Кофе – самый широко потребляемый напиток в мире. Около 80% населения мира принимают кофе и другие кофейные продукты ежедневно, а для жителей Финляндии, Норвегии, Исландии и Северной Америки данный показатель достигает 90% cлучаев. Кофе состоит из большого числа химических компонентов, в том числе кофеина, хлорогеновых кислот, дитерпенов и тригонеллинов, которые являются наиболее биологически активными и наиболее важными составляющими напитка. Прием кофе одновременно с лекарственными средствами (ЛС) может влиять на их фармакокинетический профиль, изменяя процесс абсорбции, степень растворения, уровень кислотности желудочно-кишечного тракта (ЖКТ), влияя на состояние проницаемости мембран клеток ЖКТ, на время транзита пищи по ЖКТ за счет образования нерастворимых комплексов и ингибирования глюкозо-6-фосфатазы. Кофе может снизить всасывание в кишечнике неорганических соединений, препаратов железа, кальция, а также некоторых органических соединений (глюкоза, витамин D и др.) в случае их одновременного приема с кофе. Употребление большого количества кофе за счет активного диуреза может также способствовать усилению выведения из организма электролитов (в том числе натрия, хлоридов) и витаминов. Еще одним потенциальным типом взаимодействия ЛС и кофе является фармакодинамический тип (на уровне рецепторов и фармакологических эффектов). Например, в инструкциях по медицинскому применению ЛС – антагонистов адренергических рецепторов (например, сальбутамол, салметерол, эпинефрин) и метилксантинов (аминофиллин, теофиллин) содержится информация о том, что совместный прием кофе способствует дополнительной стимуляции центральной нервной системы и усиливает их токсичность. Специалистам практического здравоохранения следует знать и обязательно учитывать потенциальные взаимодействия ЛС и кофе и обеспечить соответствующий временной промежуток между их приемом, что позволит избежать развития потенциальных осложнений фармакотерапии.
Ключевые слова: лекарственные средства, кофеин, нежелательные реакции, взаимодействия лекарство-пища, кофе
________________________________________________
Coffee is the most widely consumed beverage in the world. About 80% of the world's population consumes coffee and other coffee products on a daily basis. For residents of Finland, Norway, Iceland and North America this figure reaches 90%. Coffee consists of a large number of chemical constituents, including caffeine, chlorogenic acids, diterpenes and trigonellins, which are the most biologically active and most important constituents of the beverage. Taking coffee together with drugs can affect their pharmacokinetic profile, changing the absorption process, the degree of dissolution, pH of the gastrointestinal tract (GIT), affecting the state of permeability of the membranes of the GIT cells, on the transit time of food through the GIT, as well as for due to the formation of insoluble complexes and inhibition of glucose-6-phosphatase. Coffee can reduce intestinal absorption of inorganic compounds (iron, calcium preparations), as well as some organic compounds (glucose, vitamin D, etc.) if taken simultaneously with coffee. Drinking large amounts of coffee due to active diuresis can also increase the elimination of electrolytes (including sodium, chlorides) and vitamins from the body. Another potential type of interaction between drugs and coffee is the pharmacodynamic type (at the level of receptors and pharmacological effects). For example, the instructions for the medical use of drugs – adrenergic receptor antagonists (for example, salbutamol, salmeterol, epinephrine) and methylxanthines (aminophylline, theophylline) contain information that the joint intake of coffee contributes to additional stimulation of the central nervous system and increases their toxicity. Healthcare practicionars should know and be sure to take into account the potential interactions between drugs and coffee and ensure an appropriate time interval between taking drugs and coffee, which will avoid the development of potential complications of pharmacotherapy.
1. Belayneh A, Molla F. The Effect of Coffee on Pharmacokinetic Properties of Drugs: A Review. Biomed Res Int. 2020;2020:7909703. DOI:10.1155/2020/7909703
2. WorldAtlas. The Top Coffee-Consuming Countries. Available at: https://www.worldatlas.com/articles/top-10-coffee-consuming-nations.html. Accessed: 12.08.2021.
3. Boekema PJ, Samsom M, van Henegouwen BGP, Smout AJ. Coffee and Gastrointestinal Function: Facts and Fiction: A Review. Scand J Gastroenterol Suppl. 1999;34(230):35-9. DOI:10.1080/003655299750025525
4. Godos J, Pluchinotta FR, Marventano S, et al. Coffee components and cardiovascular risk: beneficial and detrimental effects. Int J Food Sci Nutr. 2014;65(8):925-36. DOI:10.3109/09637486.2014.940287
5. Nuhu AA. Bioactive micronutrients in coffee: recent analytical approaches for characterization and quantification. ISRN Nutr. 2014;2014:384230. DOI:10.1155/2014/384230
6. Goodman G. Goodman and Gilman's the Pharmacological Basis of Therapeutics, McGraw-Hill, New York, 14th edition, 2012.
7. Lippincott W, Wilkins M. Nutrition and Diagnosis-Related Care, 2008.
8. Krishna VN, Gouthami B, Meyyanathan SN, et al. In vitro In vivo pharmacokinetic interaction study of escitalopram oxalate when co administered with caffeine/caffeinated beverages. The Open Conference Proceedings Journal. 2013;4:66-71.
9. Liguori A, Hughes JR, Grass JA. Absorption and subjective effects of caffeine from coffee, cola and capsules. Pharmacol Biochem Behav. 1997;58(3):721-6. DOI:10.1016/s0091-3057(97)00003-8
10. Cheeseman HJ, Neal MJ. Interaction of chlorpromazine with tea and coffee. Br J Clin Pharmacol. 1981;12(2):165-9. DOI:10.1111/j.1365-2125.1981.tb01196.x
11. Aziba P, Isei M. The effect of caffeine on chlorpromazine induced catalepsy a parkinsonian sympton in rat. Biosciences Biotechnology Research Asia. 2012;9(2):689-93.
12. Morck TA, Lynch SR, Cook JD. Inhibition of food iron absorption by coffee. Am J Clin Nutr. 1983;37(3):416-20. DOI:10.1093/ajcn/37.3.416
13. Benvenga S, Bartolone L, Pappalardo MA, et al. Altered intestinal absorption of L-thyroxine caused by coffee. Thyroid. 2008;18(3):293-301. DOI:10.1089/thy.2007.0222
14. Wegrzyn NM. Malabsorption of L-T4 Due to Drip Coffee: A Case Report Using Predictors of Causation. J Acad Nutr Diet. 2016;116(7):1073-6. DOI:10.1016/j.jand.2016.02.016
15. Meri R, Theresa G, Gerri F. Effects of caffeine and coffee on heartburn, acid reflux, ulcers and GERD. Available at: https://healthy.net/2019/01/06/effects-of-caffeine-and-coffee-on-heartburn-acid-reflux-ulcers-and-ge.... Accessed: 12.08.2021.
16. Edwards JE, Eliot L, Parkinson A, et al. Assessment of Pharmacokinetic Interactions Between Obeticholic Acid and Caffeine, Midazolam, Warfarin, Dextromethorphan, Omeprazole, Rosuvastatin, and Digoxin in Phase 1 Studies in Healthy Subjects. Adv Ther. 2017;34(9):2120-38. DOI:10.1007/s12325-017-0601-0
17. Yoovathaworn KC, Sriwatanakul K, Thithapandha A. Influence of caffeine on aspirin pharmacokinetics. Eur J Drug Metab Pharmacokinet. 1986;11(1):71-6. DOI:10.1007/BF03189777
18. Craig CR, Stitzel RE. Modern Pharmacology with Clinical Applications, Lippincott Williams and Wilkins. 6th edition. LWW, 2003. Available at: https://www.amazon.com/Modern-Pharmacology-Clinical-Applications-Sixth/dp/0781737621. Accessed: 12.08.2021
19. Babalola CP, Kolade YT, Adeyemo MA, et al. Effect of Caffeine-Containing Beverages on Physicochemical and Release Properties of Halofantrine. Global Journal of Medical Research. 2014;14(10):62-9.
20. Schmidt R, Fanchamps A. Effect of caffeine on intestinal absorption of ergotamine in man. Eur J Clin Pharmacol. 1974;7(3):213-6. DOI:10.1007/BF00560383
21. Ngo M, Tadi P. Ergotamine/Caffeine. 2021. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2021
22. Deleu D, Jacob P, Chand P, et al. Effects of caffeine on levodopa pharmacokinetics and pharmacodynamics in Parkinson disease. Neurology. 2006;67(5):897-9.
DOI:10.1212/01.wnl.0000233916.57415.9d
23. Medina-López R, Vara-Gama N, Soria-Arteche O, et al. Pharmacokinetics and Pharmacodynamics of (S)-Ketoprofen Co-Administered with Caffeine: A Preclinical Study in Arthritic Rats. Pharmaceutics. 2018;10(1):20. DOI:10.3390/pharmaceutics10010020
24. Myat TTW, Suprava D, Sherly DG, et al. Coffee Modify Pharmacokinetics of Acetaminophen. EC Pharmacology and Toxicology. 2019;7(10):1091-8.
25. Renner B, Clarke G, Grattan T, et al. Caffeine accelerates absorption and enhances the analgesic effect of acetaminophen. J Clin Pharmacol. 2007;47(6):715-26. DOI:10.1177/0091270007299762
26. Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39(2):127-53. DOI:10.2165/00003088-200039020-00004
27. Wojcicki J, Rainska-Giezek T, Gawronska-Szklarz B, Dutkiewicz-Serdynska G. Effects of caffeine on the pharmacokinetics of paracetamol. Acta Medica et Biologica. 1994;42(2):51-5.
28. Boekema PJ, Lo B, Samsom M, et al. The effect of coffee on gastric emptying and oro-caecal transit time. Eur J Clin Invest. 2000;30(2):129-34. DOI:10.1046/j.1365-2362.2000.00601.x
29. Lipton RB, Diener HC, Robbins MS, et al. Caffeine in the management of patients with headache. J Headache Pain. 2017;18(1):107. DOI:10.1186/s10194-017-0806-2
30. Bailey DG, Dresser GK, Urquhart BL, et al. Coffee-Antihypertensive Drug Interaction:
A Hemodynamic and Pharmacokinetic Study With Felodipine. Am J Hypertens.
2016;29(12):1386-93. DOI:10.1093/ajh/hpw081
31. Al-Othman A, Al-Musharaf S, Al-Daghri NM, et al. Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents. Nutr J. 2012;11:56. DOI:10.1186/1475-2891-11-56
32. Heaney RP. Effects of caffeine on bone and the calcium economy. Food Chem Toxicol. 2002;40(9):1263-70. DOI:10.1016/s0278-6915(02)00094-7
33. Silva AT, Costa NMB, Franco FSC, Natali A. Calcium and caffeine interaction in increased calcium balance in ovariectomized rats. Revista de Nutrição. 2013;26(3):313-22. DOI:10.1590/S1415-52732013000300006
34. Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr. 2001;74(5):694-700. DOI:10.1093/ajcn/74.5.694
35. Kiel DP, Felson DT, Hannan MT, et al. Caffeine and the risk of hip fracture: the Framingham Study. Am J Epidemiol. 1990;132(4):675-84. DOI:10.1093/oxfordjournals.aje.a115709
36. Hansen SA, Folsom AR, Kushi LH, Sellers TA. Association of fractures with caffeine and alcohol in postmenopausal women: the Iowa Women's Health Study. Public Health Nutr. 2000;3(3):253-61. DOI:10.1017/s136898000000029x
37. Hernandez-Avila M, Colditz GA, Stampfer MJ, et al. Caffeine, moderate alcohol intake, and risk of fractures of the hip and forearm in middle-aged women. Am J Clin Nutr. 1991;54(1):157-63. DOI:10.1093/ajcn/54.1.157
38. Jokinen H, Pulkkinen P, Korpelainen J, et al. Risk factors for cervical and trochanteric hip fractures in elderly women: a population-based 10-year follow-up study. Calcif Tissue Int. 2010;87(1):44-51. DOI:10.1007/s00223-010-9382-z
39. Meyer HE, Pedersen JI, Løken EB, Tverdal A. Dietary factors and the incidence of hip fracture in middle-aged Norwegians. A prospective study. Am J Epidemiol. 1997;145(2):117-23. DOI:10.1093/oxfordjournals.aje.a009082
40. Nieves JW, Grisso JA, Kelsey JL. A case-control study of hip fracture: evaluation of selected dietary variables and teenage physical activity. Osteoporos Int. 1992;2(3):122-7. DOI:10.1007/BF01623818
41. Ohnaka K, Ikeda M, Maki T, et al. Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J Nutr Metab. 2012;2012:207426. DOI:10.1155/2012/207426
42. Welsch CA, Lachance PA, Wasserman BP. Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles. J Nutr. 1989;119(11):1698-704. DOI:10.1093/jn/119.11.1698
43. Iqbal N, Ahmad B, Janbaz KH, et al. The effect of caffeine on the pharmacokinetics of acetaminophen in man. Biopharm Drug Dispos. 1995;16(6):481-7. DOI:10.1002/bdd.2510160606
44. Chen X, Ghribi O, Geiger JD. Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer's and Parkinson's diseases. J Alzheimers Dis. 2010;20 Suppl. 1(Suppl. 1):S127-41. DOI:10.3233/JAD-2010-1376
45. Chen X, Gawryluk JW, Wagener JF, et al. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. J Neuroinflammation. 2008;5:12. DOI:10.1186/1742-2094-5-12
46. Chen X, Lan X, Roche I, et al. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem. 2008;107(4):1147-57. DOI:10.1111/j.1471-4159.2008.05697.x
47. Tran A, Zhang CY, Cao C. The Role of Coffee in the Therapy of Parkinson’s Disease. J Alzheimers Dis Parkinsonism. 2015;5(3):2161-460. DOI:10.4172/2161-0460.1000203
48. Deleu D, Jacob P, Chand P, et al. Effects of caffeine on levodopa pharmacokinetics and pharmacodynamics in Parkinson disease. Neurology. 2006;67(5):897-9. DOI:10.1212/01.wnl.0000233916.57415.9d
49. Информационный портал для специалистов практического здравоохранения Drug Bank. Режим доступа: https://go.drugbank.com/categories/DBCAT002609. Ссылка активна на 12.08.2021 [Drug Bank Information Portal for Practical Healthcare Professionals. Available at: https://go.drugbank.com/categories/DBCAT002609. Accessed: 12.08.2021 (in Russian)].
50. Sohn OS, Surace A, Fiala ES, et al. Effects of green and black tea on hepatic xenobiotic metabolizing systems in the male F344 rat. Xenobiotica. 1994;24(2):119-27. DOI:10.3109/00498259409043226
51. Ayalogu EO, Snelling J, Lewis DF, et al. Induction of hepatic CYP1A2 by the oral administration of caffeine to rats: lack of association with the Ah locus. Biochim Biophys Acta. 1995;1272(2):89-94. DOI:10.1016/0925-4439(95)00071-b
52. Vaynshteyn D, Jeong H. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes. Drug Metab Lett. 2012;6(2):116-9.
53. Djordjevic N, Ghotbi R, Jankovic S, Aklillu E. Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2-163C>A polymorphism. Eur J Clin Pharmacol. 2010;66(7):697-703. DOI:10.1007/s00228-010-0823-4
54. Horn JR, Hansten PD. Caffeine and Clozapine. Pharmacy times. 2013. Available at: https://www.pharmacytimes.com/view/caffeine-and-clozapine. Accessed: 12.08.2021.
55. Hagg S, Spigset O, Mjörndal T, Dahlqvist R. Effect of caffeine on clozapine pharmacokinetics in healthy volunteers. Br J Clin Pharmacol. 2000;49:59-63.
56. Zafar S, Ashraf MM, Ali A, et al. Effect of caffeine on anti-clotting activity of warfarin in healthy male albino rabbits. Pak J Pharm Sci. 2018;31(2 Suppl.):611-6.
57. Härtter S, Nordmark A, Rose DM, et al. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br J Clin Pharmacol. 2003;56(6):679-82. DOI:10.1046/j.1365-2125.2003.01933.x
58. Cysneiros RM, Farkas D, Harmatz JS, et al. Pharmacokinetic and pharmacodynamic interactions between zolpidem and caffeine. Clin Pharmacol Ther. 2007;82(1):54-62. DOI:10.1038/sj.clpt.6100211
59. Zebothsen I, Kunze T, Clement B. Inhibitory effects of cytostatically active 6-aminobenzo[c]phenanthridines on cytochrome P450 enzymes in human hepatic microsomes. Basic Clin Pharmacol Toxicol. 2006;99(1):37-43. DOI:10.1111/j.1742-7843.2006.pto_337.x
60. Marx B, Scuvée É, Scuvée-Moreau J, et al. Mécanismes de l'effet diurétique de la caféine [Mechanisms of caffeine-induced diuresis]. Med Sci (Paris). 2016;32(5):485-90.
DOI:10.1051/medsci/20163205015
61. Zhang Y, Coca A, Casa DJ, et al. Caffeine and diuresis during rest and exercise: A meta-analysis. J Sci Med Sport. 2015;18(5):569-74. DOI:10.1016/j.jsams.2014.07.017
62. Osswald H, Mühlbauer B, Schenk F. Adenosine mediates tubuloglomerular feedback response: an element of metabolic control of kidney function. Kidney Int Suppl. 1991;32:S128-31.
63. Massey LK, Whiting SJ. Caffeine, urinary calcium, calcium metabolism and bone. J Nutr. 1993;123(9):1611-4. DOI:10.1093/jn/123.9.1611
64. Salema B, Ruivo J, de la Torre X, et al. Oxandrolone excretion: effect of caffeine dosing. Available at: http://www.adop.pt/media/4114/Oxandrolone_ excretion_effect_of_caffeine_dosing_.pdf. Accessed: 12.08.2021.
65. Avoid Food Drug Interactions. A Guide from the National Consumers League and 67. U.S. Food and Drug Administration: Food_and_Drug_Interactions. Available at: https://curehht.org/wp-content/uploads/2017/11/Food_and_Drug_Interactions_FDA.pdf. Accessed: 12.08.2021.
66. Государственный реестр лекарственных средств Минздрава России. Режим доступа: https://grls.rosminzdrav.ru. Ссылка активна на: 12.08.2021 [State Register of Medicines of the Ministry of Health of Russia. Available at: https://grls.rosminzdrav.ru. Accessed: 12.08.2021 (in Russian)].
67. Jain G, Khar RK, Ahmad FJ. Theory and practice of physical pharmacy-e-book. Vol. 47, no. 1. Elsevier Health Sciences, 2013.
________________________________________________
1. Belayneh A, Molla F. The Effect of Coffee on Pharmacokinetic Properties of Drugs: A Review. Biomed Res Int. 2020;2020:7909703. DOI:10.1155/2020/7909703
2. WorldAtlas. The Top Coffee-Consuming Countries. Available at: https://www.worldatlas.com/articles/top-10-coffee-consuming-nations.html. Accessed: 12.08.2021.
3. Boekema PJ, Samsom M, van Henegouwen BGP, Smout AJ. Coffee and Gastrointestinal Function: Facts and Fiction: A Review. Scand J Gastroenterol Suppl. 1999;34(230):35-9. DOI:10.1080/003655299750025525
4. Godos J, Pluchinotta FR, Marventano S, et al. Coffee components and cardiovascular risk: beneficial and detrimental effects. Int J Food Sci Nutr. 2014;65(8):925-36. DOI:10.3109/09637486.2014.940287
5. Nuhu AA. Bioactive micronutrients in coffee: recent analytical approaches for characterization and quantification. ISRN Nutr. 2014;2014:384230. DOI:10.1155/2014/384230
6. Goodman G. Goodman and Gilman's the Pharmacological Basis of Therapeutics, McGraw-Hill, New York, 14th edition, 2012.
7. Lippincott W, Wilkins M. Nutrition and Diagnosis-Related Care, 2008.
8. Krishna VN, Gouthami B, Meyyanathan SN, et al. In vitro In vivo pharmacokinetic interaction study of escitalopram oxalate when co administered with caffeine/caffeinated beverages. The Open Conference Proceedings Journal. 2013;4:66-71.
9. Liguori A, Hughes JR, Grass JA. Absorption and subjective effects of caffeine from coffee, cola and capsules. Pharmacol Biochem Behav. 1997;58(3):721-6. DOI:10.1016/s0091-3057(97)00003-8
10. Cheeseman HJ, Neal MJ. Interaction of chlorpromazine with tea and coffee. Br J Clin Pharmacol. 1981;12(2):165-9. DOI:10.1111/j.1365-2125.1981.tb01196.x
11. Aziba P, Isei M. The effect of caffeine on chlorpromazine induced catalepsy a parkinsonian sympton in rat. Biosciences Biotechnology Research Asia. 2012;9(2):689-93.
12. Morck TA, Lynch SR, Cook JD. Inhibition of food iron absorption by coffee. Am J Clin Nutr. 1983;37(3):416-20. DOI:10.1093/ajcn/37.3.416
13. Benvenga S, Bartolone L, Pappalardo MA, et al. Altered intestinal absorption of L-thyroxine caused by coffee. Thyroid. 2008;18(3):293-301. DOI:10.1089/thy.2007.0222
14. Wegrzyn NM. Malabsorption of L-T4 Due to Drip Coffee: A Case Report Using Predictors of Causation. J Acad Nutr Diet. 2016;116(7):1073-6. DOI:10.1016/j.jand.2016.02.016
15. Meri R, Theresa G, Gerri F. Effects of caffeine and coffee on heartburn, acid reflux, ulcers and GERD. Available at: https://healthy.net/2019/01/06/effects-of-caffeine-and-coffee-on-heartburn-acid-reflux-ulcers-and-ge.... Accessed: 12.08.2021.
16. Edwards JE, Eliot L, Parkinson A, et al. Assessment of Pharmacokinetic Interactions Between Obeticholic Acid and Caffeine, Midazolam, Warfarin, Dextromethorphan, Omeprazole, Rosuvastatin, and Digoxin in Phase 1 Studies in Healthy Subjects. Adv Ther. 2017;34(9):2120-38. DOI:10.1007/s12325-017-0601-0
17. Yoovathaworn KC, Sriwatanakul K, Thithapandha A. Influence of caffeine on aspirin pharmacokinetics. Eur J Drug Metab Pharmacokinet. 1986;11(1):71-6. DOI:10.1007/BF03189777
18. Craig CR, Stitzel RE. Modern Pharmacology with Clinical Applications, Lippincott Williams and Wilkins. 6th edition. LWW, 2003. Available at: https://www.amazon.com/Modern-Pharmacology-Clinical-Applications-Sixth/dp/0781737621. Accessed: 12.08.2021
19. Babalola CP, Kolade YT, Adeyemo MA, et al. Effect of Caffeine-Containing Beverages on Physicochemical and Release Properties of Halofantrine. Global Journal of Medical Research. 2014;14(10):62-9.
20. Schmidt R, Fanchamps A. Effect of caffeine on intestinal absorption of ergotamine in man. Eur J Clin Pharmacol. 1974;7(3):213-6. DOI:10.1007/BF00560383
21. Ngo M, Tadi P. Ergotamine/Caffeine. 2021. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2021
22. Deleu D, Jacob P, Chand P, et al. Effects of caffeine on levodopa pharmacokinetics and pharmacodynamics in Parkinson disease. Neurology. 2006;67(5):897-9.
DOI:10.1212/01.wnl.0000233916.57415.9d
23. Medina-López R, Vara-Gama N, Soria-Arteche O, et al. Pharmacokinetics and Pharmacodynamics of (S)-Ketoprofen Co-Administered with Caffeine: A Preclinical Study in Arthritic Rats. Pharmaceutics. 2018;10(1):20. DOI:10.3390/pharmaceutics10010020
24. Myat TTW, Suprava D, Sherly DG, et al. Coffee Modify Pharmacokinetics of Acetaminophen. EC Pharmacology and Toxicology. 2019;7(10):1091-8.
25. Renner B, Clarke G, Grattan T, et al. Caffeine accelerates absorption and enhances the analgesic effect of acetaminophen. J Clin Pharmacol. 2007;47(6):715-26. DOI:10.1177/0091270007299762
26. Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000;39(2):127-53. DOI:10.2165/00003088-200039020-00004
27. Wojcicki J, Rainska-Giezek T, Gawronska-Szklarz B, Dutkiewicz-Serdynska G. Effects of caffeine on the pharmacokinetics of paracetamol. Acta Medica et Biologica. 1994;42(2):51-5.
28. Boekema PJ, Lo B, Samsom M, et al. The effect of coffee on gastric emptying and oro-caecal transit time. Eur J Clin Invest. 2000;30(2):129-34. DOI:10.1046/j.1365-2362.2000.00601.x
29. Lipton RB, Diener HC, Robbins MS, et al. Caffeine in the management of patients with headache. J Headache Pain. 2017;18(1):107. DOI:10.1186/s10194-017-0806-2
30. Bailey DG, Dresser GK, Urquhart BL, et al. Coffee-Antihypertensive Drug Interaction:
A Hemodynamic and Pharmacokinetic Study With Felodipine. Am J Hypertens.
2016;29(12):1386-93. DOI:10.1093/ajh/hpw081
31. Al-Othman A, Al-Musharaf S, Al-Daghri NM, et al. Tea and coffee consumption in relation to vitamin D and calcium levels in Saudi adolescents. Nutr J. 2012;11:56. DOI:10.1186/1475-2891-11-56
32. Heaney RP. Effects of caffeine on bone and the calcium economy. Food Chem Toxicol. 2002;40(9):1263-70. DOI:10.1016/s0278-6915(02)00094-7
33. Silva AT, Costa NMB, Franco FSC, Natali A. Calcium and caffeine interaction in increased calcium balance in ovariectomized rats. Revista de Nutrição. 2013;26(3):313-22. DOI:10.1590/S1415-52732013000300006
34. Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr. 2001;74(5):694-700. DOI:10.1093/ajcn/74.5.694
35. Kiel DP, Felson DT, Hannan MT, et al. Caffeine and the risk of hip fracture: the Framingham Study. Am J Epidemiol. 1990;132(4):675-84. DOI:10.1093/oxfordjournals.aje.a115709
36. Hansen SA, Folsom AR, Kushi LH, Sellers TA. Association of fractures with caffeine and alcohol in postmenopausal women: the Iowa Women's Health Study. Public Health Nutr. 2000;3(3):253-61. DOI:10.1017/s136898000000029x
37. Hernandez-Avila M, Colditz GA, Stampfer MJ, et al. Caffeine, moderate alcohol intake, and risk of fractures of the hip and forearm in middle-aged women. Am J Clin Nutr. 1991;54(1):157-63. DOI:10.1093/ajcn/54.1.157
38. Jokinen H, Pulkkinen P, Korpelainen J, et al. Risk factors for cervical and trochanteric hip fractures in elderly women: a population-based 10-year follow-up study. Calcif Tissue Int. 2010;87(1):44-51. DOI:10.1007/s00223-010-9382-z
39. Meyer HE, Pedersen JI, Løken EB, Tverdal A. Dietary factors and the incidence of hip fracture in middle-aged Norwegians. A prospective study. Am J Epidemiol. 1997;145(2):117-23. DOI:10.1093/oxfordjournals.aje.a009082
40. Nieves JW, Grisso JA, Kelsey JL. A case-control study of hip fracture: evaluation of selected dietary variables and teenage physical activity. Osteoporos Int. 1992;2(3):122-7. DOI:10.1007/BF01623818
41. Ohnaka K, Ikeda M, Maki T, et al. Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J Nutr Metab. 2012;2012:207426. DOI:10.1155/2012/207426
42. Welsch CA, Lachance PA, Wasserman BP. Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles. J Nutr. 1989;119(11):1698-704. DOI:10.1093/jn/119.11.1698
43. Iqbal N, Ahmad B, Janbaz KH, et al. The effect of caffeine on the pharmacokinetics of acetaminophen in man. Biopharm Drug Dispos. 1995;16(6):481-7. DOI:10.1002/bdd.2510160606
44. Chen X, Ghribi O, Geiger JD. Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer's and Parkinson's diseases. J Alzheimers Dis. 2010;20 Suppl. 1(Suppl. 1):S127-41. DOI:10.3233/JAD-2010-1376
45. Chen X, Gawryluk JW, Wagener JF, et al. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. J Neuroinflammation. 2008;5:12. DOI:10.1186/1742-2094-5-12
46. Chen X, Lan X, Roche I, et al. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem. 2008;107(4):1147-57. DOI:10.1111/j.1471-4159.2008.05697.x
47. Tran A, Zhang CY, Cao C. The Role of Coffee in the Therapy of Parkinson’s Disease. J Alzheimers Dis Parkinsonism. 2015;5(3):2161-460. DOI:10.4172/2161-0460.1000203
48. Deleu D, Jacob P, Chand P, et al. Effects of caffeine on levodopa pharmacokinetics and pharmacodynamics in Parkinson disease. Neurology. 2006;67(5):897-9. DOI:10.1212/01.wnl.0000233916.57415.9d
49. Drug Bank Information Portal for Practical Healthcare Professionals. Available at: https://go.drugbank.com/categories/DBCAT002609. Accessed: 12.08.2021 (in Russian).
50. Sohn OS, Surace A, Fiala ES, et al. Effects of green and black tea on hepatic xenobiotic metabolizing systems in the male F344 rat. Xenobiotica. 1994;24(2):119-27. DOI:10.3109/00498259409043226
51. Ayalogu EO, Snelling J, Lewis DF, et al. Induction of hepatic CYP1A2 by the oral administration of caffeine to rats: lack of association with the Ah locus. Biochim Biophys Acta. 1995;1272(2):89-94. DOI:10.1016/0925-4439(95)00071-b
52. Vaynshteyn D, Jeong H. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes. Drug Metab Lett. 2012;6(2):116-9.
53. Djordjevic N, Ghotbi R, Jankovic S, Aklillu E. Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2-163C>A polymorphism. Eur J Clin Pharmacol. 2010;66(7):697-703. DOI:10.1007/s00228-010-0823-4
54. Horn JR, Hansten PD. Caffeine and Clozapine. Pharmacy times. 2013. Available at: https://www.pharmacytimes.com/view/caffeine-and-clozapine. Accessed: 12.08.2021.
55. Hagg S, Spigset O, Mjörndal T, Dahlqvist R. Effect of caffeine on clozapine pharmacokinetics in healthy volunteers. Br J Clin Pharmacol. 2000;49:59-63.
56. Zafar S, Ashraf MM, Ali A, et al. Effect of caffeine on anti-clotting activity of warfarin in healthy male albino rabbits. Pak J Pharm Sci. 2018;31(2 Suppl.):611-6.
57. Härtter S, Nordmark A, Rose DM, et al. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity. Br J Clin Pharmacol. 2003;56(6):679-82. DOI:10.1046/j.1365-2125.2003.01933.x
58. Cysneiros RM, Farkas D, Harmatz JS, et al. Pharmacokinetic and pharmacodynamic interactions between zolpidem and caffeine. Clin Pharmacol Ther. 2007;82(1):54-62. DOI:10.1038/sj.clpt.6100211
59. Zebothsen I, Kunze T, Clement B. Inhibitory effects of cytostatically active 6-aminobenzo[c]phenanthridines on cytochrome P450 enzymes in human hepatic microsomes. Basic Clin Pharmacol Toxicol. 2006;99(1):37-43. DOI:10.1111/j.1742-7843.2006.pto_337.x
60. Marx B, Scuvée É, Scuvée-Moreau J, et al. Mécanismes de l'effet diurétique de la caféine [Mechanisms of caffeine-induced diuresis]. Med Sci (Paris). 2016;32(5):485-90.
DOI:10.1051/medsci/20163205015
61. Zhang Y, Coca A, Casa DJ, et al. Caffeine and diuresis during rest and exercise: A meta-analysis. J Sci Med Sport. 2015;18(5):569-74. DOI:10.1016/j.jsams.2014.07.017
62. Osswald H, Mühlbauer B, Schenk F. Adenosine mediates tubuloglomerular feedback response: an element of metabolic control of kidney function. Kidney Int Suppl. 1991;32:S128-31.
63. Massey LK, Whiting SJ. Caffeine, urinary calcium, calcium metabolism and bone. J Nutr. 1993;123(9):1611-4. DOI:10.1093/jn/123.9.1611
64. Salema B, Ruivo J, de la Torre X, et al. Oxandrolone excretion: effect of caffeine dosing. Available at: http://www.adop.pt/media/4114/Oxandrolone_ excretion_effect_of_caffeine_dosing_.pdf. Accessed: 12.08.2021.
65. Avoid Food Drug Interactions. A Guide from the National Consumers League and 67. U.S. Food and Drug Administration: Food_and_Drug_Interactions. Available at: https://curehht.org/wp-content/uploads/2017/11/Food_and_Drug_Interactions_FDA.pdf. Accessed: 12.08.2021.
66. State Register of Medicines of the Ministry of Health of Russia. Available at: https://grls.rosminzdrav.ru. Accessed: 12.08.2021 (in Russian).
67. Jain G, Khar RK, Ahmad FJ. Theory and practice of physical pharmacy-e-book. Vol. 47, no. 1. Elsevier Health Sciences, 2013.
Авторы
А.П. Переверзев*1, О.Д. Остроумова1,2
1 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
2 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*acchirurg@mail.ru
________________________________________________
Anton P. Pereverzev*1, Olga D. Ostroumova1,2
1 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
2 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*acchirurg@mail.ru