Биомаркеры воспаления при заболеваниях органов дыхания: клиническая практика и перспективы
Биомаркеры воспаления при заболеваниях органов дыхания: клиническая практика и перспективы
Зайцев А.А., Кондратьева Т.В. Биомаркеры воспаления при заболеваниях органов дыхания: клиническая практика и перспективы. Consilium Medicum. 2020; 22 (3): 34–39. DOI: 10.26442/20751753.2020.3.200065
________________________________________________
Kondrateva T.V., Zaytsev A.A. Serum biomarkers of inflammation in acute and chronic inflammatory respiratory diseases: practice and prospects. Consilium Medicum. 2020; 22 (3): 34–39. DOI: 10.26442/20751753.2020.3.200065
Биомаркеры воспаления при заболеваниях органов дыхания: клиническая практика и перспективы
Зайцев А.А., Кондратьева Т.В. Биомаркеры воспаления при заболеваниях органов дыхания: клиническая практика и перспективы. Consilium Medicum. 2020; 22 (3): 34–39. DOI: 10.26442/20751753.2020.3.200065
________________________________________________
Kondrateva T.V., Zaytsev A.A. Serum biomarkers of inflammation in acute and chronic inflammatory respiratory diseases: practice and prospects. Consilium Medicum. 2020; 22 (3): 34–39. DOI: 10.26442/20751753.2020.3.200065
Острые и хронические респираторные заболевания воспалительного генеза представляют собой колоссальное бремя для системы здравоохранения во всем мире. Настоящий обзор зарубежных и отечественных исследований посвящен анализу практического применения диагностических и прогностических возможностей плазменных биомаркеров воспалительного ответа, таких как С-реактивный белок, прокальцитонин и пресепсин, перспективам их использования при инфекциях нижних дыхательных путей, включая внебольничную пневмонию, а также при обострениях хронической обструктивной болезни легких и бронхиальной астмы.
Acute and chronic respiratory diseases of inflammatory origin are a huge burden on the health system worldwide. This review of foreign and domestic studies is devoted to the analysis of practical diagnostic and prognostic capabilities of serum biomarkers of inflammatory response, such as C-reactive protein, procalcitonin and presepsin, and the prospects for their use in low respiratory tract infections, including community-acquired pneumonia, as well as exacerbations of chronic obstructive pulmonary disease and asthma.
1. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, allcause mortality, and cause-specifi c mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1459–544. 2. World Health Report 2016. Health systems: improving performance. Annex table 3. 2016 World Health Organization. Geneva, Switzerland. https://www.who.int/images/default-source/infographics/10-causes-2016-ru.png?sfvrsn=56e8d56c_2 3. Chuchalin A, Khaltaev N, Аntonov N. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int J COPD 2014; 9: 963–74. 4. Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др. Внебольничная пневмония. Клинические рекомендации РРО и МАКМАХ, 2018. www.antibiotic.ru [Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. i dr. Vnebol'nichnaia pnevmoniia. Klinicheskie rekomendatsii RRO i MAKMAKh, 2018. www.antibiotic.ru (in Russian).] 5. Зайцев А.А., Овчинников Ю.В., Кондратьева Т.В. Биологические маркеры воспаления при внебольничной пневмонии. Consilium Medicum. 2014; 16 (11): 36–41. [Zaytsev A.A., Ovchinnikov Yu.V., Kondrateva T.V. Biological markers of inflammation in community-acquired pneumonia. Consilium Medicum. 2014; 16 (11): 36–41 (in Russian).] 6. Jaye DL, Waites KB. Clinical applications of C-reactive protein in pediatrics. Pediatr Infect Dis J 1997; 16: 735–46. 7. Young B, Bauer S, Lamy O. Role of C-reactive protein in the diagnosis, prognosis and follow-up of community-acquired pneumonia. Rev Med Suisse 2010; 6 (269): 2068–70, 2072–3. 8. Van der Meer V, Neven A et al. Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review. BMJ 2005; 331 (7507): 26. 9. Flanders S et al. Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. Am J Med 2004; 116: 529–35. 10. Macfarlane J, Holmes W et al. Prospective study of the incidence, aetiology and outcome of adult lower respiratory tract illness in the community. Thorax 2001; 56: 109–14. 11. Almirall J, Bolíbar I et al. Contribution of C-reactive protein to the diagnosis and assessment of severity of community-acquired pneumonia. Chest 2004; 125: 1335–42. 12. Castro-Guardiola A, Armengou-Arxé A et al. Differential diagnosis between community-acquired pneumonia and non-pneumonia diseases of the chest in the emergency ward. Eur J Intern Med 2000; 11: 334–9. 13. Garcia Vazquez E, Martínez J et al. C-reactive protein levels in community-acquired pneumonia. Eur Respir J 2003; 21: 702–5. 14. Lehtomaki K. Clinical diagnosis of pneumococcal, adenoviral, mycoplasmal and mixed pneumonias in young men. Eur Respir J 1988; 1: 324–9. 15. Krüger S, Ewig S, Papassotiriou J et al. CAPNETZ Study Group. Inflammatory parameters predict etiologic patterns but do not allow for individual prediction of etiology in patients with CAP: results from the German competence network CAPNETZ. Respir Res 2009; 10 (1): 65. 16. España P, Capelastegui A et al. Population Study of Pneumonia (PSoP) Group. Utility of two biomarkers for directing care among patients with non-severe community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 2012; 31 (12): 3397–405. 17. Brink AJ, Van Wyk J et al. The role of appropriate diagnostic testing in acute respiratory tract infections: An antibiotic stewardship strategy to minimise diagnostic uncertainty in primary care. S Afr Med J 2016; 106 (6): 30–7. 18. Agapakis D, Tsantilas D et al. Coagulation and inflammation biomarkers may help predict the severity of community-acquired pneumonia. Respirology 2010; 15 (5): 796–803. 19. Hohenthal U, Hurme S et al. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin Microbiol Infect 2009; 15 (11): 1026–32. 20. Bruns A, Oosterheert J et al. Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. Eur Respir J 2008; 32: 726–32. 21. Ruiz-González A, Falguera M et al. C-reactive protein for discriminating treatment failure from slow responding pneumonia. Eur J Int Med 2010; 21: 548–52. 22. Зайцев А.А., Овчинников Ю.В., Чернов С.А., Кондратьева Т.В. Применение шкал оценки тяжести состояния больных внебольничной пневмонией у пациентов молодого возраста. Военно-медицинский журн. 2014; 335 (3): 31–8. [Zaitsev A.A., Ovchinnikov Iu.V., Chernov S.A., Kondrat'eva T.V. Primenenie shkal otsenki tiazhesti sostoianiia bol'nykh vnebol'nichnoi pnevmoniei u patsientov molodogo vozrasta. Voenno-meditsinskii zhurn. 2014; 335 (3): 31–8 (in Russian).] 23. Ménendez R, Martínez R et al. Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 2009; 64 (7): 587–91. 24. Chalmers J, Singanayagam A. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med 2008; 121: 219–25. 25. Lobo S, Lobo F, Bota D et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 2003; 123: 2043–9. 26. Coelho L, Póvoa P et al. Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course. Crit Care 2007; 11 (4): 92. 27. Woodhead M, Blasi F et al. New guidelines for the management of adult lover respiratory tract infections. Clin Microbiol Infect 2011; 17 (6): 1–59. 28. Chang C-H, Tsao K-C et al. Procalcitonin and C-reactive protein cannot differentiate bacterial or viral infection in COPD exacerbation requiring emergency department visits. Int J Chron Obstruct Pulmon Dis 2015; 10: 767–74. 29. Daniels JM, Schoorl M et al. Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest 2010; 138 (5): 1108–15. 30. Adepoju VA. Can we use a biomarker to guide antibiotic treatment in severe COPD exacerbations? Breathe (Sheff) 2019; 15 (4): 353–5. 31. Авдеев С.Н., Баймаканова Г.Е., Зубаирова П.А. Возможности С-реактивного белка в диагностике бактериальной инфекции и пневмонии у больных с обострением хронической обструктивной болезни легких. Уральский мед. журн. 2008; 13: 19–24. [Avdeev S.N., Baimakanova G.E., Zubairova P.A. Vozmozhnosti S-reaktivnogo belka v diagnostike bakterial'noi infektsii i pnevmonii u bol'nykh s obostreniem khronicheskoi obstruktivnoi bolezni legkikh. Ural'skii med. zhurn. 2008; 13: 19–24 (in Russian).] 32. Çolak A, Yılmaz C et al. Procalcitonin and CRP as Biomarkers in Discrimination of Community-acquired Pneumonia and Exacerbation of COPD. J Med Biochem 2017; 36 (2): 122–6. 33. Young Ae Kang, Sung-Youn Kwon et al. Role of C-reactive protein and procalcitonin in differentiation of tuberculosis from bacterial community acquired pneumonia. Korean J Intern Med 2009; 24 (4): 337–42. 34. Le Moullec J, Jullienne A et al. The complete sequence of human preprocalcitonin. FEBS 1984; 167: 93–7. 35. Becker K, Muller B et al. Calcitonin gene family of peptides. Principles and Practice of Endocrinology and Metabolism. Philadelphia: J.B Lippincott, 2001; p. 520–34. 36. Bohuon C. A brief history of procalcitonin. Intensive Care Med 2000; 26 (S2): 146–7. 37. Assicot M, Gendrel D, Carsin H et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341 (8844): 515–8. 38. Моррисон В.В., Божедомов А.Ю. Значение определения концентрации прокальцитонина плазмы крови в диагностике септических состояний. Саратовский науч.-мед. журн. 2010; 6 (2): 261–7. [Morrison V.V., Bozhedomov A.Iu. Znachenie opredeleniia kontsentratsii prokal'tsitonina plazmy krovi v diagnostike septicheskikh sostoianii. Saratovskii nauch.-med. zhurn. 2010; 6 (2): 261–7 (in Russian).] 39. Christ-Crain М, Opal S. Clinical review: The role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit Care 2010; 14 (1): 203. 40. Krüger S, Ewig S et al. CAPNETZ Study Group. Procalcitonin predicts patients at low risk of death from community-acquired pneumonia across all CRB-65 classes. Eur Respir J 2008; 31 (2): 349–55. 41. Upadhyay S, Niederman M. Biomarkers: What is Their Benefit in the Identification of Infection, Severity Assessment, and Management of Community-acquired Pneumonia? Infect Dis Clin North Am 2013; 27 (1): 19–31. 42. Horie M, Ugajin M et al. Diagnostic and prognostic value of procalcitonin in community-acquired pneumonia. Am J Med Sci 2012; 343 (1): 30–5. 43. Tamura M, Watanabe M et al. Serial quantification of procalcitonin (PCT) predicts clinical outcome and prognosis in patients with community-acquired pneumonia (CAP). J Infect Chemother 2014; 2: 97–103. 44. Julián-Jiménez A, Timón Zapata J et al. Diagnostic and prognostic power of biomarkers to improve the management of community acquired pneumonia in the emergency department. Enferm Infecc Microbiol Clin 2014; 32 (4): 225–35. 45. Kim J, Seo J et al. Usefulness of plasma procalcitonin to predict severity in elderly patients with community-acquired pneumonia. Tuberc Respir Dis 2013; 74 (5): 207–14. 46. Ugajin M, Yamaki K et al. Predictive Values of Semi-Quantitative Procalcitonin Test and Common Biomarkers for the Clinical Outcomes of Community-Acquired Pneumonia. Respir Care 2014; 59 (4): 564–73. 47. Christ-Crain M, Stolz D et al. Procalcitonin Guidance of Antibiotic Therapy in Community-acquired Pneumonia. Am J Respir Crit Care Med 2006; 174: 84–93. 48. Long W, Deng X et al. Procalcitonin guidance for reduction of antibiotic use in low-risk outpatients with community-acquired pneumonia. Respitology 2011; 16 (5): 819–24. 49. Schuetz P, Suter-Widmer I et al. Procalcitonin-Guided Antibiotic Therapy and Hospitalisation in Patients with Lower Respiratory Tract Infections (ProHOSP) Study Group. Prognostic value of procalcitonin in community-acquired pneumonia. Eur Respir J 2011; 37 (2): 384–92. 50. Albrich W, Dusemund F et al. ProREAL Study Team. Effectiveness and safety of procalcitonin-guided antibiotic therapy in lower respiratory tract infections in “real life”: an international, multicenter poststudy survey (ProREAL). Arch Intern Med 2012; 172 (9): 715–22. 51. Schuetz P, Müller B et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evid Based Child Health 2013; 8 (4): 1297–371. 52. Hui Li, Yi-Feng Luo et al. Meta-analysis and systematic review of procalcitonin-guided therapy in respiratory tract infections. Antimicrob Agents Chemother 2011; 55 (12): 5900–6. 53. Sager R, Kutz A et al. Procalcitonin-guided Diagnosis and Antibiotic Stewardship Revisited. BMC Med 2017, 15 (1): 15. 54. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014; 371: 1619–28. 55. Self WH, Balk RA et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized With Community-Acquired Pneumonia. Clin Infect Dis 2017; 65 (2): 183–90. 56. Kamat IS, Ramachandran V et al. Low procalcitonin, community acquired pneumonia, and antibiotic therapy. Lancet Infect Dis 2018; 18: 496–7. 57. Metlay JP, Waterer GW et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (7): e45–e67. 58. Niu W, Wan Y, Li M et al. The diagnostic value of serum procalcitonin, IL-10 and C-reactive protein in community acquired pneumonia and tuberculosis. Eur Rev Med Pharmacol Sci 2013; 17 (24): 3329–33. 59. Bafadhel M, Clark T et al. Procalcitonin and C-reactive protein in hospitalized adult patients with community-acquired pneumonia or exacerbation of asthma or COPD. Chest 2011; 139 (6): 1410–8. 60. Borsi H, Nia EP et al. Relationship between serum procalcitonin level and chronic obstructive pulmonary disease. J Family Med Prim Care 2019; 8 (2): 738–40. 61. Pandey S, Garg R et al. Serum Procalcitonin Levels in Chronic Obstructive Pulmonary Disease Patients in North Indian Population. Ann Afr Med 2019; 18 (2): 103-–7. 62. Gao D, Chen X et al. The levels serum procalcitonin and high-sensitivity C-reactive protein in the early diagnosis chronic pulmonary disease during acute exacerbation. Exp Ther Med 2017; 14 (1): 193–8. 63. Rothberg MB, Pekow PS et al. Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. JAMA 2010; 303 (20): 2035–42 64. Wang JX, Zhang SM et al. Acute exacerbations of chronic obstructive pulmonary disease with low serum procalcitonin values do not benefit from antibiotic treatment: a prospective randomized controlled trial. Int J Infect Dis 2016; 48: 40–5. 65. Li Z, Yuan X et al. Procalcitonin-guided antibiotic therapy in acute exacerbation of chronic obstructive pulmonary disease: An updated meta-analysis. Medicine (Baltimore) 2019; 98 (32): e16775. 66. Van der Maas ME et al. Procalcitonin biomarker algorithm reduces antibiotic prescriptions, duration of therapy, and costs in chronic obstructive pulmonary disease: a comparison in the Netherlands, Germany, and the United Kingdom. OMICS 2017; 21 (4): 232–43. 67. Bremmer DN, DiSilvio BE et al. Impact of procalcitonin guidance on management of adults hospitalized with chronic obstructive pulmonary disease exacerbations. J Gen Intern Med 2018; 33 (5): 692–7. 68. Pantzaris ND, Spilioti DX et al. The Use of Serum Procalcitonin as a Diagnostic and Prognostic Biomarker in Chronic Obstructive Pulmonary Disease Exacerbations: A Literature Review Update. J Clin Med Res 2018; 10 (7): 545–51. 69. Lin C, Pang Q. Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J 2018; 12 (1): 10–5. 70. Flattet Y, Garin N et al. Determining prognosis in acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2017; 12: 467–75. 71. Pazarli AC, Koseoglu H et al. Procalcitonin: Is it a predictornoninvasive ventilation in chronic obstructive pulmonary disease? J Res Med Sci 201; 17 (11): 1047–51. 72. Wang J, Shang H et al. Procalcitonin, C-reactive protein, PaCO2, and noninvasive mechanical ventilation failure in chronic obstructive pulmonary disease exacerbation. Medicine (Baltimore) 2019; 98 (17): e15171.
________________________________________________
1. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, allcause mortality, and cause-specifi c mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1459–544. 2. World Health Report 2016. Health systems: improving performance. Annex table 3. 2016 World Health Organization. Geneva, Switzerland. https://www.who.int/images/default-source/infographics/10-causes-2016-ru.png?sfvrsn=56e8d56c_2 3. Chuchalin A, Khaltaev N, Аntonov N. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int J COPD 2014; 9: 963–74. 4. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. i dr. Vnebol'nichnaia pnevmoniia. Klinicheskie rekomendatsii RRO i MAKMAKh, 2018. www.antibiotic.ru (in Russian). 5. Zaytsev A.A., Ovchinnikov Yu.V., Kondrateva T.V. Biological markers of inflammation in community-acquired pneumonia. Consilium Medicum. 2014; 16 (11): 36–41 (in Russian). 6. Jaye DL, Waites KB. Clinical applications of C-reactive protein in pediatrics. Pediatr Infect Dis J 1997; 16: 735–46. 7. Young B, Bauer S, Lamy O. Role of C-reactive protein in the diagnosis, prognosis and follow-up of community-acquired pneumonia. Rev Med Suisse 2010; 6 (269): 2068–70, 2072–3. 8. Van der Meer V, Neven A et al. Diagnostic value of C reactive protein in infections of the lower respiratory tract: systematic review. BMJ 2005; 331 (7507): 26. 9. Flanders S et al. Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. Am J Med 2004; 116: 529–35. 10. Macfarlane J, Holmes W et al. Prospective study of the incidence, aetiology and outcome of adult lower respiratory tract illness in the community. Thorax 2001; 56: 109–14. 11. Almirall J, Bolíbar I et al. Contribution of C-reactive protein to the diagnosis and assessment of severity of community-acquired pneumonia. Chest 2004; 125: 1335–42. 12. Castro-Guardiola A, Armengou-Arxé A et al. Differential diagnosis between community-acquired pneumonia and non-pneumonia diseases of the chest in the emergency ward. Eur J Intern Med 2000; 11: 334–9. 13. Garcia Vazquez E, Martínez J et al. C-reactive protein levels in community-acquired pneumonia. Eur Respir J 2003; 21: 702–5. 14. Lehtomaki K. Clinical diagnosis of pneumococcal, adenoviral, mycoplasmal and mixed pneumonias in young men. Eur Respir J 1988; 1: 324–9. 15. Krüger S, Ewig S, Papassotiriou J et al. CAPNETZ Study Group. Inflammatory parameters predict etiologic patterns but do not allow for individual prediction of etiology in patients with CAP: results from the German competence network CAPNETZ. Respir Res 2009; 10 (1): 65. 16. España P, Capelastegui A et al. Population Study of Pneumonia (PSoP) Group. Utility of two biomarkers for directing care among patients with non-severe community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 2012; 31 (12): 3397–405. 17. Brink AJ, Van Wyk J et al. The role of appropriate diagnostic testing in acute respiratory tract infections: An antibiotic stewardship strategy to minimise diagnostic uncertainty in primary care. S Afr Med J 2016; 106 (6): 30–7. 18. Agapakis D, Tsantilas D et al. Coagulation and inflammation biomarkers may help predict the severity of community-acquired pneumonia. Respirology 2010; 15 (5): 796–803. 19. Hohenthal U, Hurme S et al. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin Microbiol Infect 2009; 15 (11): 1026–32. 20. Bruns A, Oosterheert J et al. Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. Eur Respir J 2008; 32: 726–32. 21. Ruiz-González A, Falguera M et al. C-reactive protein for discriminating treatment failure from slow responding pneumonia. Eur J Int Med 2010; 21: 548–52. 22. Zaitsev A.A., Ovchinnikov Iu.V., Chernov S.A., Kondrat'eva T.V. Primenenie shkal otsenki tiazhesti sostoianiia bol'nykh vnebol'nichnoi pnevmoniei u patsientov molodogo vozrasta. Voenno-meditsinskii zhurn. 2014; 335 (3): 31–8 (in Russian). 23. Ménendez R, Martínez R et al. Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 2009; 64 (7): 587–91. 24. Chalmers J, Singanayagam A. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med 2008; 121: 219–25. 25. Lobo S, Lobo F, Bota D et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 2003; 123: 2043–9. 26. Coelho L, Póvoa P et al. Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course. Crit Care 2007; 11 (4): 92. 27. Woodhead M, Blasi F et al. New guidelines for the management of adult lover respiratory tract infections. Clin Microbiol Infect 2011; 17 (6): 1–59. 28. Chang C-H, Tsao K-C et al. Procalcitonin and C-reactive protein cannot differentiate bacterial or viral infection in COPD exacerbation requiring emergency department visits. Int J Chron Obstruct Pulmon Dis 2015; 10: 767–74. 29. Daniels JM, Schoorl M et al. Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest 2010; 138 (5): 1108–15. 30. Adepoju VA. Can we use a biomarker to guide antibiotic treatment in severe COPD exacerbations? Breathe (Sheff) 2019; 15 (4): 353–5. 31. Avdeev S.N., Baimakanova G.E., Zubairova P.A. Vozmozhnosti S-reaktivnogo belka v diagnostike bakterial'noi infektsii i pnevmonii u bol'nykh s obostreniem khronicheskoi obstruktivnoi bolezni legkikh. Ural'skii med. zhurn. 2008; 13: 19–24 (in Russian). 32. Çolak A, Yılmaz C et al. Procalcitonin and CRP as Biomarkers in Discrimination of Community-acquired Pneumonia and Exacerbation of COPD. J Med Biochem 2017; 36 (2): 122–6. 33. Young Ae Kang, Sung-Youn Kwon et al. Role of C-reactive protein and procalcitonin in differentiation of tuberculosis from bacterial community acquired pneumonia. Korean J Intern Med 2009; 24 (4): 337–42. 34. Le Moullec J, Jullienne A et al. The complete sequence of human preprocalcitonin. FEBS 1984; 167: 93–7. 35. Becker K, Muller B et al. Calcitonin gene family of peptides. Principles and Practice of Endocrinology and Metabolism. Philadelphia: J.B Lippincott, 2001; p. 520–34. 36. Bohuon C. A brief history of procalcitonin. Intensive Care Med 2000; 26 (S2): 146–7. 37. Assicot M, Gendrel D, Carsin H et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341 (8844): 515–8. 38. Morrison V.V., Bozhedomov A.Iu. Znachenie opredeleniia kontsentratsii prokal'tsitonina plazmy krovi v diagnostike septicheskikh sostoianii. Saratovskii nauch.-med. zhurn. 2010; 6 (2): 261–7 (in Russian). 39. Christ-Crain М, Opal S. Clinical review: The role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit Care 2010; 14 (1): 203. 40. Krüger S, Ewig S et al. CAPNETZ Study Group. Procalcitonin predicts patients at low risk of death from community-acquired pneumonia across all CRB-65 classes. Eur Respir J 2008; 31 (2): 349–55. 41. Upadhyay S, Niederman M. Biomarkers: What is Their Benefit in the Identification of Infection, Severity Assessment, and Management of Community-acquired Pneumonia? Infect Dis Clin North Am 2013; 27 (1): 19–31. 42. Horie M, Ugajin M et al. Diagnostic and prognostic value of procalcitonin in community-acquired pneumonia. Am J Med Sci 2012; 343 (1): 30–5. 43. Tamura M, Watanabe M et al. Serial quantification of procalcitonin (PCT) predicts clinical outcome and prognosis in patients with community-acquired pneumonia (CAP). J Infect Chemother 2014; 2: 97–103. 44. Julián-Jiménez A, Timón Zapata J et al. Diagnostic and prognostic power of biomarkers to improve the management of community acquired pneumonia in the emergency department. Enferm Infecc Microbiol Clin 2014; 32 (4): 225–35. 45. Kim J, Seo J et al. Usefulness of plasma procalcitonin to predict severity in elderly patients with community-acquired pneumonia. Tuberc Respir Dis 2013; 74 (5): 207–14. 46. Ugajin M, Yamaki K et al. Predictive Values of Semi-Quantitative Procalcitonin Test and Common Biomarkers for the Clinical Outcomes of Community-Acquired Pneumonia. Respir Care 2014; 59 (4): 564–73. 47. Christ-Crain M, Stolz D et al. Procalcitonin Guidance of Antibiotic Therapy in Community-acquired Pneumonia. Am J Respir Crit Care Med 2006; 174: 84–93. 48. Long W, Deng X et al. Procalcitonin guidance for reduction of antibiotic use in low-risk outpatients with community-acquired pneumonia. Respitology 2011; 16 (5): 819–24. 49. Schuetz P, Suter-Widmer I et al. Procalcitonin-Guided Antibiotic Therapy and Hospitalisation in Patients with Lower Respiratory Tract Infections (ProHOSP) Study Group. Prognostic value of procalcitonin in community-acquired pneumonia. Eur Respir J 2011; 37 (2): 384–92. 50. Albrich W, Dusemund F et al. ProREAL Study Team. Effectiveness and safety of procalcitonin-guided antibiotic therapy in lower respiratory tract infections in “real life”: an international, multicenter poststudy survey (ProREAL). Arch Intern Med 2012; 172 (9): 715–22. 51. Schuetz P, Müller B et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Evid Based Child Health 2013; 8 (4): 1297–371. 52. Hui Li, Yi-Feng Luo et al. Meta-analysis and systematic review of procalcitonin-guided therapy in respiratory tract infections. Antimicrob Agents Chemother 2011; 55 (12): 5900–6. 53. Sager R, Kutz A et al. Procalcitonin-guided Diagnosis and Antibiotic Stewardship Revisited. BMC Med 2017, 15 (1): 15. 54. Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med 2014; 371: 1619–28. 55. Self WH, Balk RA et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized With Community-Acquired Pneumonia. Clin Infect Dis 2017; 65 (2): 183–90. 56. Kamat IS, Ramachandran V et al. Low procalcitonin, community acquired pneumonia, and antibiotic therapy. Lancet Infect Dis 2018; 18: 496–7. 57. Metlay JP, Waterer GW et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200 (7): e45–e67. 58. Niu W, Wan Y, Li M et al. The diagnostic value of serum procalcitonin, IL-10 and C-reactive protein in community acquired pneumonia and tuberculosis. Eur Rev Med Pharmacol Sci 2013; 17 (24): 3329–33. 59. Bafadhel M, Clark T et al. Procalcitonin and C-reactive protein in hospitalized adult patients with community-acquired pneumonia or exacerbation of asthma or COPD. Chest 2011; 139 (6): 1410–8. 60. Borsi H, Nia EP et al. Relationship between serum procalcitonin level and chronic obstructive pulmonary disease. J Family Med Prim Care 2019; 8 (2): 738–40. 61. Pandey S, Garg R et al. Serum Procalcitonin Levels in Chronic Obstructive Pulmonary Disease Patients in North Indian Population. Ann Afr Med 2019; 18 (2): 103-–7. 62. Gao D, Chen X et al. The levels serum procalcitonin and high-sensitivity C-reactive protein in the early diagnosis chronic pulmonary disease during acute exacerbation. Exp Ther Med 2017; 14 (1): 193–8. 63. Rothberg MB, Pekow PS et al. Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. JAMA 2010; 303 (20): 2035–42 64. Wang JX, Zhang SM et al. Acute exacerbations of chronic obstructive pulmonary disease with low serum procalcitonin values do not benefit from antibiotic treatment: a prospective randomized controlled trial. Int J Infect Dis 2016; 48: 40–5. 65. Li Z, Yuan X et al. Procalcitonin-guided antibiotic therapy in acute exacerbation of chronic obstructive pulmonary disease: An updated meta-analysis. Medicine (Baltimore) 2019; 98 (32): e16775. 66. Van der Maas ME et al. Procalcitonin biomarker algorithm reduces antibiotic prescriptions, duration of therapy, and costs in chronic obstructive pulmonary disease: a comparison in the Netherlands, Germany, and the United Kingdom. OMICS 2017; 21 (4): 232–43. 67. Bremmer DN, DiSilvio BE et al. Impact of procalcitonin guidance on management of adults hospitalized with chronic obstructive pulmonary disease exacerbations. J Gen Intern Med 2018; 33 (5): 692–7. 68. Pantzaris ND, Spilioti DX et al. The Use of Serum Procalcitonin as a Diagnostic and Prognostic Biomarker in Chronic Obstructive Pulmonary Disease Exacerbations: A Literature Review Update. J Clin Med Res 2018; 10 (7): 545–51. 69. Lin C, Pang Q. Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin Respir J 2018; 12 (1): 10–5. 70. Flattet Y, Garin N et al. Determining prognosis in acute exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2017; 12: 467–75. 71. Pazarli AC, Koseoglu H et al. Procalcitonin: Is it a predictornoninvasive ventilation in chronic obstructive pulmonary disease? J Res Med Sci 201; 17 (11): 1047–51. 72. Wang J, Shang H et al. Procalcitonin, C-reactive protein, PaCO2, and noninvasive mechanical ventilation failure in chronic obstructive pulmonary disease exacerbation. Medicine (Baltimore) 2019; 98 (17): e15171.
Авторы
Т.В. Кондратьева*1, А.А. Зайцев2
1 ФГКУ «1586 Военный клинический госпиталь» Минобороны России, Подольск, Россия; 2 ФГБУ «Главный военный клинический госпиталь им. Н.Н. Бурденко» Минобороны России, Москва, Россия *tanyakondratieva@mail.ru
________________________________________________
Tatiana V. Kondrateva*1, Andrei A. Zaytsev2
1 1586 Military Clinical Hospital, Podolsk, Russia; 2 Burdenko Main Military Clinical Hospital, Moscow, Russia *tanyakondratieva@mail.ru