Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Роль биомаркеров крови в прогнозировании исхода течения ишемического инсульта
Роль биомаркеров крови в прогнозировании исхода течения ишемического инсульта
Гулиева М.Ш., Багманян С.Д., Чуканова А.С., Чуканова Е.И. Роль биомаркеров крови в прогнозировании исхода течения ишемического инсульта. Consilium Medicum. 2020; 22 (9): 28–32. DOI: 10.26442/20751753.2020.9.200284
________________________________________________
Материалы доступны только для специалистов сферы здравоохранения.
Чтобы посмотреть материал полностью
Авторизуйтесь
или зарегистрируйтесь.
Аннотация
Инсульт является одним из наиболее распространенных неврологических заболеваний и третьей причиной инвалидизации пациентов. Ежегодно во всем мире от инсульта умирают более 5 млн человек, и каждый 6-й выживший пациент в течение последующих 5 лет переносит повторный инсульт. За последние два десятилетия отмечается снижение уровня смертности от данного заболевания, однако процент инвалидизации остается еще очень высоким. В настоящее время актуальным направлением научных разработок является прогнозирование течения инсульта, которое позволит разрабатывать оптимальные терапевтические подходы и разрабатывать индивидуальные программы реабилитационного лечения. Одним из перспективных направлений для прогнозирования течения ишемии мозга является использование биомаркеров, изучение роли которых находится в стадии разработки, и их дальнейшие исследования актуальны для возможности их применения в клинической практике врача.
Ключевые слова: ишемия мозга, ишемический инсульт, гематоэнцефалический барьер, нейроспецифические белки, биомаркеры крови,
нейронспецифическая енолаза, мозговой нейротрофический фактор, белок р53.
Key words: brain ischemia, ischemic stroke, blood-brain barrier, neurospecific proteins, blood biomarkers, neuron-specific enolase, brain neurotrophic factor, protein p53.
Ключевые слова: ишемия мозга, ишемический инсульт, гематоэнцефалический барьер, нейроспецифические белки, биомаркеры крови,
нейронспецифическая енолаза, мозговой нейротрофический фактор, белок р53.
________________________________________________
Key words: brain ischemia, ischemic stroke, blood-brain barrier, neurospecific proteins, blood biomarkers, neuron-specific enolase, brain neurotrophic factor, protein p53.
Полный текст
Список литературы
1. Feigin VL, Norrving B, Mensah GA. Global burden of stroke. Circ Res 2017; 120 (3): 439–48. DOI: 10.1161/CIRCRESAHA.116.308413
2. Рябухин И.А. Нейроспецифические белки в оценке проницаемости гематоэнцефалического барьера человека и животных. Дис. ... д-ра мед. наук. М., 2004.
[Riabukhin I.A. Neirospetsificheskie belki v otsenke pronitsaemosti gematoentsefalicheskogo bar'era cheloveka i zhivotnykh. Dis. ... d-ra med. nauk. Moscow, 2004 (in Russian).]
3. Блинов Д.В. Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 2: функции и механизмы повреждения гематоэнцефалического барьера. Эпилепсия и пароксизмальные состояния. 2014; 6 (1): 70–84.
[Blinov D.V. Sovremennye predstavleniia o roli narusheniia rezistentnosti gematoentsefalicheskogo bar'era v patogeneze zabolevanii TsNS. Chast' 2: funktsii i mekhanizmy povrezhdeniia gematoentsefalicheskogo bar'era. Epilepsiia i paroksizmal'nye sostoianiia. 2014; 6 (1): 70–84 (in Russian).]
4. Fischer S, Clauss M, Wiesnet M et al. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 1999; 276: 812–20.
5. Schaarschmidt H, Prange HW, Reiber H. Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 1994; 25: 558–65.
6. Barone FC, Clerk RK, Price W. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia. Brain Res 1993; 1: 71–82.
7. Herrmann M, Jost S, Kutz S et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma 2000; 17: 113–22.
8. Herrmann M, Elirenreich H. Brain derived proteins as markers of acute stroke: their relation to pathophysiology, outcome prediction and neuroprotective drug monitoring. Restor Neurol Neurosci 2003; 21: 177–90.
9. Chekhonin VP, Zhirkov YA, Belyaeva IA et al. Serum time course of two brain-specific proteins, alpha(l) brain globulin and neuron-specific enolase, in tick-born encephalitis and Lyme disease. Clin Chim Acta 2002; 320: 117–25.
10. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 2000; 25: 1439–51.
11. Engvall E, Perlman P. Enzyme-linked immunoadsorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochem 1971; 8: 871–9.
12. Чехонин В.П., Жирков Ю.А., Турина О.И. и др. Количественно-кинетические параметры элиминации нейроспецифических антигенов и антител к ним при некоторых нервно-психических заболеваниях. Рос. психиатрич. журн. 2000; 3: 4–8.
[Chekhonin V.P., Zhirkov Iu.A., Turina O.I. et al. Kolichestvenno-kineticheskie parametry eliminatsii neirospetsificheskikh antigenov i antitel k nim pri nekotorykh nervno-psikhicheskikh zabolevaniiakh. Ros. psikhiatrich. zhurn. 2000; 3: 4–8 (in Russian).]
13. Perry LA, Lucarelli T, Penny-Dimri JC et al. Glial fibrillary acidic protein for the early diagnosis of intracerebral hemorrhage: Systematic review and meta-analysis of diagnostic test accuracy. Int J Stroke 2019; 14 (4): 390–9. DOI: 10.1177/1747493018806167
14. Nylén K, Csajbok LZ, Ost M et al. Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke 2007; 38 (5): 1489–94.
15. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965; 19: 739–44.
16. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33: 637–68.
17. Saengen AK, Christenson RN. Stroke Biomarkers: Progress and Challenges for Diagnosis, Prognosis, Differentiation and Treatment. Clin Chem 2010; 56 (1): 21–33.
18. Harish Kumar, Manoj Lakhotia, Hansraj Pahadiya, Jagdish Singh. To study the correlation of serum S-100 protein level with the severity of stroke and its prognostic implication. J Neurosci Rural Pract 2015; 6 (3): 326–30. DOI: 10.4103/0976-3147.158751
19. Foerch C, Singer OC, Neumann-Haefelin T et al. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol 2005; 62 (7): 1130–4.
20. Dassan P, Keir G, Brown MM. Criteria for a clinically informative serum biomarker in acute ischaemic stroke: a review of S100B. Cerebrovasc Dis 2009; 27 (3): 295–302. DOI: 10.1159/000199468
21. Hatfield R, McKernan R. CSF neuron-specific enolase as a quantitative marker of neuronal damage in a rat stroke model. Brain Res 1992; 577: 249–52.
22. Woertgen C, Rothoerl RD, Brawanski A. Neuron-specific enolase serum levels after controlled cortical impact injury in the rat. J Neurotrauma 2001; 18: 569–73.
23. Haupt WF, Chopan G, Sobesky J et al. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke. J Neurophysiol 2016; 115: 1273–8.
24. Stevens H, Jakobs C, de Jager AE et al. Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke. Eur J Clin Invest 1999; 29: 6–11.
25. Schaarschmidt H, Prange HW, Reiber H. Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 1994; 25: 558–65.
26. Bharosay A, Bharosay VV, Varma M et al. Correlation of brain biomarker Neuron specific enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Indian J Clin Biochem 2012; 27 (2): 186–90.
27. Wunderlich MT, Ebert AD, Kratz T et al. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke 1999; 30: 1190–5.
28. Hill MD, Jackowski G, Bayer N et al. Biochemical markers in acute ischemic stroke. CMAJ 2000; 162: 1139–40.
29. Fassbender K, Schmidt R, Schreiner A et al. Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci 1997; 148 (1): 101–5.
30. Cunningham RT, Watt M, Winder J et al. Serum neurone-specific enolase as an indicator of stroke volume. Eur J Clin Invest 1996; 26 (4): 298–303.
31. Cunningham RT, Young IS, Winder J et al. Serum neurone specific enolase (NSE) levels as an indicator of neuronal damage in patients with cerebral infarction. Eur J Clin Invest 1991; 21 (5): 497–500.
32. Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 1997; 28 (10): 1956–60.
33. Hasan N, McColgan P, Bentley P et al. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. Br J Clin Pharmacol 2012; 74: 230–40.
34. Martinez-Sanchez P, Gutierrez-Fernandez M, Fuentes B et al. Biochemical and inflammatory biomarkers in ischemic stroke: translational study between humans and two experimental rat models. J Transl Med 2014; 12: 220.
35. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007; 4: 34–66. https://doi.org/10.1016/j.brainresrev.2006.11.003
36. Niu FN, Zhang X, Hu XM et al. Targeted mutation of Fas ligand gene attenuates brain inflammation in experimental stroke. Brain Behavior Immunity 2012; 26 (1): 61–71. DOI: 10.1016/j.bbi.2011.07.235
37. Mahovic D, Zurak N, Lakusic N et al. The dynamics of soluble Fas/APO 1 apoptotic biochemical marker in acute ischemic stroke patients. Adv Med Sci 2013; 58 (2): 298–303. DOI: 10.2478/ams-2013-0014
38. Сергеева С.П., Савин А.А., Архипов В.В. и др. Прогнозирование исхода острого периода ишемического инсульта: роль маркеров апоптоза. Клиническая неврология. 2017; 11 (1): 21–7.
[Sergeeva S.P., Savin A.A., Arkhipov V.V. et al. Prognozirovanie iskhoda ostrogo perioda ishemicheskogo insul'ta: rol' markerov apoptoza. Klinicheskaia nevrologiia. 2017; 11 (1): 21–7 (in Russian).]
39. Чумаков П.М. Белок р53 и его универсальные функции в многоклеточном организме. Успехи биологической химии. 2007; 47: 3–52.
[Chumakov P.M. Belok r53 i ego universal'nye funktsii v mnogokletochnom organizme. Uspekhi biologicheskoi khimii. 2007; 47: 3–52 (in Russian).]
40. Stanne TM, Aberg ND, Nilsson S et al. Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. Stroke 2016; 47 (7): 1943–5.
41. Filichia E, Shen H, Zhou X et al. Forebrain neuronal specific ablation of p53 gene provides protection in a cortical ischemic stroke model. J Neuroscience 2015; 295: 1–10.
42. Кольцова К.В. Роль полиморфных вариантов генов, участвующих в рецепторном пути индукции апоптоза (FADD, Fas и каспазы-8) в патогенезе ишемического инсульта. Дис. … канд. мед. наук. М., 2007.
[Kol'tsova K.V. Rol' polimorfnykh variantov genov, uchastvuiushchikh v retseptornom puti induktsii apoptoza (FADD, Fas i kaspazy-8) v patogeneze ishemicheskogo insul'ta. Dis. … kand. med. nauk. Moscow, 2007 (in Russian).]
43. Чернышева Е.Н., Панова Т.Н. Индуктор апоптоза – белок р53 и инсулинорезистентность при метаболическом синдроме. Кубанский науч. мед. вестн. 2012; 131 (2): 186–90.
[Chernysheva E.N., Panova T.N. Induktor apoptoza – belok r53 i insulinorezistentnost' pri metabolicheskom sindrome. Kubanskii nauch. med. vestn. 2012; 131 (2): 186–90 (in Russian).]
44. Matsuo R, Ago T, Kamouchi M et al. Clinical significance of plasma VEGF value in ischemic stroke – Research for biomarkers in ischemic stroke (rebios) study. BMC Neurol 2013; 13: 32.
45. Lee SC, Lee KY, Kim YJ et al. Serum VEGF levels in acute ischaemic strokes are correlated with long-term prognosis. Eur J Neurol 2010; 17: 45–51.
46. Putaala J, Metso AJ, Metso TM et al. Analysis of 1008 Consecutive Patients Aged 15 to 49 With First-Ever Ischemic Stroke: The Helsinki Young Stroke Registry. Stroke 2009; 40: 1195–203.
47. Kumar S, Parkash J, Kataria H, Kaur G. Interactive effect of excitotoxic injury and dietary restriction on neurogenesis and neurotrophic factors in adult male rat brain. Neurosci Res 2009; 65 (4): 367–74.
48. Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76 (2): 99–125.
49. Walz C, Jungling K, Lessmann V, Gottmann K. Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J Neurophysiol 2006; 96: 3512–6.
50. Kramar EA, Chen LY, Lauterborn JC et al. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 2010; 33: 708–19.
51. Yamashita K, Wiessner C, Lindholm D et al. Post-41 occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of 42 the middle cerebral artery in rat. Metab Brain Dis 1997; 12: 271–80.
52. Schabitz WR, Berger C, Kollmar R et al. Effect of brain-derived neurotrophic factor treatment and forced arm 24 use on functional motor recovery after small cortical ischemia. Stroke 2004; 35: 992–7.
53. Jiang Y, Wei N, Zhu J et al. Effects of brainderived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat Inflamm 2010; 2010: 1–10.
54. Bus BA, Molendijk ML, Penninx BJ et al. Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology 2011; 36: 228–39.
55. McAllister AK, Lo DC, Katz LC. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 1995; 15: 791–803.
56. Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophins expression and neurogenesis in the hippocampus of adult mice. J Neurochem 2002; 80 (3): 539–47.
57. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 2005; 6 (8): 603–14.
58. Yang L, Zhang Z, Sun D et al. Low serum BDNF may indicate the development of PSD in patients with acute ischemic stroke. Int J Geriatr Psychiatry 2011; 26 (5): 495–502.
59. Еремова Н.М. Роль «отдаленных последствий ишемии» (нейротрофической дисфункции, аутоиммунной и воспалительной реакций) в патогенезе ишемического инсульта. Дис. … канд. мед. наук. М., 2003.
[Eremova N.M. Rol' "otdalennykh posledstvii ishemii' (neirotroficheskoi disfunktsii, autoimmunnoi i vospalitel'noi reaktsii) v patogeneze ishemicheskogo insul'ta. Dis. … kand. med. nauk. Moscow, 2003 (in Russian).]
60. Pikula A, Beiser AS, Chen TC et al. Serum brain-derived neurotrophic factor and vascular endothelial growth factor levels are associated with risk of stroke and vascular brain injury: Framingham Study. Stroke 2013; 44: 2768–75.
61. Hope TM, Seghier ML, Leff AP, Price CJ. Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clin 2013; 2: 424–33.
62. Luan X, Qiu H, Hong X et al. High serum nerve growth factor concentrations are associated with good functional outcome at 3 months following acute ischemic stroke. Clin Chim Acta 2019; 488: 20–4. DOI: 10.1016/j.cca.2018.10.030
63. Lai YJ, Hanneman SK, Casarez RL et al. Blood biomarkers for physical recovery in ischemic stroke: a systematic review. Am J Transl Res 2019; 11 (8): 4603–13.
2. Riabukhin I.A. Neirospetsificheskie belki v otsenke pronitsaemosti gematoentsefalicheskogo bar'era cheloveka i zhivotnykh. Dis. ... d-ra med. nauk. Moscow, 2004 (in Russian).
3. Blinov D.V. Sovremennye predstavleniia o roli narusheniia rezistentnosti gematoentsefalicheskogo bar'era v patogeneze zabolevanii TsNS. Chast' 2: funktsii i mekhanizmy povrezhdeniia gematoentsefalicheskogo bar'era. Epilepsiia i paroksizmal'nye sostoianiia. 2014; 6 (1): 70–84 (in Russian).
4. Fischer S, Clauss M, Wiesnet M et al. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 1999; 276: 812–20.
5. Schaarschmidt H, Prange HW, Reiber H. Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 1994; 25: 558–65.
6. Barone FC, Clerk RK, Price W. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia. Brain Res 1993; 1: 71–82.
7. Herrmann M, Jost S, Kutz S et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma 2000; 17: 113–22.
8. Herrmann M, Elirenreich H. Brain derived proteins as markers of acute stroke: their relation to pathophysiology, outcome prediction and neuroprotective drug monitoring. Restor Neurol Neurosci 2003; 21: 177–90.
9. Chekhonin VP, Zhirkov YA, Belyaeva IA et al. Serum time course of two brain-specific proteins, alpha(l) brain globulin and neuron-specific enolase, in tick-born encephalitis and Lyme disease. Clin Chim Acta 2002; 320: 117–25.
10. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 2000; 25: 1439–51.
11. Engvall E, Perlman P. Enzyme-linked immunoadsorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochem 1971; 8: 871–9.
12. Chekhonin V.P., Zhirkov Iu.A., Turina O.I. et al. Kolichestvenno-kineticheskie parametry eliminatsii neirospetsificheskikh antigenov i antitel k nim pri nekotorykh nervno-psikhicheskikh zabolevaniiakh. Ros. psikhiatrich. zhurn. 2000; 3: 4–8 (in Russian).
13. Perry LA, Lucarelli T, Penny-Dimri JC et al. Glial fibrillary acidic protein for the early diagnosis of intracerebral hemorrhage: Systematic review and meta-analysis of diagnostic test accuracy. Int J Stroke 2019; 14 (4): 390–9. DOI: 10.1177/1747493018806167
14. Nylén K, Csajbok LZ, Ost M et al. Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke 2007; 38 (5): 1489–94.
15. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965; 19: 739–44.
16. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33: 637–68.
17. Saengen AK, Christenson RN. Stroke Biomarkers: Progress and Challenges for Diagnosis, Prognosis, Differentiation and Treatment. Clin Chem 2010; 56 (1): 21–33.
18. Harish Kumar, Manoj Lakhotia, Hansraj Pahadiya, Jagdish Singh. To study the correlation of serum S-100 protein level with the severity of stroke and its prognostic implication. J Neurosci Rural Pract 2015; 6 (3): 326–30. DOI: 10.4103/0976-3147.158751
19. Foerch C, Singer OC, Neumann-Haefelin T et al. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol 2005; 62 (7): 1130–4.
20. Dassan P, Keir G, Brown MM. Criteria for a clinically informative serum biomarker in acute ischaemic stroke: a review of S100B. Cerebrovasc Dis 2009; 27 (3): 295–302. DOI: 10.1159/000199468
21. Hatfield R, McKernan R. CSF neuron-specific enolase as a quantitative marker of neuronal damage in a rat stroke model. Brain Res 1992; 577: 249–52.
22. Woertgen C, Rothoerl RD, Brawanski A. Neuron-specific enolase serum levels after controlled cortical impact injury in the rat. J Neurotrauma 2001; 18: 569–73.
23. Haupt WF, Chopan G, Sobesky J et al. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke. J Neurophysiol 2016; 115: 1273–8.
24. Stevens H, Jakobs C, de Jager AE et al. Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke. Eur J Clin Invest 1999; 29: 6–11.
25. Schaarschmidt H, Prange HW, Reiber H. Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 1994; 25: 558–65.
26. Bharosay A, Bharosay VV, Varma M et al. Correlation of brain biomarker Neuron specific enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Indian J Clin Biochem 2012; 27 (2): 186–90.
27. Wunderlich MT, Ebert AD, Kratz T et al. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke 1999; 30: 1190–5.
28. Hill MD, Jackowski G, Bayer N et al. Biochemical markers in acute ischemic stroke. CMAJ 2000; 162: 1139–40.
29. Fassbender K, Schmidt R, Schreiner A et al. Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci 1997; 148 (1): 101–5.
30. Cunningham RT, Watt M, Winder J et al. Serum neurone-specific enolase as an indicator of stroke volume. Eur J Clin Invest 1996; 26 (4): 298–303.
31. Cunningham RT, Young IS, Winder J et al. Serum neurone specific enolase (NSE) levels as an indicator of neuronal damage in patients with cerebral infarction. Eur J Clin Invest 1991; 21 (5): 497–500.
32. Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 1997; 28 (10): 1956–60.
33. Hasan N, McColgan P, Bentley P et al. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. Br J Clin Pharmacol 2012; 74: 230–40.
34. Martinez-Sanchez P, Gutierrez-Fernandez M, Fuentes B et al. Biochemical and inflammatory biomarkers in ischemic stroke: translational study between humans and two experimental rat models. J Transl Med 2014; 12: 220.
35. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007; 4: 34–66.
https://doi.org/10.1016/j.brainresrev.2006.11.003
36. Niu FN, Zhang X, Hu XM et al. Targeted mutation of Fas ligand gene attenuates brain inflammation in experimental stroke. Brain Behavior Immunity 2012; 26 (1): 61–71. DOI: 10.1016/j.bbi.2011.07.235
37. Mahovic D, Zurak N, Lakusic N et al. The dynamics of soluble Fas/APO 1 apoptotic biochemical marker in acute ischemic stroke patients. Adv Med Sci 2013; 58 (2): 298–303. DOI: 10.2478/ams-2013-0014
38. Sergeeva S.P., Savin A.A., Arkhipov V.V. et al. Prognozirovanie iskhoda ostrogo perioda ishemicheskogo insul'ta: rol' markerov apoptoza. Klinicheskaia nevrologiia. 2017; 11 (1): 21–7 (in Russian).
39. Chumakov P.M. Belok r53 i ego universal'nye funktsii v mnogokletochnom organizme. Uspekhi biologicheskoi khimii. 2007; 47: 3–52 (in Russian).
40. Stanne TM, Aberg ND, Nilsson S et al. Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. Stroke 2016; 47 (7): 1943–5.
41. Filichia E, Shen H, Zhou X et al. Forebrain neuronal specific ablation of p53 gene provides protection in a cortical ischemic stroke model. J Neuroscience 2015; 295: 1–10.
42. Kol'tsova K.V. Rol' polimorfnykh variantov genov, uchastvuiushchikh v retseptornom puti induktsii apoptoza (FADD, Fas i kaspazy-8) v patogeneze ishemicheskogo insul'ta. Dis. … kand. med. nauk. Moscow, 2007 (in Russian).
43. Chernysheva E.N., Panova T.N. Induktor apoptoza – belok r53 i insulinorezistentnost' pri metabolicheskom sindrome. Kubanskii nauch. med. vestn. 2012; 131 (2): 186–90 (in Russian).
44. Matsuo R, Ago T, Kamouchi M et al. Clinical significance of plasma VEGF value in ischemic stroke – Research for biomarkers in ischemic stroke (rebios) study. BMC Neurol 2013; 13: 32.
45. Lee SC, Lee KY, Kim YJ et al. Serum VEGF levels in acute ischaemic strokes are correlated with long-term prognosis. Eur J Neurol 2010; 17: 45–51.
46. Putaala J, Metso AJ, Metso TM et al. Analysis of 1008 Consecutive Patients Aged 15 to 49 With First-Ever Ischemic Stroke: The Helsinki Young Stroke Registry. Stroke 2009; 40: 1195–203.
47. Kumar S, Parkash J, Kataria H, Kaur G. Interactive effect of excitotoxic injury and dietary restriction on neurogenesis and neurotrophic factors in adult male rat brain. Neurosci Res 2009; 65 (4): 367–74.
48. Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76 (2): 99–125.
49. Walz C, Jungling K, Lessmann V, Gottmann K. Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J Neurophysiol 2006; 96: 3512–6.
50. Kramar EA, Chen LY, Lauterborn JC et al. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 2010; 33: 708–19.
51. Yamashita K, Wiessner C, Lindholm D et al. Post-41 occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of 42 the middle cerebral artery in rat. Metab Brain Dis 1997; 12: 271–80.
52. Schabitz WR, Berger C, Kollmar R et al. Effect of brain-derived neurotrophic factor treatment and forced arm 24 use on functional motor recovery after small cortical ischemia. Stroke 2004; 35: 992–7.
53. Jiang Y, Wei N, Zhu J et al. Effects of brainderived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat Inflamm 2010; 2010: 1–10.
54. Bus BA, Molendijk ML, Penninx BJ et al. Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology 2011; 36: 228–39.
55. McAllister AK, Lo DC, Katz LC. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 1995; 15: 791–803.
56. Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophins expression and neurogenesis in the hippocampus of adult mice. J Neurochem 2002; 80 (3): 539–47.
57. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 2005; 6 (8): 603–14.
58. Yang L, Zhang Z, Sun D et al. Low serum BDNF may indicate the development of PSD in patients with acute ischemic stroke. Int J Geriatr Psychiatry 2011; 26 (5): 495–502.
59. Eremova N.M. Rol' "otdalennykh posledstvii ishemii' (neirotroficheskoi disfunktsii, autoimmunnoi i vospalitel'noi reaktsii) v patogeneze ishemicheskogo insul'ta. Dis. … kand. med. nauk. Moscow, 2003 (in Russian).
60. Pikula A, Beiser AS, Chen TC et al. Serum brain-derived neurotrophic factor and vascular endothelial growth factor levels are associated with risk of stroke and vascular brain injury: Framingham Study. Stroke 2013; 44: 2768–75.
61. Hope TM, Seghier ML, Leff AP, Price CJ. Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clin 2013; 2: 424–33.
62. Luan X, Qiu H, Hong X et al. High serum nerve growth factor concentrations are associated with good functional outcome at 3 months following acute ischemic stroke. Clin Chim Acta 2019; 488: 20–4. DOI: 10.1016/j.cca.2018.10.030
63. Lai YJ, Hanneman SK, Casarez RL et al. Blood biomarkers for physical recovery in ischemic stroke: a systematic review. Am J Transl Res 2019; 11 (8): 4603–13.
2. Рябухин И.А. Нейроспецифические белки в оценке проницаемости гематоэнцефалического барьера человека и животных. Дис. ... д-ра мед. наук. М., 2004.
[Riabukhin I.A. Neirospetsificheskie belki v otsenke pronitsaemosti gematoentsefalicheskogo bar'era cheloveka i zhivotnykh. Dis. ... d-ra med. nauk. Moscow, 2004 (in Russian).]
3. Блинов Д.В. Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 2: функции и механизмы повреждения гематоэнцефалического барьера. Эпилепсия и пароксизмальные состояния. 2014; 6 (1): 70–84.
[Blinov D.V. Sovremennye predstavleniia o roli narusheniia rezistentnosti gematoentsefalicheskogo bar'era v patogeneze zabolevanii TsNS. Chast' 2: funktsii i mekhanizmy povrezhdeniia gematoentsefalicheskogo bar'era. Epilepsiia i paroksizmal'nye sostoianiia. 2014; 6 (1): 70–84 (in Russian).]
4. Fischer S, Clauss M, Wiesnet M et al. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 1999; 276: 812–20.
5. Schaarschmidt H, Prange HW, Reiber H. Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 1994; 25: 558–65.
6. Barone FC, Clerk RK, Price W. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia. Brain Res 1993; 1: 71–82.
7. Herrmann M, Jost S, Kutz S et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma 2000; 17: 113–22.
8. Herrmann M, Elirenreich H. Brain derived proteins as markers of acute stroke: their relation to pathophysiology, outcome prediction and neuroprotective drug monitoring. Restor Neurol Neurosci 2003; 21: 177–90.
9. Chekhonin VP, Zhirkov YA, Belyaeva IA et al. Serum time course of two brain-specific proteins, alpha(l) brain globulin and neuron-specific enolase, in tick-born encephalitis and Lyme disease. Clin Chim Acta 2002; 320: 117–25.
10. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 2000; 25: 1439–51.
11. Engvall E, Perlman P. Enzyme-linked immunoadsorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochem 1971; 8: 871–9.
12. Чехонин В.П., Жирков Ю.А., Турина О.И. и др. Количественно-кинетические параметры элиминации нейроспецифических антигенов и антител к ним при некоторых нервно-психических заболеваниях. Рос. психиатрич. журн. 2000; 3: 4–8.
[Chekhonin V.P., Zhirkov Iu.A., Turina O.I. et al. Kolichestvenno-kineticheskie parametry eliminatsii neirospetsificheskikh antigenov i antitel k nim pri nekotorykh nervno-psikhicheskikh zabolevaniiakh. Ros. psikhiatrich. zhurn. 2000; 3: 4–8 (in Russian).]
13. Perry LA, Lucarelli T, Penny-Dimri JC et al. Glial fibrillary acidic protein for the early diagnosis of intracerebral hemorrhage: Systematic review and meta-analysis of diagnostic test accuracy. Int J Stroke 2019; 14 (4): 390–9. DOI: 10.1177/1747493018806167
14. Nylén K, Csajbok LZ, Ost M et al. Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke 2007; 38 (5): 1489–94.
15. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965; 19: 739–44.
16. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33: 637–68.
17. Saengen AK, Christenson RN. Stroke Biomarkers: Progress and Challenges for Diagnosis, Prognosis, Differentiation and Treatment. Clin Chem 2010; 56 (1): 21–33.
18. Harish Kumar, Manoj Lakhotia, Hansraj Pahadiya, Jagdish Singh. To study the correlation of serum S-100 protein level with the severity of stroke and its prognostic implication. J Neurosci Rural Pract 2015; 6 (3): 326–30. DOI: 10.4103/0976-3147.158751
19. Foerch C, Singer OC, Neumann-Haefelin T et al. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol 2005; 62 (7): 1130–4.
20. Dassan P, Keir G, Brown MM. Criteria for a clinically informative serum biomarker in acute ischaemic stroke: a review of S100B. Cerebrovasc Dis 2009; 27 (3): 295–302. DOI: 10.1159/000199468
21. Hatfield R, McKernan R. CSF neuron-specific enolase as a quantitative marker of neuronal damage in a rat stroke model. Brain Res 1992; 577: 249–52.
22. Woertgen C, Rothoerl RD, Brawanski A. Neuron-specific enolase serum levels after controlled cortical impact injury in the rat. J Neurotrauma 2001; 18: 569–73.
23. Haupt WF, Chopan G, Sobesky J et al. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke. J Neurophysiol 2016; 115: 1273–8.
24. Stevens H, Jakobs C, de Jager AE et al. Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke. Eur J Clin Invest 1999; 29: 6–11.
25. Schaarschmidt H, Prange HW, Reiber H. Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 1994; 25: 558–65.
26. Bharosay A, Bharosay VV, Varma M et al. Correlation of brain biomarker Neuron specific enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Indian J Clin Biochem 2012; 27 (2): 186–90.
27. Wunderlich MT, Ebert AD, Kratz T et al. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke 1999; 30: 1190–5.
28. Hill MD, Jackowski G, Bayer N et al. Biochemical markers in acute ischemic stroke. CMAJ 2000; 162: 1139–40.
29. Fassbender K, Schmidt R, Schreiner A et al. Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci 1997; 148 (1): 101–5.
30. Cunningham RT, Watt M, Winder J et al. Serum neurone-specific enolase as an indicator of stroke volume. Eur J Clin Invest 1996; 26 (4): 298–303.
31. Cunningham RT, Young IS, Winder J et al. Serum neurone specific enolase (NSE) levels as an indicator of neuronal damage in patients with cerebral infarction. Eur J Clin Invest 1991; 21 (5): 497–500.
32. Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 1997; 28 (10): 1956–60.
33. Hasan N, McColgan P, Bentley P et al. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. Br J Clin Pharmacol 2012; 74: 230–40.
34. Martinez-Sanchez P, Gutierrez-Fernandez M, Fuentes B et al. Biochemical and inflammatory biomarkers in ischemic stroke: translational study between humans and two experimental rat models. J Transl Med 2014; 12: 220.
35. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007; 4: 34–66. https://doi.org/10.1016/j.brainresrev.2006.11.003
36. Niu FN, Zhang X, Hu XM et al. Targeted mutation of Fas ligand gene attenuates brain inflammation in experimental stroke. Brain Behavior Immunity 2012; 26 (1): 61–71. DOI: 10.1016/j.bbi.2011.07.235
37. Mahovic D, Zurak N, Lakusic N et al. The dynamics of soluble Fas/APO 1 apoptotic biochemical marker in acute ischemic stroke patients. Adv Med Sci 2013; 58 (2): 298–303. DOI: 10.2478/ams-2013-0014
38. Сергеева С.П., Савин А.А., Архипов В.В. и др. Прогнозирование исхода острого периода ишемического инсульта: роль маркеров апоптоза. Клиническая неврология. 2017; 11 (1): 21–7.
[Sergeeva S.P., Savin A.A., Arkhipov V.V. et al. Prognozirovanie iskhoda ostrogo perioda ishemicheskogo insul'ta: rol' markerov apoptoza. Klinicheskaia nevrologiia. 2017; 11 (1): 21–7 (in Russian).]
39. Чумаков П.М. Белок р53 и его универсальные функции в многоклеточном организме. Успехи биологической химии. 2007; 47: 3–52.
[Chumakov P.M. Belok r53 i ego universal'nye funktsii v mnogokletochnom organizme. Uspekhi biologicheskoi khimii. 2007; 47: 3–52 (in Russian).]
40. Stanne TM, Aberg ND, Nilsson S et al. Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. Stroke 2016; 47 (7): 1943–5.
41. Filichia E, Shen H, Zhou X et al. Forebrain neuronal specific ablation of p53 gene provides protection in a cortical ischemic stroke model. J Neuroscience 2015; 295: 1–10.
42. Кольцова К.В. Роль полиморфных вариантов генов, участвующих в рецепторном пути индукции апоптоза (FADD, Fas и каспазы-8) в патогенезе ишемического инсульта. Дис. … канд. мед. наук. М., 2007.
[Kol'tsova K.V. Rol' polimorfnykh variantov genov, uchastvuiushchikh v retseptornom puti induktsii apoptoza (FADD, Fas i kaspazy-8) v patogeneze ishemicheskogo insul'ta. Dis. … kand. med. nauk. Moscow, 2007 (in Russian).]
43. Чернышева Е.Н., Панова Т.Н. Индуктор апоптоза – белок р53 и инсулинорезистентность при метаболическом синдроме. Кубанский науч. мед. вестн. 2012; 131 (2): 186–90.
[Chernysheva E.N., Panova T.N. Induktor apoptoza – belok r53 i insulinorezistentnost' pri metabolicheskom sindrome. Kubanskii nauch. med. vestn. 2012; 131 (2): 186–90 (in Russian).]
44. Matsuo R, Ago T, Kamouchi M et al. Clinical significance of plasma VEGF value in ischemic stroke – Research for biomarkers in ischemic stroke (rebios) study. BMC Neurol 2013; 13: 32.
45. Lee SC, Lee KY, Kim YJ et al. Serum VEGF levels in acute ischaemic strokes are correlated with long-term prognosis. Eur J Neurol 2010; 17: 45–51.
46. Putaala J, Metso AJ, Metso TM et al. Analysis of 1008 Consecutive Patients Aged 15 to 49 With First-Ever Ischemic Stroke: The Helsinki Young Stroke Registry. Stroke 2009; 40: 1195–203.
47. Kumar S, Parkash J, Kataria H, Kaur G. Interactive effect of excitotoxic injury and dietary restriction on neurogenesis and neurotrophic factors in adult male rat brain. Neurosci Res 2009; 65 (4): 367–74.
48. Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76 (2): 99–125.
49. Walz C, Jungling K, Lessmann V, Gottmann K. Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J Neurophysiol 2006; 96: 3512–6.
50. Kramar EA, Chen LY, Lauterborn JC et al. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 2010; 33: 708–19.
51. Yamashita K, Wiessner C, Lindholm D et al. Post-41 occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of 42 the middle cerebral artery in rat. Metab Brain Dis 1997; 12: 271–80.
52. Schabitz WR, Berger C, Kollmar R et al. Effect of brain-derived neurotrophic factor treatment and forced arm 24 use on functional motor recovery after small cortical ischemia. Stroke 2004; 35: 992–7.
53. Jiang Y, Wei N, Zhu J et al. Effects of brainderived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat Inflamm 2010; 2010: 1–10.
54. Bus BA, Molendijk ML, Penninx BJ et al. Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology 2011; 36: 228–39.
55. McAllister AK, Lo DC, Katz LC. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 1995; 15: 791–803.
56. Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophins expression and neurogenesis in the hippocampus of adult mice. J Neurochem 2002; 80 (3): 539–47.
57. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 2005; 6 (8): 603–14.
58. Yang L, Zhang Z, Sun D et al. Low serum BDNF may indicate the development of PSD in patients with acute ischemic stroke. Int J Geriatr Psychiatry 2011; 26 (5): 495–502.
59. Еремова Н.М. Роль «отдаленных последствий ишемии» (нейротрофической дисфункции, аутоиммунной и воспалительной реакций) в патогенезе ишемического инсульта. Дис. … канд. мед. наук. М., 2003.
[Eremova N.M. Rol' "otdalennykh posledstvii ishemii' (neirotroficheskoi disfunktsii, autoimmunnoi i vospalitel'noi reaktsii) v patogeneze ishemicheskogo insul'ta. Dis. … kand. med. nauk. Moscow, 2003 (in Russian).]
60. Pikula A, Beiser AS, Chen TC et al. Serum brain-derived neurotrophic factor and vascular endothelial growth factor levels are associated with risk of stroke and vascular brain injury: Framingham Study. Stroke 2013; 44: 2768–75.
61. Hope TM, Seghier ML, Leff AP, Price CJ. Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clin 2013; 2: 424–33.
62. Luan X, Qiu H, Hong X et al. High serum nerve growth factor concentrations are associated with good functional outcome at 3 months following acute ischemic stroke. Clin Chim Acta 2019; 488: 20–4. DOI: 10.1016/j.cca.2018.10.030
63. Lai YJ, Hanneman SK, Casarez RL et al. Blood biomarkers for physical recovery in ischemic stroke: a systematic review. Am J Transl Res 2019; 11 (8): 4603–13.
________________________________________________
2. Riabukhin I.A. Neirospetsificheskie belki v otsenke pronitsaemosti gematoentsefalicheskogo bar'era cheloveka i zhivotnykh. Dis. ... d-ra med. nauk. Moscow, 2004 (in Russian).
3. Blinov D.V. Sovremennye predstavleniia o roli narusheniia rezistentnosti gematoentsefalicheskogo bar'era v patogeneze zabolevanii TsNS. Chast' 2: funktsii i mekhanizmy povrezhdeniia gematoentsefalicheskogo bar'era. Epilepsiia i paroksizmal'nye sostoianiia. 2014; 6 (1): 70–84 (in Russian).
4. Fischer S, Clauss M, Wiesnet M et al. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 1999; 276: 812–20.
5. Schaarschmidt H, Prange HW, Reiber H. Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 1994; 25: 558–65.
6. Barone FC, Clerk RK, Price W. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia. Brain Res 1993; 1: 71–82.
7. Herrmann M, Jost S, Kutz S et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma 2000; 17: 113–22.
8. Herrmann M, Elirenreich H. Brain derived proteins as markers of acute stroke: their relation to pathophysiology, outcome prediction and neuroprotective drug monitoring. Restor Neurol Neurosci 2003; 21: 177–90.
9. Chekhonin VP, Zhirkov YA, Belyaeva IA et al. Serum time course of two brain-specific proteins, alpha(l) brain globulin and neuron-specific enolase, in tick-born encephalitis and Lyme disease. Clin Chim Acta 2002; 320: 117–25.
10. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 2000; 25: 1439–51.
11. Engvall E, Perlman P. Enzyme-linked immunoadsorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochem 1971; 8: 871–9.
12. Chekhonin V.P., Zhirkov Iu.A., Turina O.I. et al. Kolichestvenno-kineticheskie parametry eliminatsii neirospetsificheskikh antigenov i antitel k nim pri nekotorykh nervno-psikhicheskikh zabolevaniiakh. Ros. psikhiatrich. zhurn. 2000; 3: 4–8 (in Russian).
13. Perry LA, Lucarelli T, Penny-Dimri JC et al. Glial fibrillary acidic protein for the early diagnosis of intracerebral hemorrhage: Systematic review and meta-analysis of diagnostic test accuracy. Int J Stroke 2019; 14 (4): 390–9. DOI: 10.1177/1747493018806167
14. Nylén K, Csajbok LZ, Ost M et al. Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke 2007; 38 (5): 1489–94.
15. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965; 19: 739–44.
16. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33: 637–68.
17. Saengen AK, Christenson RN. Stroke Biomarkers: Progress and Challenges for Diagnosis, Prognosis, Differentiation and Treatment. Clin Chem 2010; 56 (1): 21–33.
18. Harish Kumar, Manoj Lakhotia, Hansraj Pahadiya, Jagdish Singh. To study the correlation of serum S-100 protein level with the severity of stroke and its prognostic implication. J Neurosci Rural Pract 2015; 6 (3): 326–30. DOI: 10.4103/0976-3147.158751
19. Foerch C, Singer OC, Neumann-Haefelin T et al. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol 2005; 62 (7): 1130–4.
20. Dassan P, Keir G, Brown MM. Criteria for a clinically informative serum biomarker in acute ischaemic stroke: a review of S100B. Cerebrovasc Dis 2009; 27 (3): 295–302. DOI: 10.1159/000199468
21. Hatfield R, McKernan R. CSF neuron-specific enolase as a quantitative marker of neuronal damage in a rat stroke model. Brain Res 1992; 577: 249–52.
22. Woertgen C, Rothoerl RD, Brawanski A. Neuron-specific enolase serum levels after controlled cortical impact injury in the rat. J Neurotrauma 2001; 18: 569–73.
23. Haupt WF, Chopan G, Sobesky J et al. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke. J Neurophysiol 2016; 115: 1273–8.
24. Stevens H, Jakobs C, de Jager AE et al. Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke. Eur J Clin Invest 1999; 29: 6–11.
25. Schaarschmidt H, Prange HW, Reiber H. Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 1994; 25: 558–65.
26. Bharosay A, Bharosay VV, Varma M et al. Correlation of brain biomarker Neuron specific enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Indian J Clin Biochem 2012; 27 (2): 186–90.
27. Wunderlich MT, Ebert AD, Kratz T et al. Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke 1999; 30: 1190–5.
28. Hill MD, Jackowski G, Bayer N et al. Biochemical markers in acute ischemic stroke. CMAJ 2000; 162: 1139–40.
29. Fassbender K, Schmidt R, Schreiner A et al. Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci 1997; 148 (1): 101–5.
30. Cunningham RT, Watt M, Winder J et al. Serum neurone-specific enolase as an indicator of stroke volume. Eur J Clin Invest 1996; 26 (4): 298–303.
31. Cunningham RT, Young IS, Winder J et al. Serum neurone specific enolase (NSE) levels as an indicator of neuronal damage in patients with cerebral infarction. Eur J Clin Invest 1991; 21 (5): 497–500.
32. Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 1997; 28 (10): 1956–60.
33. Hasan N, McColgan P, Bentley P et al. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. Br J Clin Pharmacol 2012; 74: 230–40.
34. Martinez-Sanchez P, Gutierrez-Fernandez M, Fuentes B et al. Biochemical and inflammatory biomarkers in ischemic stroke: translational study between humans and two experimental rat models. J Transl Med 2014; 12: 220.
35. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007; 4: 34–66.
https://doi.org/10.1016/j.brainresrev.2006.11.003
36. Niu FN, Zhang X, Hu XM et al. Targeted mutation of Fas ligand gene attenuates brain inflammation in experimental stroke. Brain Behavior Immunity 2012; 26 (1): 61–71. DOI: 10.1016/j.bbi.2011.07.235
37. Mahovic D, Zurak N, Lakusic N et al. The dynamics of soluble Fas/APO 1 apoptotic biochemical marker in acute ischemic stroke patients. Adv Med Sci 2013; 58 (2): 298–303. DOI: 10.2478/ams-2013-0014
38. Sergeeva S.P., Savin A.A., Arkhipov V.V. et al. Prognozirovanie iskhoda ostrogo perioda ishemicheskogo insul'ta: rol' markerov apoptoza. Klinicheskaia nevrologiia. 2017; 11 (1): 21–7 (in Russian).
39. Chumakov P.M. Belok r53 i ego universal'nye funktsii v mnogokletochnom organizme. Uspekhi biologicheskoi khimii. 2007; 47: 3–52 (in Russian).
40. Stanne TM, Aberg ND, Nilsson S et al. Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. Stroke 2016; 47 (7): 1943–5.
41. Filichia E, Shen H, Zhou X et al. Forebrain neuronal specific ablation of p53 gene provides protection in a cortical ischemic stroke model. J Neuroscience 2015; 295: 1–10.
42. Kol'tsova K.V. Rol' polimorfnykh variantov genov, uchastvuiushchikh v retseptornom puti induktsii apoptoza (FADD, Fas i kaspazy-8) v patogeneze ishemicheskogo insul'ta. Dis. … kand. med. nauk. Moscow, 2007 (in Russian).
43. Chernysheva E.N., Panova T.N. Induktor apoptoza – belok r53 i insulinorezistentnost' pri metabolicheskom sindrome. Kubanskii nauch. med. vestn. 2012; 131 (2): 186–90 (in Russian).
44. Matsuo R, Ago T, Kamouchi M et al. Clinical significance of plasma VEGF value in ischemic stroke – Research for biomarkers in ischemic stroke (rebios) study. BMC Neurol 2013; 13: 32.
45. Lee SC, Lee KY, Kim YJ et al. Serum VEGF levels in acute ischaemic strokes are correlated with long-term prognosis. Eur J Neurol 2010; 17: 45–51.
46. Putaala J, Metso AJ, Metso TM et al. Analysis of 1008 Consecutive Patients Aged 15 to 49 With First-Ever Ischemic Stroke: The Helsinki Young Stroke Registry. Stroke 2009; 40: 1195–203.
47. Kumar S, Parkash J, Kataria H, Kaur G. Interactive effect of excitotoxic injury and dietary restriction on neurogenesis and neurotrophic factors in adult male rat brain. Neurosci Res 2009; 65 (4): 367–74.
48. Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 2005; 76 (2): 99–125.
49. Walz C, Jungling K, Lessmann V, Gottmann K. Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J Neurophysiol 2006; 96: 3512–6.
50. Kramar EA, Chen LY, Lauterborn JC et al. BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 2010; 33: 708–19.
51. Yamashita K, Wiessner C, Lindholm D et al. Post-41 occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of 42 the middle cerebral artery in rat. Metab Brain Dis 1997; 12: 271–80.
52. Schabitz WR, Berger C, Kollmar R et al. Effect of brain-derived neurotrophic factor treatment and forced arm 24 use on functional motor recovery after small cortical ischemia. Stroke 2004; 35: 992–7.
53. Jiang Y, Wei N, Zhu J et al. Effects of brainderived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat Inflamm 2010; 2010: 1–10.
54. Bus BA, Molendijk ML, Penninx BJ et al. Determinants of serum brain-derived neurotrophic factor. Psychoneuroendocrinology 2011; 36: 228–39.
55. McAllister AK, Lo DC, Katz LC. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 1995; 15: 791–803.
56. Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophins expression and neurogenesis in the hippocampus of adult mice. J Neurochem 2002; 80 (3): 539–47.
57. Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 2005; 6 (8): 603–14.
58. Yang L, Zhang Z, Sun D et al. Low serum BDNF may indicate the development of PSD in patients with acute ischemic stroke. Int J Geriatr Psychiatry 2011; 26 (5): 495–502.
59. Eremova N.M. Rol' "otdalennykh posledstvii ishemii' (neirotroficheskoi disfunktsii, autoimmunnoi i vospalitel'noi reaktsii) v patogeneze ishemicheskogo insul'ta. Dis. … kand. med. nauk. Moscow, 2003 (in Russian).
60. Pikula A, Beiser AS, Chen TC et al. Serum brain-derived neurotrophic factor and vascular endothelial growth factor levels are associated with risk of stroke and vascular brain injury: Framingham Study. Stroke 2013; 44: 2768–75.
61. Hope TM, Seghier ML, Leff AP, Price CJ. Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clin 2013; 2: 424–33.
62. Luan X, Qiu H, Hong X et al. High serum nerve growth factor concentrations are associated with good functional outcome at 3 months following acute ischemic stroke. Clin Chim Acta 2019; 488: 20–4. DOI: 10.1016/j.cca.2018.10.030
63. Lai YJ, Hanneman SK, Casarez RL et al. Blood biomarkers for physical recovery in ischemic stroke: a systematic review. Am J Transl Res 2019; 11 (8): 4603–13.
Авторы
М.Ш. Гулиева*, С.Д. Багманян, А.С. Чуканова, Е.И. Чуканова
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия
*m.gulieva2014@yandex.ru
Pirogov Russian National Research Medical University, Moscow, Russia
*m.gulieva2014@yandex.ru
ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Москва, Россия
*m.gulieva2014@yandex.ru
________________________________________________
Pirogov Russian National Research Medical University, Moscow, Russia
*m.gulieva2014@yandex.ru
Цель портала OmniDoctor – предоставление профессиональной информации врачам, провизорам и фармацевтам.
