infection in COPD exacerbation requiring emergency department visits. Int J Chron Obstruct Pulmon Dis 2015; 10: 767–74.
29. Daniels JM, Schoorl M et al. Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest 2010; 138 (5): 1108–15.
30. Adepoju VA. Can we use a biomarker to guide antibiotic treatment in severe COPD exacerbations? Breathe (Sheff) 2019; 15 (4): 353–5.
31. Авдеев С.Н., Баймаканова Г.Е., Зубаирова П.А. Возможности С-реактивного белка в диагностике бактериальной инфекции и пневмонии у больных с обострением хронической обструктивной болезни легких. Уральский мед. журн. 2008; 13: 19–24.
[Avdeev S.N., Baimakanova G.E., Zubairova P.A. Vozmozhnosti S-reaktivnogo belka v diagnostike bakterial'noi infektsii i pnevmonii u bol'nykh s obostreniem khronicheskoi obstruktivnoi bolezni legkikh. Ural'skii med. zhurn. 2008; 13: 19–24 (in Russian).]
32. Çolak A, Yılmaz C et al. Procalcitonin and CRP as Biomarkers in Discrimination of Community-acquired Pneumonia and Exacerbation of COPD. J Med Biochem 2017; 36 (2): 122–6.
33. Young Ae Kang, Sung-Youn Kwon et al. Role of C-reactive protein and procalcitonin in differentiation of tuberculosis from bacterial community acquired pneumonia. Korean J Intern Med 2009; 24 (4): 337–42.
34. Le Moullec J, Jullienne A et al. The complete sequence of human preprocalcitonin. FEBS 1984; 167: 93–7.
35. Becker K, Muller B et al. Calcitonin gene family of peptides. Principles and Practice of Endocrinology and Metabolism. Philadelphia: J.B Lippincott, 2001; p. 520–34.
36. Bohuon C. A brief history of procalcitonin. Intensive Care Med 2000; 26 (S2): 146–7.
37. Assicot M, Gendrel D, Carsin H et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341 (8844): 515–8.
38. Моррисон В.В., Божедомов А.Ю. Значение определения концентрации прокальцитонина плазмы крови в диагностике септических состояний. Саратовский науч.-мед. журн. 2010; 6 (2): 261–7.
[Morrison V.V., Bozhedomov A.Iu. Znachenie opredeleniia kontsentratsii prokal'tsitonina plazmy krovi v diagnostike septicheskikh sostoianii. Saratovskii nauch.-med. zhurn. 2010; 6 (2): 261–7 (in Russian).]
39. Christ-Crain М, Opal S. Clinical review: The role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit Care 2010; 14 (1): 203.
40. Krüger S, Ewig S et al. CAPNETZ Study Group. Procalcitonin predicts patients at low risk of death from community-acquired pneumonia across all CRB-65 classes. Eur Respir J 2008; 31 (2): 349–55.
41. Upadhyay S, Niederman M. Biomarkers: What is Their Benefit in the Identification of Infection, Severity Assessment, and Management of Community-acquired Pneumonia? Infect Dis Clin North Am 2013; 27 (1): 19–31.
42. Horie M, Ugajin M et al. Diagnostic and prognostic value of procalcitonin in community-acquired pneumonia. Am J Med Sci 2012; 343 (1): 30–5.
43. Tamura M, Watanabe M et al. Serial quantification of procalcitonin (PCT) predicts clinical outcome and prognosis in patients with community-acquired pneumonia (CAP). J Infect Chemother 2014; 2: 97–103.
44. Julián-Jiménez A, Timón Zapata J et al. Diagnostic and prognostic power of biomarkers to improve the management of community acquired pneumonia in the emergency department. Enferm Infecc Microbiol Clin 2014; 32 (4): 225–35.
45. Kim J, Seo J et al. Usefulness of plasma procalcitonin to predict severity in elderly patients with community-acquired pneumonia. Tuberc Respir Dis 2013; 74 (5): 207–14.
46. Ugajin M, Yamaki K et al. Predictive Values of Semi-Quantitative Procalcitonin Test and Common Biomarkers for the Clinical Outcomes of Community-Acquired Pneumonia. Respir Care 2014; 59 (4): 564–73.
47. Christ-Crain M, Stolz D et al. Procalcitonin Guidance of Antibiotic Therapy in Community-acquired Pneumonia. Am J Respir Crit Care Med 2006; 174: 84–93.
48. Long W, Deng X et al. Procalcitonin guidance for reduction of antibiotic use in low-risk outpatients with community-acquired pneumonia. Respitology 2011; 16 (5): 819–24.
49. Schuetz P, Suter-Widmer I et al. Procalcitonin-Guided Antibiotic Therapy and Hospitalisation in Patients with Lower Respiratory Tract Infections (ProHOSP) Study Group. Prognostic value of procalcitonin in community-acquired pneumonia. Eur Respir J 2011; 37 (2): 384–92.
50. Albrich W, Dusemund F et al. ProREAL Study Team. Effectiveness and safety of procalcitonin-guided antibiotic therapy in lower respiratory tract infections in “real life”: an international, multicenter poststudy survey (ProREAL). Arch Intern Med 2012; 172 (9): 715–22.
51. Schuetz P, Müller B et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evid Based Child Health 2013; 8 (4): 1297–371.
52. Hui Li, Yi-Feng Luo et al. Meta-analysis and systematic review of procalcitonin-guided therapy in respiratory tract infections. Antimicrob Agents Chemother 2011; 55 (12): 5900–6.
53. Sager R, Kutz A et al. Procalcitonin-guided Diagnosis and Antibiotic Stewardship Revisited. BMC Med 2017, 15 (1): 15.
54. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014; 371: 1619–28.
55. Self WH, Balk RA et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized With Community-Acquired Pneumonia. Clin Infect Dis 2017; 65 (2): 183–90.
56. Kamat IS, Ramachandran V et al. Low procalcitonin, community acquired pneumonia, and antibiotic therapy. Lancet Infect Dis 2018; 18: 496–7.
57. Metlay JP, Waterer GW et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (7): e45–e67.
58. Niu W, Wan Y, Li M et al. The diagnostic value of serum procalcitonin, IL-10 and C-reactive protein in community acquired pneumonia and tuberculosis. Eur Rev Med Pharmacol Sci 2013; 17 (24): 3329–33.
59. Bafadhel M, Clark T et al. Procalcitonin and C-reactive protein in hospitalized adult patients with community-acquired pneumonia or exacerbation of asthma or COPD. Chest 2011; 139 (6): 1410–8.
60. Borsi H, Nia EP et al. Relationship between serum procalcitonin level and chronic obstructive pulmonary disease. J Family Med Prim Care 2019; 8 (2): 738–40.
61. Pandey S, Garg R et al. Serum Procalcitonin Levels in Chronic Obstructive Pulmonary Disease Patients in North Indian Population. Ann Afr Med 2019; 18 (2): 103-–7.
62. Gao D, Chen X et al. The levels serum procalcitonin and high-sensitivity C-reactive protein in the early diagnosis chronic pulmonary disease during acute exacerbation. Exp Ther Med 2017; 14 (1): 193–8.
63. Rothberg MB, Pekow PS et al. Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. JAMA 2010; 303 (20): 2035–42
64. Wang JX, Zhang SM et al. Acute exacerbations of chronic obstructive pulmonary disease with low serum procalcitonin values do not benefit from antibiotic treatment: a prospective randomized controlled trial. Int J Infect Dis 2016; 48: 40–5.
65. Li Z, Yuan X et al. Procalcitonin-guided antibiotic therapy in acute exacerbation of chronic obstructive pulmonary disease: An updated meta-analysis. Medicine (Baltimore) 2019; 98 (32): e16775.
66. Van der Maas ME et al. Procalcitonin biomarker algorithm reduces antibiotic prescriptions, duration of therapy, and costs in chronic obstructive pulmonary disease: a comparison in the Netherlands, Germany, and the United Kingdom. OMICS 2017; 21 (4): 232–43.
67. Bremmer DN, DiSilvio BE et al. Impact of procalcitonin guidance on management of adults hospitalized with chronic obstructive pulmonary disease exacerbations. J Gen Intern Med 2018; 33 (5): 692–7.
68. Pantzaris ND, Spilioti DX et al. The Use of Serum Procalcitonin as a Diagnostic and Prognostic Biomarker in Chronic Obstructive Pulmonary Disease Exacerbations: A Literature Review Update.
J Clin Med Res 2018; 10 (7): 545–51.
69. Lin C, Pang Q. Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J 2018; 12 (1): 10–5.
70. Flattet Y, Garin N et al. Determining prognosis in acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2017; 12: 467–75.
71. Pazarli AC, Koseoglu H et al. Procalcitonin: Is it a predictornoninvasive ventilation in chronic obstructive pulmonary disease? J Res Med Sci 201; 17 (11): 1047–51.
72. Wang J, Shang H et al. Procalcitonin, C-reactive protein, PaCO2, and noninvasive mechanical ventilation failure in chronic obstructive pulmonary disease exacerbation. Medicine (Baltimore) 2019; 98 (17): e15171.
2. World Health Report 2016. Health systems: improving performance. Annex table 3. 2016 World Health Organization. Geneva, Switzerland. https://www.who.int/images/default-source/infographics/10-causes-2016-ru.png?sfvrsn=56e8d56c_2
3. Chuchalin A, Khaltaev N, Аntonov N. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int J COPD 2014; 9: 963–74.
4. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. i dr. Vnebol'nichnaia pnevmoniia. Klinicheskie rekomendatsii RRO i MAKMAKh, 2018. www.antibiotic.ru (in Russian).
5. Zaytsev A.A., Ovchinnikov Yu.V., Kondrateva T.V. Biological markers of inflammation in community-acquired pneumonia. Consilium Medicum. 2014; 16 (11): 36–41 (in Russian).
6. Jaye DL, Waites KB. Clinical applications of C-reactive protein in pediatrics. Pediatr Infect Dis J 1997; 16: 735–46.
7. Young B, Bauer S, Lamy O. Role of C-reactive protein in the diagnosis, prognosis and follow-up of community-acquired pneumonia. Rev Med Suisse 2010; 6 (269): 2068–70, 2072–3.
8. Van der Meer V, Neven A et al. Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review. BMJ 2005; 331 (7507): 26.
9. Flanders S et al. Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. Am J Med 2004; 116: 529–35.
10. Macfarlane J, Holmes W et al. Prospective study of the incidence, aetiology and outcome of adult lower respiratory tract illness in the community. Thorax 2001; 56: 109–14.
11. Almirall J, Bolíbar I et al. Contribution of C-reactive protein to the diagnosis and assessment of severity of community-acquired pneumonia. Chest 2004; 125: 1335–42.
12. Castro-Guardiola A, Armengou-Arxé A et al. Differential diagnosis between community-acquired pneumonia and non-pneumonia diseases of the chest in the emergency ward. Eur J Intern Med 2000; 11: 334–9.
13. Garcia Vazquez E, Martínez J et al. C-reactive protein levels in community-acquired pneumonia. Eur Respir J 2003; 21: 702–5.
14. Lehtomaki K. Clinical diagnosis of pneumococcal, adenoviral, mycoplasmal and mixed pneumonias in young men. Eur Respir J 1988; 1: 324–9.
15. Krüger S, Ewig S, Papassotiriou J et al. CAPNETZ Study Group. Inflammatory parameters predict etiologic patterns but do not allow for individual prediction of etiology in patients with CAP: results from the German competence network CAPNETZ. Respir Res 2009; 10 (1): 65.
16. España P, Capelastegui A et al. Population Study of Pneumonia (PSoP) Group. Utility of two biomarkers for directing care among patients with non-severe community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 2012; 31 (12): 3397–405.
17. Brink AJ, Van Wyk J et al. The role of appropriate diagnostic testing in acute respiratory tract infections: An antibiotic stewardship strategy to minimise diagnostic uncertainty in primary care. S Afr Med J 2016; 106 (6): 30–7.
18. Agapakis D, Tsantilas D et al. Coagulation and inflammation biomarkers may help predict the severity of community-acquired pneumonia. Respirology 2010; 15 (5): 796–803.
19. Hohenthal U, Hurme S et al. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin Microbiol Infect 2009; 15 (11): 1026–32.
20. Bruns A, Oosterheert J et al. Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. Eur Respir J 2008; 32: 726–32.
21. Ruiz-González A, Falguera M et al. C-reactive protein for discriminating treatment failure from slow responding pneumonia. Eur J Int Med 2010; 21: 548–52.
22. Zaitsev A.A., Ovchinnikov Iu.V., Chernov S.A., Kondrat'eva T.V. Primenenie shkal otsenki tiazhesti sostoianiia bol'nykh vnebol'nichnoi pnevmoniei u patsientov molodogo vozrasta. Voenno-meditsinskii zhurn. 2014; 335 (3): 31–8 (in Russian).
23. Ménendez R, Martínez R et al. Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 2009; 64 (7): 587–91.
24. Chalmers J, Singanayagam A. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med 2008; 121: 219–25.
25. Lobo S, Lobo F, Bota D et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 2003; 123: 2043–9.
26. Coelho L, Póvoa P et al. Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course. Crit Care 2007; 11 (4): 92.
27. Woodhead M, Blasi F et al. New guidelines for the management of adult lover respiratory tract infections. Clin Microbiol Infect 2011; 17 (6): 1–59.
28. Chang C-H, Tsao K-C et al. Procalcitonin and C-reactive protein cannot differentiate bacterial or viral infection in COPD exacerbation requiring emergency department visits. Int J Chron Obstruct Pulmon Dis 2015; 10: 767–74.
29. Daniels JM, Schoorl M et al. Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest 2010; 138 (5): 1108–15.
30. Adepoju VA. Can we use a biomarker to guide antibiotic treatment in severe COPD exacerbations? Breathe (Sheff) 2019; 15 (4): 353–5.
31. Avdeev S.N., Baimakanova G.E., Zubairova P.A. Vozmozhnosti S-reaktivnogo belka v diagnostike bakterial'noi infektsii i pnevmonii u bol'nykh s obostreniem khronicheskoi obstruktivnoi bolezni legkikh. Ural'skii med. zhurn. 2008; 13: 19–24 (in Russian).
32. Çolak A, Yılmaz C et al. Procalcitonin and CRP as Biomarkers in Discrimination of Community-acquired Pneumonia and Exacerbation of COPD. J Med Biochem 2017; 36 (2): 122–6.
33. Young Ae Kang, Sung-Youn Kwon et al. Role of C-reactive protein and procalcitonin in differentiation of tuberculosis from bacterial community acquired pneumonia. Korean J Intern Med 2009; 24 (4): 337–42.
34. Le Moullec J, Jullienne A et al. The complete sequence of human preprocalcitonin. FEBS 1984; 167: 93–7.
35. Becker K, Muller B et al. Calcitonin gene family of peptides. Principles and Practice of Endocrinology and Metabolism. Philadelphia: J.B Lippincott, 2001; p. 520–34.
36. Bohuon C. A brief history of procalcitonin. Intensive Care Med 2000; 26 (S2): 146–7.
37. Assicot M, Gendrel D, Carsin H et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341 (8844): 515–8.
38. Morrison V.V., Bozhedomov A.Iu. Znachenie opredeleniia kontsentratsii prokal'tsitonina plazmy krovi v diagnostike septicheskikh sostoianii. Saratovskii nauch.-med. zhurn. 2010; 6 (2): 261–7 (in Russian).
39. Christ-Crain М, Opal S. Clinical review: The role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit Care 2010; 14 (1): 203.
40. Krüger S, Ewig S et al. CAPNETZ Study Group. Procalcitonin predicts patients at low risk of death from community-acquired pneumonia across all CRB-65 classes. Eur Respir J 2008; 31 (2): 349–55.
41. Upadhyay S, Niederman M. Biomarkers: What is Their Benefit in the Identification of Infection, Severity Assessment, and Management of Community-acquired Pneumonia? Infect Dis Clin North Am 2013; 27 (1): 19–31.
42. Horie M, Ugajin M et al. Diagnostic and prognostic value of procalcitonin in community-acquired pneumonia. Am J Med Sci 2012; 343 (1): 30–5.
43. Tamura M, Watanabe M et al. Serial quantification of procalcitonin (PCT) predicts clinical outcome and prognosis in patients with community-acquired pneumonia (CAP). J Infect Chemother 2014; 2: 97–103.
44. Julián-Jiménez A, Timón Zapata J et al. Diagnostic and prognostic power of biomarkers to improve the management of community acquired pneumonia in the emergency department. Enferm Infecc Microbiol Clin 2014; 32 (4): 225–35.
45. Kim J, Seo J et al. Usefulness of plasma procalcitonin to predict severity in elderly patients with community-acquired pneumonia. Tuberc Respir Dis 2013; 74 (5): 207–14.
46. Ugajin M, Yamaki K et al. Predictive Values of Semi-Quantitative Procalcitonin Test and Common Biomarkers for the Clinical Outcomes of Community-Acquired Pneumonia. Respir Care 2014; 59 (4): 564–73.
47. Christ-Crain M, Stolz D et al. Procalcitonin Guidance of Antibiotic Therapy in Community-acquired Pneumonia. Am J Respir Crit Care Med 2006; 174: 84–93.
48. Long W, Deng X et al. Procalcitonin guidance for reduction of antibiotic use in low-risk outpatients with community-acquired pneumonia. Respitology 2011; 16 (5): 819–24.
49. Schuetz P, Suter-Widmer I et al. Procalcitonin-Guided Antibiotic Therapy and Hospitalisation in Patients with Lower Respiratory Tract Infections (ProHOSP) Study Group. Prognostic value of procalcitonin in community-acquired pneumonia. Eur Respir J 2011; 37 (2): 384–92.
50. Albrich W, Dusemund F et al. ProREAL Study Team. Effectiveness and safety of procalcitonin-guided antibiotic therapy in lower respiratory tract infections in “real life”: an international, multicenter poststudy survey (ProREAL). Arch Intern Med 2012; 172 (9): 715–22.
51. Schuetz P, Müller B et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evid Based Child Health 2013; 8 (4): 1297–371.
52. Hui Li, Yi-Feng Luo et al. Meta-analysis and systematic review of procalcitonin-guided therapy in respiratory tract infections. Antimicrob Agents Chemother 2011; 55 (12): 5900–6.
53. Sager R, Kutz A et al. Procalcitonin-guided Diagnosis and Antibiotic Stewardship Revisited. BMC Med 2017, 15 (1): 15.
54. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014; 371: 1619–28.
55. Self WH, Balk RA et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized With Community-Acquired Pneumonia. Clin Infect Dis 2017; 65 (2): 183–90.
56. Kamat IS, Ramachandran V et al. Low procalcitonin, community acquired pneumonia, and antibiotic therapy. Lancet Infect Dis 2018; 18: 496–7.
57. Metlay JP, Waterer GW et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (7): e45–e67.
58. Niu W, Wan Y, Li M et al. The diagnostic value of serum procalcitonin, IL-10 and C-reactive protein in community acquired pneumonia and tuberculosis. Eur Rev Med Pharmacol Sci 2013; 17 (24): 3329–33.
59. Bafadhel M, Clark T et al. Procalcitonin and C-reactive protein in hospitalized adult patients with community-acquired pneumonia or exacerbation of asthma or COPD. Chest 2011; 139 (6): 1410–8.
60. Borsi H, Nia EP et al. Relationship between serum procalcitonin level and chronic obstructive pulmonary disease. J Family Med Prim Care 2019; 8 (2): 738–40.
61. Pandey S, Garg R et al. Serum Procalcitonin Levels in Chronic Obstructive Pulmonary Disease Patients in North Indian Population. Ann Afr Med 2019; 18 (2): 103-–7.
62. Gao D, Chen X et al. The levels serum procalcitonin and high-sensitivity C-reactive protein in the early diagnosis chronic pulmonary disease during acute exacerbation. Exp Ther Med 2017; 14 (1): 193–8.
63. Rothberg MB, Pekow PS et al. Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. JAMA 2010; 303 (20): 2035–42
64. Wang JX, Zhang SM et al. Acute exacerbations of chronic obstructive pulmonary disease with low serum procalcitonin values do not benefit from antibiotic treatment: a prospective randomized controlled trial. Int J Infect Dis 2016; 48: 40–5.
65. Li Z, Yuan X et al. Procalcitonin-guided antibiotic therapy in acute exacerbation of chronic obstructive pulmonary disease: An updated meta-analysis. Medicine (Baltimore) 2019; 98 (32): e16775.
66. Van der Maas ME et al. Procalcitonin biomarker algorithm reduces antibiotic prescriptions, duration of therapy, and costs in chronic obstructive pulmonary disease: a comparison in the Netherlands, Germany, and the United Kingdom. OMICS 2017; 21 (4): 232–43.
67. Bremmer DN, DiSilvio BE et al. Impact of procalcitonin guidance on management of adults hospitalized with chronic obstructive pulmonary disease exacerbations. J Gen Intern Med 2018; 33 (5): 692–7.
68. Pantzaris ND, Spilioti DX et al. The Use of Serum Procalcitonin as a Diagnostic and Prognostic Biomarker in Chronic Obstructive Pulmonary Disease Exacerbations: A Literature Review Update.
J Clin Med Res 2018; 10 (7): 545–51.
69. Lin C, Pang Q. Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J 2018; 12 (1): 10–5.
70. Flattet Y, Garin N et al. Determining prognosis in acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2017; 12: 467–75.
71. Pazarli AC, Koseoglu H et al. Procalcitonin: Is it a predictornoninvasive ventilation in chronic obstructive pulmonary disease? J Res Med Sci 201; 17 (11): 1047–51.
72. Wang J, Shang H et al. Procalcitonin, C-reactive protein, PaCO2, and noninvasive mechanical ventilation failure in chronic obstructive pulmonary disease exacerbation. Medicine (Baltimore) 2019; 98 (17): e15171.
2. World Health Report 2016. Health systems: improving performance. Annex table 3. 2016 World Health Organization. Geneva, Switzerland. https://www.who.int/images/default-source/infographics/10-causes-2016-ru.png?sfvrsn=56e8d56c_2
3. Chuchalin A, Khaltaev N, Аntonov N. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int J COPD 2014; 9: 963–74.
4. Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др. Внебольничная пневмония. Клинические рекомендации РРО и МАКМАХ, 2018. www.antibiotic.ru
[Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. i dr. Vnebol'nichnaia pnevmoniia. Klinicheskie rekomendatsii RRO i MAKMAKh, 2018. www.antibiotic.ru (in Russian).]
5. Зайцев А.А., Овчинников Ю.В., Кондратьева Т.В. Биологические маркеры воспаления при внебольничной пневмонии. Consilium Medicum. 2014; 16 (11): 36–41.
[Zaytsev A.A., Ovchinnikov Yu.V., Kondrateva T.V. Biological markers of inflammation in community-acquired pneumonia. Consilium Medicum. 2014; 16 (11): 36–41 (in Russian).]
6. Jaye DL, Waites KB. Clinical applications of C-reactive protein in pediatrics. Pediatr Infect
Dis J 1997; 16: 735–46.
7. Young B, Bauer S, Lamy O. Role of C-reactive protein in the diagnosis, prognosis and follow-up of community-acquired pneumonia. Rev Med Suisse 2010; 6 (269): 2068–70, 2072–3.
8. Van der Meer V, Neven A et al. Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review. BMJ 2005; 331 (7507): 26.
9. Flanders S et al. Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. Am J Med 2004; 116: 529–35.
10. Macfarlane J, Holmes W et al. Prospective study of the incidence, aetiology and outcome of adult lower respiratory tract illness in the community. Thorax 2001; 56: 109–14.
11. Almirall J, Bolíbar I et al. Contribution of C-reactive protein to the diagnosis and assessment of severity of community-acquired pneumonia. Chest 2004; 125: 1335–42.
12. Castro-Guardiola A, Armengou-Arxé A et al. Differential diagnosis between community-acquired pneumonia and non-pneumonia diseases of the chest in the emergency ward. Eur J Intern Med 2000; 11: 334–9.
13. Garcia Vazquez E, Martínez J et al. C-reactive protein levels in community-acquired pneumonia. Eur Respir J 2003; 21: 702–5.
14. Lehtomaki K. Clinical diagnosis of pneumococcal, adenoviral, mycoplasmal and mixed pneumonias in young men. Eur Respir J 1988; 1: 324–9.
15. Krüger S, Ewig S, Papassotiriou J et al. CAPNETZ Study Group. Inflammatory parameters predict etiologic patterns but do not allow for individual prediction of etiology in patients with CAP: results from the German competence network CAPNETZ. Respir Res 2009; 10 (1): 65.
16. España P, Capelastegui A et al. Population Study of Pneumonia (PSoP) Group. Utility of two biomarkers for directing care among patients with non-severe community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 2012; 31 (12): 3397–405.
17. Brink AJ, Van Wyk J et al. The role of appropriate diagnostic testing in acute respiratory tract infections: An antibiotic stewardship strategy to minimise diagnostic uncertainty in primary care. S Afr Med J 2016; 106 (6): 30–7.
18. Agapakis D, Tsantilas D et al. Coagulation and inflammation biomarkers may help predict the severity of community-acquired pneumonia. Respirology 2010; 15 (5): 796–803.
19. Hohenthal U, Hurme S et al. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin Microbiol Infect 2009; 15 (11): 1026–32.
20. Bruns A, Oosterheert J et al. Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. Eur Respir J 2008; 32: 726–32.
21. Ruiz-González A, Falguera M et al. C-reactive protein for discriminating treatment failure from slow responding pneumonia. Eur J Int Med 2010; 21: 548–52.
22. Зайцев А.А., Овчинников Ю.В., Чернов С.А., Кондратьева Т.В. Применение шкал оценки тяжести состояния больных внебольничной пневмонией у пациентов молодого возраста. Военно-медицинский журн. 2014; 335 (3): 31–8.
[Zaitsev A.A., Ovchinnikov Iu.V., Chernov S.A., Kondrat'eva T.V. Primenenie shkal otsenki tiazhesti sostoianiia bol'nykh vnebol'nichnoi pnevmoniei u patsientov molodogo vozrasta. Voenno-meditsinskii zhurn. 2014; 335 (3): 31–8 (in Russian).]
23. Ménendez R, Martínez R et al. Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 2009; 64 (7): 587–91.
24. Chalmers J, Singanayagam A. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med 2008; 121: 219–25.
25. Lobo S, Lobo F, Bota D et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 2003; 123: 2043–9.
26. Coelho L, Póvoa P et al. Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course. Crit Care 2007; 11 (4): 92.
27. Woodhead M, Blasi F et al. New guidelines for the management of adult lover respiratory tract infections. Clin Microbiol Infect 2011; 17 (6): 1–59.
28. Chang C-H, Tsao K-C et al. Procalcitonin and C-reactive protein cannot differentiate bacterial or viral infection in COPD exacerbation requiring emergency department visits. Int J Chron Obstruct Pulmon Dis 2015; 10: 767–74.
29. Daniels JM, Schoorl M et al. Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest 2010; 138 (5): 1108–15.
30. Adepoju VA. Can we use a biomarker to guide antibiotic treatment in severe COPD exacerbations? Breathe (Sheff) 2019; 15 (4): 353–5.
31. Авдеев С.Н., Баймаканова Г.Е., Зубаирова П.А. Возможности С-реактивного белка в диагностике бактериальной инфекции и пневмонии у больных с обострением хронической обструктивной болезни легких. Уральский мед. журн. 2008; 13: 19–24.
[Avdeev S.N., Baimakanova G.E., Zubairova P.A. Vozmozhnosti S-reaktivnogo belka v diagnostike bakterial'noi infektsii i pnevmonii u bol'nykh s obostreniem khronicheskoi obstruktivnoi bolezni legkikh. Ural'skii med. zhurn. 2008; 13: 19–24 (in Russian).]
32. Çolak A, Yılmaz C et al. Procalcitonin and CRP as Biomarkers in Discrimination of Community-acquired Pneumonia and Exacerbation of COPD. J Med Biochem 2017; 36 (2): 122–6.
33. Young Ae Kang, Sung-Youn Kwon et al. Role of C-reactive protein and procalcitonin in differentiation of tuberculosis from bacterial community acquired pneumonia. Korean J Intern Med 2009; 24 (4): 337–42.
34. Le Moullec J, Jullienne A et al. The complete sequence of human preprocalcitonin. FEBS 1984; 167: 93–7.
35. Becker K, Muller B et al. Calcitonin gene family of peptides. Principles and Practice of Endocrinology and Metabolism. Philadelphia: J.B Lippincott, 2001; p. 520–34.
36. Bohuon C. A brief history of procalcitonin. Intensive Care Med 2000; 26 (S2): 146–7.
37. Assicot M, Gendrel D, Carsin H et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341 (8844): 515–8.
38. Моррисон В.В., Божедомов А.Ю. Значение определения концентрации прокальцитонина плазмы крови в диагностике септических состояний. Саратовский науч.-мед. журн. 2010; 6 (2): 261–7.
[Morrison V.V., Bozhedomov A.Iu. Znachenie opredeleniia kontsentratsii prokal'tsitonina plazmy krovi v diagnostike septicheskikh sostoianii. Saratovskii nauch.-med. zhurn. 2010; 6 (2): 261–7 (in Russian).]
39. Christ-Crain М, Opal S. Clinical review: The role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit Care 2010; 14 (1): 203.
40. Krüger S, Ewig S et al. CAPNETZ Study Group. Procalcitonin predicts patients at low risk of death from community-acquired pneumonia across all CRB-65 classes. Eur Respir J 2008; 31 (2): 349–55.
41. Upadhyay S, Niederman M. Biomarkers: What is Their Benefit in the Identification of Infection, Severity Assessment, and Management of Community-acquired Pneumonia? Infect Dis Clin North Am 2013; 27 (1): 19–31.
42. Horie M, Ugajin M et al. Diagnostic and prognostic value of procalcitonin in community-acquired pneumonia. Am J Med Sci 2012; 343 (1): 30–5.
43. Tamura M, Watanabe M et al. Serial quantification of procalcitonin (PCT) predicts clinical outcome and prognosis in patients with community-acquired pneumonia (CAP). J Infect Chemother 2014; 2: 97–103.
44. Julián-Jiménez A, Timón Zapata J et al. Diagnostic and prognostic power of biomarkers to improve the management of community acquired pneumonia in the emergency department. Enferm Infecc Microbiol Clin 2014; 32 (4): 225–35.
45. Kim J, Seo J et al. Usefulness of plasma procalcitonin to predict severity in elderly patients with community-acquired pneumonia. Tuberc Respir Dis 2013; 74 (5): 207–14.
46. Ugajin M, Yamaki K et al. Predictive Values of Semi-Quantitative Procalcitonin Test and Common Biomarkers for the Clinical Outcomes of Community-Acquired Pneumonia. Respir Care 2014; 59 (4): 564–73.
47. Christ-Crain M, Stolz D et al. Procalcitonin Guidance of Antibiotic Therapy in Community-acquired Pneumonia. Am J Respir Crit Care Med 2006; 174: 84–93.
48. Long W, Deng X et al. Procalcitonin guidance for reduction of antibiotic use in low-risk outpatients with community-acquired pneumonia. Respitology 2011; 16 (5): 819–24.
49. Schuetz P, Suter-Widmer I et al. Procalcitonin-Guided Antibiotic Therapy and Hospitalisation in Patients with Lower Respiratory Tract Infections (ProHOSP) Study Group. Prognostic value of procalcitonin in community-acquired pneumonia. Eur Respir J 2011; 37 (2): 384–92.
50. Albrich W, Dusemund F et al. ProREAL Study Team. Effectiveness and safety of procalcitonin-guided antibiotic therapy in lower respiratory tract infections in “real life”: an international, multicenter poststudy survey (ProREAL). Arch Intern Med 2012; 172 (9): 715–22.
51. Schuetz P, Müller B et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evid Based Child Health 2013; 8 (4): 1297–371.
52. Hui Li, Yi-Feng Luo et al. Meta-analysis and systematic review of procalcitonin-guided therapy in respiratory tract infections. Antimicrob Agents Chemother 2011; 55 (12): 5900–6.
53. Sager R, Kutz A et al. Procalcitonin-guided Diagnosis and Antibiotic Stewardship Revisited. BMC Med 2017, 15 (1): 15.
54. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014; 371: 1619–28.
55. Self WH, Balk RA et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized With Community-Acquired Pneumonia. Clin Infect Dis 2017; 65 (2): 183–90.
56. Kamat IS, Ramachandran V et al. Low procalcitonin, community acquired pneumonia, and antibiotic therapy. Lancet Infect Dis 2018; 18: 496–7.
57. Metlay JP, Waterer GW et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (7): e45–e67.
58. Niu W, Wan Y, Li M et al. The diagnostic value of serum procalcitonin, IL-10 and C-reactive protein in community acquired pneumonia and tuberculosis. Eur Rev Med Pharmacol Sci 2013; 17 (24): 3329–33.
59. Bafadhel M, Clark T et al. Procalcitonin and C-reactive protein in hospitalized adult patients with community-acquired pneumonia or exacerbation of asthma or COPD. Chest 2011; 139 (6): 1410–8.
60. Borsi H, Nia EP et al. Relationship between serum procalcitonin level and chronic obstructive pulmonary disease. J Family Med Prim Care 2019; 8 (2): 738–40.
61. Pandey S, Garg R et al. Serum Procalcitonin Levels in Chronic Obstructive Pulmonary Disease Patients in North Indian Population. Ann Afr Med 2019; 18 (2): 103-–7.
62. Gao D, Chen X et al. The levels serum procalcitonin and high-sensitivity C-reactive protein in the early diagnosis chronic pulmonary disease during acute exacerbation. Exp Ther Med 2017; 14 (1): 193–8.
63. Rothberg MB, Pekow PS et al. Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. JAMA 2010; 303 (20): 2035–42
64. Wang JX, Zhang SM et al. Acute exacerbations of chronic obstructive pulmonary disease with low serum procalcitonin values do not benefit from antibiotic treatment: a prospective randomized controlled trial. Int J Infect Dis 2016; 48: 40–5.
65. Li Z, Yuan X et al. Procalcitonin-guided antibiotic therapy in acute exacerbation of chronic obstructive pulmonary disease: An updated meta-analysis. Medicine (Baltimore) 2019; 98 (32): e16775.
66. Van der Maas ME et al. Procalcitonin biomarker algorithm reduces antibiotic prescriptions, duration of therapy, and costs in chronic obstructive pulmonary disease: a comparison in the Netherlands, Germany, and the United Kingdom. OMICS 2017; 21 (4): 232–43.
67. Bremmer DN, DiSilvio BE et al. Impact of procalcitonin guidance on management of adults hospitalized with chronic obstructive pulmonary disease exacerbations. J Gen Intern Med 2018; 33 (5): 692–7.
68. Pantzaris ND, Spilioti DX et al. The Use of Serum Procalcitonin as a Diagnostic and Prognostic Biomarker in Chronic Obstructive Pulmonary Disease Exacerbations: A Literature Review Update.
J Clin Med Res 2018; 10 (7): 545–51.
69. Lin C, Pang Q. Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J 2018; 12 (1): 10–5.
70. Flattet Y, Garin N et al. Determining prognosis in acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2017; 12: 467–75.
71. Pazarli AC, Koseoglu H et al. Procalcitonin: Is it a predictornoninvasive ventilation in chronic obstructive pulmonary disease? J Res Med Sci 201; 17 (11): 1047–51.
72. Wang J, Shang H et al. Procalcitonin, C-reactive protein, PaCO2, and noninvasive mechanical ventilation failure in chronic obstructive pulmonary disease exacerbation. Medicine (Baltimore) 2019; 98 (17): e15171.
________________________________________________
2. World Health Report 2016. Health systems: improving performance. Annex table 3. 2016 World Health Organization. Geneva, Switzerland. https://www.who.int/images/default-source/infographics/10-causes-2016-ru.png?sfvrsn=56e8d56c_2
3. Chuchalin A, Khaltaev N, Аntonov N. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int J COPD 2014; 9: 963–74.
4. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. i dr. Vnebol'nichnaia pnevmoniia. Klinicheskie rekomendatsii RRO i MAKMAKh, 2018. www.antibiotic.ru (in Russian).
5. Zaytsev A.A., Ovchinnikov Yu.V., Kondrateva T.V. Biological markers of inflammation in community-acquired pneumonia. Consilium Medicum. 2014; 16 (11): 36–41 (in Russian).
6. Jaye DL, Waites KB. Clinical applications of C-reactive protein in pediatrics. Pediatr Infect Dis J 1997; 16: 735–46.
7. Young B, Bauer S, Lamy O. Role of C-reactive protein in the diagnosis, prognosis and follow-up of community-acquired pneumonia. Rev Med Suisse 2010; 6 (269): 2068–70, 2072–3.
8. Van der Meer V, Neven A et al. Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review. BMJ 2005; 331 (7507): 26.
9. Flanders S et al. Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. Am J Med 2004; 116: 529–35.
10. Macfarlane J, Holmes W et al. Prospective study of the incidence, aetiology and outcome of adult lower respiratory tract illness in the community. Thorax 2001; 56: 109–14.
11. Almirall J, Bolíbar I et al. Contribution of C-reactive protein to the diagnosis and assessment of severity of community-acquired pneumonia. Chest 2004; 125: 1335–42.
12. Castro-Guardiola A, Armengou-Arxé A et al. Differential diagnosis between community-acquired pneumonia and non-pneumonia diseases of the chest in the emergency ward. Eur J Intern Med 2000; 11: 334–9.
13. Garcia Vazquez E, Martínez J et al. C-reactive protein levels in community-acquired pneumonia. Eur Respir J 2003; 21: 702–5.
14. Lehtomaki K. Clinical diagnosis of pneumococcal, adenoviral, mycoplasmal and mixed pneumonias in young men. Eur Respir J 1988; 1: 324–9.
15. Krüger S, Ewig S, Papassotiriou J et al. CAPNETZ Study Group. Inflammatory parameters predict etiologic patterns but do not allow for individual prediction of etiology in patients with CAP: results from the German competence network CAPNETZ. Respir Res 2009; 10 (1): 65.
16. España P, Capelastegui A et al. Population Study of Pneumonia (PSoP) Group. Utility of two biomarkers for directing care among patients with non-severe community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 2012; 31 (12): 3397–405.
17. Brink AJ, Van Wyk J et al. The role of appropriate diagnostic testing in acute respiratory tract infections: An antibiotic stewardship strategy to minimise diagnostic uncertainty in primary care. S Afr Med J 2016; 106 (6): 30–7.
18. Agapakis D, Tsantilas D et al. Coagulation and inflammation biomarkers may help predict the severity of community-acquired pneumonia. Respirology 2010; 15 (5): 796–803.
19. Hohenthal U, Hurme S et al. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin Microbiol Infect 2009; 15 (11): 1026–32.
20. Bruns A, Oosterheert J et al. Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. Eur Respir J 2008; 32: 726–32.
21. Ruiz-González A, Falguera M et al. C-reactive protein for discriminating treatment failure from slow responding pneumonia. Eur J Int Med 2010; 21: 548–52.
22. Zaitsev A.A., Ovchinnikov Iu.V., Chernov S.A., Kondrat'eva T.V. Primenenie shkal otsenki tiazhesti sostoianiia bol'nykh vnebol'nichnoi pnevmoniei u patsientov molodogo vozrasta. Voenno-meditsinskii zhurn. 2014; 335 (3): 31–8 (in Russian).
23. Ménendez R, Martínez R et al. Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 2009; 64 (7): 587–91.
24. Chalmers J, Singanayagam A. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med 2008; 121: 219–25.
25. Lobo S, Lobo F, Bota D et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 2003; 123: 2043–9.
26. Coelho L, Póvoa P et al. Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course. Crit Care 2007; 11 (4): 92.
27. Woodhead M, Blasi F et al. New guidelines for the management of adult lover respiratory tract infections. Clin Microbiol Infect 2011; 17 (6): 1–59.
28. Chang C-H, Tsao K-C et al. Procalcitonin and C-reactive protein cannot differentiate bacterial or viral infection in COPD exacerbation requiring emergency department visits. Int J Chron Obstruct Pulmon Dis 2015; 10: 767–74.
29. Daniels JM, Schoorl M et al. Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest 2010; 138 (5): 1108–15.
30. Adepoju VA. Can we use a biomarker to guide antibiotic treatment in severe COPD exacerbations? Breathe (Sheff) 2019; 15 (4): 353–5.
31. Avdeev S.N., Baimakanova G.E., Zubairova P.A. Vozmozhnosti S-reaktivnogo belka v diagnostike bakterial'noi infektsii i pnevmonii u bol'nykh s obostreniem khronicheskoi obstruktivnoi bolezni legkikh. Ural'skii med. zhurn. 2008; 13: 19–24 (in Russian).
32. Çolak A, Yılmaz C et al. Procalcitonin and CRP as Biomarkers in Discrimination of Community-acquired Pneumonia and Exacerbation of COPD. J Med Biochem 2017; 36 (2): 122–6.
33. Young Ae Kang, Sung-Youn Kwon et al. Role of C-reactive protein and procalcitonin in differentiation of tuberculosis from bacterial community acquired pneumonia. Korean J Intern Med 2009; 24 (4): 337–42.
34. Le Moullec J, Jullienne A et al. The complete sequence of human preprocalcitonin. FEBS 1984; 167: 93–7.
35. Becker K, Muller B et al. Calcitonin gene family of peptides. Principles and Practice of Endocrinology and Metabolism. Philadelphia: J.B Lippincott, 2001; p. 520–34.
36. Bohuon C. A brief history of procalcitonin. Intensive Care Med 2000; 26 (S2): 146–7.
37. Assicot M, Gendrel D, Carsin H et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341 (8844): 515–8.
38. Morrison V.V., Bozhedomov A.Iu. Znachenie opredeleniia kontsentratsii prokal'tsitonina plazmy krovi v diagnostike septicheskikh sostoianii. Saratovskii nauch.-med. zhurn. 2010; 6 (2): 261–7 (in Russian).
39. Christ-Crain М, Opal S. Clinical review: The role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit Care 2010; 14 (1): 203.
40. Krüger S, Ewig S et al. CAPNETZ Study Group. Procalcitonin predicts patients at low risk of death from community-acquired pneumonia across all CRB-65 classes. Eur Respir J 2008; 31 (2): 349–55.
41. Upadhyay S, Niederman M. Biomarkers: What is Their Benefit in the Identification of Infection, Severity Assessment, and Management of Community-acquired Pneumonia? Infect Dis Clin North Am 2013; 27 (1): 19–31.
42. Horie M, Ugajin M et al. Diagnostic and prognostic value of procalcitonin in community-acquired pneumonia. Am J Med Sci 2012; 343 (1): 30–5.
43. Tamura M, Watanabe M et al. Serial quantification of procalcitonin (PCT) predicts clinical outcome and prognosis in patients with community-acquired pneumonia (CAP). J Infect Chemother 2014; 2: 97–103.
44. Julián-Jiménez A, Timón Zapata J et al. Diagnostic and prognostic power of biomarkers to improve the management of community acquired pneumonia in the emergency department. Enferm Infecc Microbiol Clin 2014; 32 (4): 225–35.
45. Kim J, Seo J et al. Usefulness of plasma procalcitonin to predict severity in elderly patients with community-acquired pneumonia. Tuberc Respir Dis 2013; 74 (5): 207–14.
46. Ugajin M, Yamaki K et al. Predictive Values of Semi-Quantitative Procalcitonin Test and Common Biomarkers for the Clinical Outcomes of Community-Acquired Pneumonia. Respir Care 2014; 59 (4): 564–73.
47. Christ-Crain M, Stolz D et al. Procalcitonin Guidance of Antibiotic Therapy in Community-acquired Pneumonia. Am J Respir Crit Care Med 2006; 174: 84–93.
48. Long W, Deng X et al. Procalcitonin guidance for reduction of antibiotic use in low-risk outpatients with community-acquired pneumonia. Respitology 2011; 16 (5): 819–24.
49. Schuetz P, Suter-Widmer I et al. Procalcitonin-Guided Antibiotic Therapy and Hospitalisation in Patients with Lower Respiratory Tract Infections (ProHOSP) Study Group. Prognostic value of procalcitonin in community-acquired pneumonia. Eur Respir J 2011; 37 (2): 384–92.
50. Albrich W, Dusemund F et al. ProREAL Study Team. Effectiveness and safety of procalcitonin-guided antibiotic therapy in lower respiratory tract infections in “real life”: an international, multicenter poststudy survey (ProREAL). Arch Intern Med 2012; 172 (9): 715–22.
51. Schuetz P, Müller B et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evid Based Child Health 2013; 8 (4): 1297–371.
52. Hui Li, Yi-Feng Luo et al. Meta-analysis and systematic review of procalcitonin-guided therapy in respiratory tract infections. Antimicrob Agents Chemother 2011; 55 (12): 5900–6.
53. Sager R, Kutz A et al. Procalcitonin-guided Diagnosis and Antibiotic Stewardship Revisited. BMC Med 2017, 15 (1): 15.
54. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014; 371: 1619–28.
55. Self WH, Balk RA et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized With Community-Acquired Pneumonia. Clin Infect Dis 2017; 65 (2): 183–90.
56. Kamat IS, Ramachandran V et al. Low procalcitonin, community acquired pneumonia, and antibiotic therapy. Lancet Infect Dis 2018; 18: 496–7.
57. Metlay JP, Waterer GW et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (7): e45–e67.
58. Niu W, Wan Y, Li M et al. The diagnostic value of serum procalcitonin, IL-10 and C-reactive protein in community acquired pneumonia and tuberculosis. Eur Rev Med Pharmacol Sci 2013; 17 (24): 3329–33.
59. Bafadhel M, Clark T et al. Procalcitonin and C-reactive protein in hospitalized adult patients with community-acquired pneumonia or exacerbation of asthma or COPD. Chest 2011; 139 (6): 1410–8.
60. Borsi H, Nia EP et al. Relationship between serum procalcitonin level and chronic obstructive pulmonary disease. J Family Med Prim Care 2019; 8 (2): 738–40.
61. Pandey S, Garg R et al. Serum Procalcitonin Levels in Chronic Obstructive Pulmonary Disease Patients in North Indian Population. Ann Afr Med 2019; 18 (2): 103-–7.
62. Gao D, Chen X et al. The levels serum procalcitonin and high-sensitivity C-reactive protein in the early diagnosis chronic pulmonary disease during acute exacerbation. Exp Ther Med 2017; 14 (1): 193–8.
63. Rothberg MB, Pekow PS et al. Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. JAMA 2010; 303 (20): 2035–42
64. Wang JX, Zhang SM et al. Acute exacerbations of chronic obstructive pulmonary disease with low serum procalcitonin values do not benefit from antibiotic treatment: a prospective randomized controlled trial. Int J Infect Dis 2016; 48: 40–5.
65. Li Z, Yuan X et al. Procalcitonin-guided antibiotic therapy in acute exacerbation of chronic obstructive pulmonary disease: An updated meta-analysis. Medicine (Baltimore) 2019; 98 (32): e16775.
66. Van der Maas ME et al. Procalcitonin biomarker algorithm reduces antibiotic prescriptions, duration of therapy, and costs in chronic obstructive pulmonary disease: a comparison in the Netherlands, Germany, and the United Kingdom. OMICS 2017; 21 (4): 232–43.
67. Bremmer DN, DiSilvio BE et al. Impact of procalcitonin guidance on management of adults hospitalized with chronic obstructive pulmonary disease exacerbations. J Gen Intern Med 2018; 33 (5): 692–7.
68. Pantzaris ND, Spilioti DX et al. The Use of Serum Procalcitonin as a Diagnostic and Prognostic Biomarker in Chronic Obstructive Pulmonary Disease Exacerbations: A Literature Review Update.
J Clin Med Res 2018; 10 (7): 545–51.
69. Lin C, Pang Q. Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J 2018; 12 (1): 10–5.
70. Flattet Y, Garin N et al. Determining prognosis in acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2017; 12: 467–75.
71. Pazarli AC, Koseoglu H et al. Procalcitonin: Is it a predictornoninvasive ventilation in chronic obstructive pulmonary disease? J Res Med Sci 201; 17 (11): 1047–51.
72. Wang J, Shang H et al. Procalcitonin, C-reactive protein, PaCO2, and noninvasive mechanical ventilation failure in chronic obstructive pulmonary disease exacerbation. Medicine (Baltimore) 2019; 98 (17): e15171.
Авторы
Т.В. Кондратьева*1, А.А. Зайцев2
1 ФГКУ «1586 Военный клинический госпиталь» Минобороны России, Подольск, Россия;
2 ФГБУ «Главный военный клинический госпиталь им. Н.Н. Бурденко» Минобороны России, Москва, Россия
*tanyakondratieva@mail.ru
1 1586 Military Clinical Hospital, Podolsk, Russia;
2 Burdenko Main Military Clinical Hospital, Moscow, Russia
*tanyakondratieva@mail.ru
1 ФГКУ «1586 Военный клинический госпиталь» Минобороны России, Подольск, Россия;
2 ФГБУ «Главный военный клинический госпиталь им. Н.Н. Бурденко» Минобороны России, Москва, Россия
*tanyakondratieva@mail.ru
________________________________________________
1 1586 Military Clinical Hospital, Podolsk, Russia;
2 Burdenko Main Military Clinical Hospital, Moscow, Russia
*tanyakondratieva@mail.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
