Приведен обзор основных нарушений свертывания крови при коронавирусной болезни 2019 г. (COVID-19), которая связана с несколькими гематологическими изменениями. У пациентов с COVID-19 наблюдаются два типичных нарушения гемостаза – это повышенный уровень D-димера и умеренная тромбоцитопения, которые зарегистрированы в более чем 40% случаев. Другие аномалии гемостаза, часто сообщаемые при COVID-19, включали пролонгированное протромбиновое время (ПВ), выраженное также как международное нормализованное отношение, пролонгированное тромбиновое время и активированное частичное тромбопластиновое время (АЧТВ), которые являлись типичными острофазовыми реакциями. Пролонгация АЧТВ, ПВ и тромбоцитопения встречаются часто, особенно у пациентов с тяжелым клиническим течением. Высказано предположение, что повышенная концентрация D-димера и удлинение ПВ, АЧТВ связаны с более высокой смертностью у пациентов с COVID-19. Диссеминированное внутрисосудистое свертывание крови наблюдается чаще всего в тяжелых случаях COVID-19 (около 2% всех госпитализированных пациентов) и свидетельствует о плохом прогнозе, т.е. о 90% летальности. Остается неясным, может ли SARS-CoV-2 индуцировать антифосфолипидные антитела. Повышенную частоту положительных волчаночных антикоагулянтов наблюдали у пациентов с COVID-19, можно предположить, что все пациенты с COVID-19, у которых обнаружены антифосфолипидные антитела, должны находиться под пристальным наблюдением и получать тромбопрофилактику даже без каких-либо тромбоэмболий в анамнезе.
The article provides an overview of main blood clotting disorders in coronavirus infection 2019 (COVID-19), which is associated with several hematological changes. Patients with COVID-19 develop typically two hemostasis disorders – an increased D-dimer levels and moderate thrombocytopenia, which occur in more than 40% of cases. Other hemostasis abnormalities, which are frequently reported in COVID-19, included prolonged prothrombin time (PT), also expressed as international normalized ratio, prolonged thrombin time, and activated partial thromboplastin time (APTT), which were typical acute phase reactions. Prolonged APTT or PT, and thrombocytopenia are common, especially in patients with severe clinical course. It has been hypothesized that increased D-dimer concentration and prolongation of PT, APTT are associated with higher mortality in patients with COVID-19. Disseminated intravascular coagulation occurs most often in severe cases of COVID-19 (about 2% of all hospitalized patients) and indicates a poor prognosis, i.e. about 90% mortality. It remains unclear whether SARS-CoV-2 can induce antiphospholipid antibodies. An increased incidence of positive lupus anticoagulants was observed in patients with COVID-19, it can be assumed that all patients with COVID-19 in whom antiphospholipid antibodies are revealed should be monitored and receive thromboprophylaxis even with no history of thromboembolism.
1. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) in the U.S, 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/cases-in-us.html# investigation
2. National Institute of Allergy and Infectious Diseases. Coronaviruses, 2020. Available at: https://www.niaid.nih.gov/diseases-conditions/coronaviruses
3. Centers for Disease Control and Prevention. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-managementpatientshtml
4. Насонов Е.Л. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020; 58 (2): 123–32 [Nasonov E.L. Koronavirusnaia bolezn' 2019 (COVID-19): razmyshleniia revmatologa. Nauchno-prakticheskaia revmatologiia. 2020; 58 (2): 123–32 (in Russian)]. DOI: 10.14412/1995-4484-2020-123-132
5. Насонов Е.Л., Бекетова Т.В., Решетняк Т.М., и др. Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные ревматические заболевания на перекрестке проблем тромбовоспаления и аутоиммунитета. Научно-практическая ревматология. 2020; 58: (4) 353–67 [Nasonov E.L., Beketova T.V., Reshetniak T.M., et al. Koronavirusnaia bolezn' 2019 (COVID-19) i immunovospalitel'nye revmaticheskie zabolevaniia na perekrestke problem trombovospaleniia i autoimmuniteta. Nauchno-prakticheskaia revmatologiia. 2020; 58: (4) 353–67 (in Russian)]. DOI: 10/47369/1995-4484-2020-353-367
6. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020. DOI: 10.1016/ S2352-3026(20)30145-149
7. Макацария А.Д., Григорьева К.Н., Мингалимов М.А., и др. Коронавирусная инфекция (COVID-19) и синдром диссеминированного внутрисосудистого свертывания. Акушерство, Гинекология и Репродукция. 2020; 14 (2) [Makatsariia A.D., Grigor'eva K.N., Mingalimov M.A., et al. Koronavirusnaia infektsiia (COVID-19) i sindrom disseminirovannogo vnutrisosudistogo svertyvaniia. Akusherstvo, Ginekologiia i Reproduktsiia. 2020; 14 (2) (in Russian)]. DOI: 10.17749/2313-7347.132
8. Loof TG, Schmidt O, Herwald H, et al. Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins? J Innate Immun 2011; 3 (1): 34–40. DOI: 10.1159/000321641. PMID: 21051879
9. Esmon CT, Esmon NL. The link between vascular features and thrombosis. Ann Rev Physiol 2011; 73: 503–14. DOI: 10.1146/annurev-physiol-012110-142300; PMID: 20887194
10. Струкова С.М. Основы физиологии гемостаза. Учеб. пособие. 2-е изд., перераб. и доп. М.: МГУ, 2013;
c. 148–84 [Strukova S.M. Fundamentals of the physiology of hemostasis. Textbook. allowance. 2nd ed., revised and add. Moscow: Moscow State University, 2013; p. 148–84 (in Russian)].
11. Esmon CT. The interactions between inflammation and coagulation. Br J Haematol 2005; 131: 417–30. DOI: 10.1111/j.1365-2141.2005.05753.х
12. Чельдиева Ф.А., Решетняк Т.М. Ревматоидный артрит, некоторые компоненты гемостаза и воспаление. Соврем. ревматология. 2019; 13 (3): 87–94 [Chel'dieva F.A, Reshetniak T.M. Revmatoidnyi artrit, nekotorye komponenty gemostaza i vospalenie. Sovrem. revmatologiia. 2019; 13 (3): 87–94 (in Russian)]. DOI: 10.14412/1996-7012-2019-3-87-94
13. Henry BM, Santos de Oliveira MH, Stefanie Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med 2020. DOI: 10.1515/cclm-2020-0369
14. Guan WJ, Ni ZY, Hu Y, et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382 (18): 1708–20. DOI: 10.1056/NEJMoa2002032; PMID: 32109013; PMCID: PMC7092819
15. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18 (4): 844–7. DOI: 10.1111/jth.14768; PMID: 32073213; PMCID: PMC7166509
16. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497–506. DOI: 10.1016/S0140-6736(20)30183-5; PMID: 31986264; PMCID: PMC7159299
17. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054–62. DOI: 10.1016/S0140-6736(20)30566-3; PMID: 32171076; PMCID: PMC7270627
18. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol 2020. DOI: 10.1002/ajh.25829
19. Thachil J, Wada H, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020. DOI: 10.1111/jth.14810
20. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta 2020; 506: 145–8. DOI: 10.1016/j.cca.2020.03.022; PMID: 32178975; PMCID: PMC7102663
21. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395 (10229): 1033–4. DOI: 10.1016/S0140-6736(20)30628-0; PMID: 32192578; PMCID: PMC7270045
22. Thachil J. Platelets in Inflammatory Disorders: A Pathophysiological and Clinical Perspective. Semin Thromb Hemost 2015; 41 (6): 572–81. DOI: 10.1055/s-0035-1556589
23. Borensztajn KS, von der Thüsen JH, Spek CA. The role of coagulation in chronic inflammatory disorders: A jack of all trades. Curr Pharm Des 2011; 17 (1): 9–16. DOI: 10.2174/138161211795049813
24. Klok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020. DOI: 10.1016/j.thromres.2020.04.013
25. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4 (2): 295–306. DOI: 10.1111/j.1538-7836.2006.01753; PMID: 16420554
26. Насонов Е.Л. Антифосфолипидный синдром. Монография. М.: Литтера, 2004; с. 36 [Nasonov EL. Antiphospholipid syndrome. Monograph. Moscow: Litter, 2004; p. 36 (in Russian)].
27. Решетняк Т.М. Антифосфолипидный синдром: диагностика и клинические проявления (лекция). Научно-практическая ревматология. 2014; 52 (1): 56–71 [Reshetniak T.M. Antifosfolipidnyi sindrom: diagnostika i klinicheskie proiavleniia (lektsiia). Nauchno-prakticheskaia revmatologiia. 2014; 52 (1): 56–71 (in Russian)].
28. Буланов Н.М., Козловская Н.Л., Моисеев С.В., и др. Сочетание АНЦА-ассоциированного васкулита и атипичного гемолитико-уремического синдрома у пациентки с мутацией гена диацилглицеролкиназы-эпсилон
(Клинический разбор). Нефрология и диализ. 2018. 20 (2): 212–24 [Bulanov N.M., Kozlovskaia N.L., Moiseev S.V., et al. Sochetanie ANTsA-assotsiirovannogo vaskulita i atipichnogo gemolitiko-uremicheskogo sindroma u patsientki s mutatsiei gena diatsilglitserolkinazy-epsilon (Klinicheskii razbor). Nefrologiia i dializ. 2018. 20 (2): 212–24 (in Russian)]. DOI: 10.28996/2618-9801-2018-2-212-224
29. Hess DC, Sethi K, Awad E. Thrombotic thrombocytopenic purpura in systemic lupus erythematosus and antiphospholipid antibodies: effective treatment with plasma exchange and immunosuppression. J Rheumatol 1992; 19: 1474–8. PMID: 14 33020.
30. Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J Thromb Haemost 2020; 18: 2064–5. DOI: 10.1111/ jth.14867
31. Pineton de Chambrun M, Frere C, Miyara M, et al. High Frequency of Antiphospholipid Antibodies in Critically-ill COVID-19 Patients: a Link with Hypercoagulability? J Int Med 2020; 12. DOI: 10.1111/joim.13126
32. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med 2020; 382: e38. DOI: 10.1056/NEJMc2007575
33. Zuo Y, Estes SK, Gandhi AA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. medRxiv 2020; 17. DOI: 10.1101/ 2020.06.15.20131607
34. Xiao M, Zhang Y, Zhang S, et al. Brief Report: Antiphospholipid antibodies in critically ill patients with Coronavirus Disease 2019 (COVID-19). Arthritis Rheumatol 2020. DOI: 10.1002/art.41425
35. Leroy V, Arvieux J, Jacob MC, et al. Prevalence and significance of anticardiolipin, anti-beta2 glycoprotein I and anti-prothrombin antibodies in chronic hepatitis C. Br J Haematol 1998; 101 (3): 468–74. DOI: 10.1046/j.1365-2141.1998.00722; PMID: 9633888
36. Gharavi EE, Chaimovich H, Cucurull E, et al. Induction of antiphospholipid antibodies by immunization with syntetic viral and bacterial peptidies. Lupus 1999; 8: 449–55. DOI: 10.1177/096120339900800607
37. Uthman IW, Gharavi AE. Viral infections and antiphospholipid antibodies. Semin Arthritis Rheum 2002; 31 (4): 256–63. DOI: 10.1053/sarh.2002.28303
38. Beyrouti R, Adams ME, Benjamin L, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry 2020; 91 (8): 889–91. DOI: 10.1136/jnnp-2020-323586
39. Devreese KMJ, Ortel TL, Pengo V, et al. Laboratory criteria for antiphospholipid syndrome: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16 (4): 809–13. DOI: 10.1111/jth.13976
40. Kelchtermans H, Pelkmans L, de Laat B, Devreese KM. IgG/IgM antiphospholipid antibodies present in the classification criteria for the antiphospholipid syndrome: a critical review of their association with thrombosis. J Thromb Haemost 2016; 14 (8): 1530–48. DOI: 10.1111/jth.13379
41. Chayoua W, Kelchtermans H, Gris JC, et al. The (non-)sense of detecting anti-cardiolipin and anti-beta2glycoprotein I IgM antibodies in the antiphospholipid syndrome. J Thromb Haemost 2020; 18 (1): 169–79. DOI: 10.1111/jth.14633
42. Schouwers SM, Delanghe JR, Devreese KM. Lupus Anticoagulant (LAC) testing in patients with inflammatory status: does C-reactive protein interfere with LAC test results? Thromb Res 2010; 125 (1): 102–4. DOI: 10.1016/j.thromres.2009.09.001; PMID: 19782388.
43. Devreese KMJ, Linskens EA, Benoit D, Peperstraete H. Antiphospholipid antibodies in patients with COVID-19: A relevant observation? J Thromb Haemost 2020; 18 (9): 2191–201. DOI: 10.1111/jth.14994
44. Devreese KM. Antiphospholipid antibody testing and standardization. International Journal of Laboratory Hematology 2014; 36 (3): 352–63. DOI: 10.1111/ijlh.12234
45. Schouwers SM, Delanghe JR, Devreese KM. Lupus Anticoagulant (LAC) testing in patients with inflammatory status: does C-reactive protein interfere with LAC test results? Thromb Res 2010; 125 (1): 102–4. DOI: 10.1016/j.thromres.2009.09.001
46. De Kesel PM, Devreese KMJ. The effect of unfractionated heparin, enoxaparin and danaparoid on lupus anticoagulant testing. Can activated carbon eliminate false positive results? Res Practice Thromb Haemost 2019. DOI: 10.1002/rth1002.12264
47. Tripodi A, Cohen H, Devreese KMJ. Lupus anticoagulant detection in anticoagulated patients. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis. J Thromb Haemost 2020. DOI: 10.1111/jth.14846
48. Galeano-Valle F, Oblitas CM, Ferreiro-Mazón MM, et al. Antiphospholipid antibodies are not elevated in patients with severe COVID-19 pneumonia and venous thromboembolism. Thromb Res 2020; 192: 113–5.
DOI: 10.1016/ j.thromres.2020.05.017
49. Borghi MO, Beltagy A, Garrafa E, et al. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome. Front Immunol 2020; 15; 11: 584241. DOI: 10.3389/fimmu.2020.584241
50. Tincani A, Morozzi G, Afeltra A, et al. Forum Interdisciplinare per la Ricerca nelle Malattie Autoimmuni (FIRMA). Antiprothrombin antibodies: a comparative analysis of homemade and commercial methods. A collaborative study by the Forum Interdisciplinare per la Ricerca nelle Malattie Autoimmuni (FIRMA). Clin Exp Rheumatol 2007; 25 (2): 268–74. PMID: 17543152.
51. Bowles L, Platton S, Yartey N, et al. Lupus Anticoagulant and Abnormal Coagulation Tests in Patients with Covid-19. New Engl J Med 2020. DOI: 10.1056/NEJMc2013656
52. Sánchez-Zamora P, de la Flor-Robledo M. Acute lung injury as a consequence of fresh frozen plasma administration in a patient with factor XII deficiency. Rev Esp Anestesiol Reanim 2014; 61 (8): 446–50.
DOI: 10.1016/j.redar.2013.09.012; PMID: 24252352.
53. Cornudella R, Puente F, Hortells JL, Gutiérrez M. Moderate deficiency of Factor XII associated with postoperative deep venous thrombosis. Sangre (Barc) 1989; 34 (2): 144–6. PMID: 2756451.
54. Cugno M, Meroni PL, Gualtierotti R, et al. Complement activation in patients with COVID-19: A novel therapeutic target. J Allergy Clin Immunol 2020; 146: 215–17. DOI: 10.1016/j.jaci.2020.05.006
55. Garcıa-Carrasco M, Galarza-Maldonado C, Mendoza-Pinto C, et al. Infections and the Antiphospholipid Syndrome. Clin Rev Allergy Immunol 2009; 36: 104–8. DOI: 10.1007/s12016-008-8103-0
56. Wyman B, Perl A. Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases. Curr Opin Rheumatol 2020; 32: 184–91. DOI: 10.1097/BOR.0000000000000687
57. Available from: https://www.outcomesumassmed.org/IMPROVE/risk_score/index.html
58. Tapson VF, Decousus H, Pini M, et al. IMPROVE Investigators. Venous thromboembolism prophylaxis in acutely ill hospitalized medical patients: findings from the International Medical Prevention Registry on Venous Thromboembolism. Chest 2007; 132 (3): 936–45. DOI: 10.1378/chest.06-2993; PMID: 17573514.
59. Spyropoulos AC, Anderson FA Jr, Fitzgerald G, et al. IMPROVE Investigators. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest 2011; 140 (3): 706–14. DOI: 10.1378/chest.10-1944;
PMID: 21436241.
60. Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020; 136 (4): 489–500. DOI: 10.1182/blood.2020006520; PMID: 32492712; PMCID: PMC7378457.
61. Conti CB, Henchi S, Coppeta GP, et al. Bleeding in COVID-19 severe pneumonia: The other side of abnormal coagulation pattern? Eur J Intern Med 2020; 77: 147–9. DOI: 10.1016/j.ejim.2020.05.002
62. Jang JY, Lim YS, Woo JH, et al. Spontaneous rupture of intercostal artery after severe cough. Am J Emerg Med 2015; 33 (1): 131. DOI: 10.1016/j.ajem.2014.06.033
63. Lee CH, Lan CC, Wang CC, et al. Spontaneous rupture of gastroduodenal artery pseudoaneurysm following vigorous cough. Am J Gastroenterol 2009; 104 (2): 529–30. DOI: 10.1038/ajg.2008.52
64. Dorgalaleh A. Bleeding and Bleeding Risk in COVID-19. Semin Thromb Hemost 2020; 46 (7): 815–8. DOI: 10.1055/s-0040-1713434
65. Joob B, Wiwanitkit V. Hemorrhagic Problem Among the Patients With COVID-19: Clinical Summary of 41 Thai Infected Patients. Clin Appl Thromb Hemost 2020; 26: 1076029620918308. DOI: 10.1177/1076029620918308
66. Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology 2020; 296 (2): E119–20. DOI: 10.1148/radiol.2020201187
67. Zulfiqar AA, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med 2020; 382 (18): e43. DOI: 10.1056/NEJMc2010472; PMID: 32294340; PMCID: PMC7179995.
68. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol 2020. DOI: 10.1016/j.jacc.2020.04.031
69. Barrett CD, Moore HB, Yaffe MB, Moore EE. ISTH interim guidance on recognition and management of coagulopathy in COVID-19: a comment. J Thromb Haemost 2020. DOI: 10.1111/jth.14860
70. Testa S, Prandoni P, Paoletti O, et al. Direct oral anticoagulant plasma levels’ striking increase in severe COVID-19 respiratory syndrome patients treated with antiviral agents: the Cremona experience. J Thromb Haemost 2020.
DOI: 10.1111/jth.14871
71. Liu X, Zhang X, Xiao Y, et al. Heparin-induced thrombocytopenia is associated with a high risk of mortality in critical COVID-19 patients receiving heparin-involved treatment. medRxiv 2020. DOI: 10.1101/2020.04.23.20076851
72. Marietta M, Ageno W, Artoni A, et al. COVID-19 and haemostasis: a position paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus 2020. DOI: 10.2450/2020.0083-20
73. Preventing Hospital-Associated Venous Thromboembolism. A Guide for Effective Quality Improvement. Available at: https://www.ahrq.gov/sites/default/files/publications/files/vteguide.pdf
________________________________________________
1. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19) in the U.S, 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/cases-in-us.html# investigation
2. National Institute of Allergy and Infectious Diseases. Coronaviruses, 2020. Available at: https://www.niaid.nih.gov/diseases-conditions/coronaviruses
3. Centers for Disease Control and Prevention. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-managementpatientshtml
4. Nasonov E.L. Koronavirusnaia bolezn' 2019 (COVID-19): razmyshleniia revmatologa. Nauchno-prakticheskaia revmatologiia. 2020; 58 (2): 123–32 (in Russian) DOI: 10.14412/1995-4484-2020-123-132
5. Nasonov E.L., Beketova T.V., Reshetniak T.M., et al. Koronavirusnaia bolezn' 2019 (COVID-19) i immunovospalitel'nye revmaticheskie zabolevaniia na perekrestke problem trombovospaleniia i autoimmuniteta. Nauchno-prakticheskaia revmatologiia. 2020; 58: (4) 353–67 (in Russian) DOI: 10/47369/1995-4484-2020-353-367
6. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020. DOI: 10.1016/ S2352-3026(20)30145-149
7. Makatsariia A.D., Grigor'eva K.N., Mingalimov M.A., et al. Koronavirusnaia infektsiia (COVID-19) i sindrom disseminirovannogo vnutrisosudistogo svertyvaniia. Akusherstvo, Ginekologiia i Reproduktsiia. 2020; 14 (2) (in Russian) DOI: 10.17749/2313-7347.132
8. Loof TG, Schmidt O, Herwald H, et al. Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins? J Innate Immun 2011; 3 (1): 34–40. DOI: 10.1159/000321641. PMID: 21051879
9. Esmon CT, Esmon NL. The link between vascular features and thrombosis. Ann Rev Physiol 2011; 73: 503–14. DOI: 10.1146/annurev-physiol-012110-142300; PMID: 20887194
10. Strukova S.M. Fundamentals of the physiology of hemostasis. Textbook. allowance. 2nd ed., revised and add. Moscow: Moscow State University, 2013; p. 148–84 (in Russian)
11. Esmon CT. The interactions between inflammation and coagulation. Br J Haematol 2005; 131: 417–30. DOI: 10.1111/j.1365-2141.2005.05753.х
12. Chel'dieva F.A, Reshetniak T.M. Revmatoidnyi artrit, nekotorye komponenty gemostaza i vospalenie. Sovrem. revmatologiia. 2019; 13 (3): 87–94 (in Russian) DOI: 10.14412/1996-7012-2019-3-87-94
13. Henry BM, Santos de Oliveira MH, Stefanie Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med 2020. DOI: 10.1515/cclm-2020-0369
14. Guan WJ, Ni ZY, Hu Y, et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382 (18): 1708–20. DOI: 10.1056/NEJMoa2002032; PMID: 32109013; PMCID: PMC7092819
15. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18 (4): 844–7. DOI: 10.1111/jth.14768; PMID: 32073213; PMCID: PMC7166509
16. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497–506. DOI: 10.1016/S0140-6736(20)30183-5; PMID: 31986264; PMCID: PMC7159299
17. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054–62. DOI: 10.1016/S0140-6736(20)30566-3; PMID: 32171076; PMCID: PMC7270627
18. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol 2020. DOI: 10.1002/ajh.25829
19. Thachil J, Wada H, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020. DOI: 10.1111/jth.14810
20. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta 2020; 506: 145–8. DOI: 10.1016/j.cca.2020.03.022; PMID: 32178975; PMCID: PMC7102663
21. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395 (10229): 1033–4. DOI: 10.1016/S0140-6736(20)30628-0; PMID: 32192578; PMCID: PMC7270045
22. Thachil J. Platelets in Inflammatory Disorders: A Pathophysiological and Clinical Perspective. Semin Thromb Hemost 2015; 41 (6): 572–81. DOI: 10.1055/s-0035-1556589
23. Borensztajn KS, von der Thüsen JH, Spek CA. The role of coagulation in chronic inflammatory disorders: A jack of all trades. Curr Pharm Des 2011; 17 (1): 9–16. DOI: 10.2174/138161211795049813
24. Klok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020. DOI: 10.1016/j.thromres.2020.04.013
25. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4 (2): 295–306. DOI: 10.1111/j.1538-7836.2006.01753; PMID: 16420554
26. Nasonov EL. Antiphospholipid syndrome. Monograph. Moscow: Litter, 2004; p. 36 (in Russian)
27. Reshetniak T.M. Antifosfolipidnyi sindrom: diagnostika i klinicheskie proiavleniia (lektsiia). Nauchno-prakticheskaia revmatologiia. 2014; 52 (1): 56–71 (in Russian)
28. Bulanov N.M., Kozlovskaia N.L., Moiseev S.V., et al. Sochetanie ANTsA-assotsiirovannogo vaskulita i atipichnogo gemolitiko-uremicheskogo sindroma u patsientki s mutatsiei gena diatsilglitserolkinazy-epsilon (Klinicheskii razbor). Nefrologiia i dializ. 2018. 20 (2): 212–24 (in Russian) DOI: 10.28996/2618-9801-2018-2-212-224
29. Hess DC, Sethi K, Awad E. Thrombotic thrombocytopenic purpura in systemic lupus erythematosus and antiphospholipid antibodies: effective treatment with plasma exchange and immunosuppression. J Rheumatol 1992; 19: 1474–8. PMID: 14 33020.
30. Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J Thromb Haemost 2020; 18: 2064–5. DOI: 10.1111/ jth.14867
31. Pineton de Chambrun M, Frere C, Miyara M, et al. High Frequency of Antiphospholipid Antibodies in Critically-ill COVID-19 Patients: a Link with Hypercoagulability? J Int Med 2020; 12. DOI: 10.1111/joim.13126
32. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med 2020; 382: e38. DOI: 10.1056/NEJMc2007575
33. Zuo Y, Estes SK, Gandhi AA, et al. Prothrombotic antiphospholipid antibodies in COVID-19. medRxiv 2020; 17. DOI: 10.1101/ 2020.06.15.20131607
34. Xiao M, Zhang Y, Zhang S, et al. Brief Report: Antiphospholipid antibodies in critically ill patients with Coronavirus Disease 2019 (COVID-19). Arthritis Rheumatol 2020. DOI: 10.1002/art.41425
35. Leroy V, Arvieux J, Jacob MC, et al. Prevalence and significance of anticardiolipin, anti-beta2 glycoprotein I and anti-prothrombin antibodies in chronic hepatitis C. Br J Haematol 1998; 101 (3): 468–74. DOI: 10.1046/j.1365-2141.1998.00722; PMID: 9633888
36. Gharavi EE, Chaimovich H, Cucurull E, et al. Induction of antiphospholipid antibodies by immunization with syntetic viral and bacterial peptidies. Lupus 1999; 8: 449–55. DOI: 10.1177/096120339900800607
37. Uthman IW, Gharavi AE. Viral infections and antiphospholipid antibodies. Semin Arthritis Rheum 2002; 31 (4): 256–63. DOI: 10.1053/sarh.2002.28303
38. Beyrouti R, Adams ME, Benjamin L, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry 2020; 91 (8): 889–91. DOI: 10.1136/jnnp-2020-323586
39. Devreese KMJ, Ortel TL, Pengo V, et al. Laboratory criteria for antiphospholipid syndrome: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16 (4): 809–13. DOI: 10.1111/jth.13976
40. Kelchtermans H, Pelkmans L, de Laat B, Devreese KM. IgG/IgM antiphospholipid antibodies present in the classification criteria for the antiphospholipid syndrome: a critical review of their association with thrombosis. J Thromb Haemost 2016; 14 (8): 1530–48. DOI: 10.1111/jth.13379
41. Chayoua W, Kelchtermans H, Gris JC, et al. The (non-)sense of detecting anti-cardiolipin and anti-beta2glycoprotein I IgM antibodies in the antiphospholipid syndrome. J Thromb Haemost 2020; 18 (1): 169–79. DOI: 10.1111/jth.14633
42. Schouwers SM, Delanghe JR, Devreese KM. Lupus Anticoagulant (LAC) testing in patients with inflammatory status: does C-reactive protein interfere with LAC test results? Thromb Res 2010; 125 (1): 102–4. DOI: 10.1016/j.thromres.2009.09.001; PMID: 19782388.
43. Devreese KMJ, Linskens EA, Benoit D, Peperstraete H. Antiphospholipid antibodies in patients with COVID-19: A relevant observation? J Thromb Haemost 2020; 18 (9): 2191–201. DOI: 10.1111/jth.14994
44. Devreese KM. Antiphospholipid antibody testing and standardization. International Journal of Laboratory Hematology 2014; 36 (3): 352–63. DOI: 10.1111/ijlh.12234
45. Schouwers SM, Delanghe JR, Devreese KM. Lupus Anticoagulant (LAC) testing in patients with inflammatory status: does C-reactive protein interfere with LAC test results? Thromb Res 2010; 125 (1): 102–4. DOI: 10.1016/j.thromres.2009.09.001
46. De Kesel PM, Devreese KMJ. The effect of unfractionated heparin, enoxaparin and danaparoid on lupus anticoagulant testing. Can activated carbon eliminate false positive results? Res Practice Thromb Haemost 2019. DOI: 10.1002/rth1002.12264
47. Tripodi A, Cohen H, Devreese KMJ. Lupus anticoagulant detection in anticoagulated patients. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis. J Thromb Haemost 2020. DOI: 10.1111/jth.14846
48. Galeano-Valle F, Oblitas CM, Ferreiro-Mazón MM, et al. Antiphospholipid antibodies are not elevated in patients with severe COVID-19 pneumonia and venous thromboembolism. Thromb Res 2020; 192: 113–5.
DOI: 10.1016/ j.thromres.2020.05.017
49. Borghi MO, Beltagy A, Garrafa E, et al. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome. Front Immunol 2020; 15; 11: 584241. DOI: 10.3389/fimmu.2020.584241
50. Tincani A, Morozzi G, Afeltra A, et al. Forum Interdisciplinare per la Ricerca nelle Malattie Autoimmuni (FIRMA). Antiprothrombin antibodies: a comparative analysis of homemade and commercial methods. A collaborative study by the Forum Interdisciplinare per la Ricerca nelle Malattie Autoimmuni (FIRMA). Clin Exp Rheumatol 2007; 25 (2): 268–74. PMID: 17543152.
51. Bowles L, Platton S, Yartey N, et al. Lupus Anticoagulant and Abnormal Coagulation Tests in Patients with Covid-19. New Engl J Med 2020. DOI: 10.1056/NEJMc2013656
52. Sánchez-Zamora P, de la Flor-Robledo M. Acute lung injury as a consequence of fresh frozen plasma administration in a patient with factor XII deficiency. Rev Esp Anestesiol Reanim 2014; 61 (8): 446–50.
DOI: 10.1016/j.redar.2013.09.012; PMID: 24252352.
53. Cornudella R, Puente F, Hortells JL, Gutiérrez M. Moderate deficiency of Factor XII associated with postoperative deep venous thrombosis. Sangre (Barc) 1989; 34 (2): 144–6. PMID: 2756451.
54. Cugno M, Meroni PL, Gualtierotti R, et al. Complement activation in patients with COVID-19: A novel therapeutic target. J Allergy Clin Immunol 2020; 146: 215–17. DOI: 10.1016/j.jaci.2020.05.006
55. Garcıa-Carrasco M, Galarza-Maldonado C, Mendoza-Pinto C, et al. Infections and the Antiphospholipid Syndrome. Clin Rev Allergy Immunol 2009; 36: 104–8. DOI: 10.1007/s12016-008-8103-0
56. Wyman B, Perl A. Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases. Curr Opin Rheumatol 2020; 32: 184–91. DOI: 10.1097/BOR.0000000000000687
57. Available from: https://www.outcomesumassmed.org/IMPROVE/risk_score/index.html
58. Tapson VF, Decousus H, Pini M, et al. IMPROVE Investigators. Venous thromboembolism prophylaxis in acutely ill hospitalized medical patients: findings from the International Medical Prevention Registry on Venous Thromboembolism. Chest 2007; 132 (3): 936–45. DOI: 10.1378/chest.06-2993; PMID: 17573514.
59. Spyropoulos AC, Anderson FA Jr, Fitzgerald G, et al. IMPROVE Investigators. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest 2011; 140 (3): 706–14. DOI: 10.1378/chest.10-1944;
PMID: 21436241.
60. Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020; 136 (4): 489–500. DOI: 10.1182/blood.2020006520; PMID: 32492712; PMCID: PMC7378457.
61. Conti CB, Henchi S, Coppeta GP, et al. Bleeding in COVID-19 severe pneumonia: The other side of abnormal coagulation pattern? Eur J Intern Med 2020; 77: 147–9. DOI: 10.1016/j.ejim.2020.05.002
62. Jang JY, Lim YS, Woo JH, et al. Spontaneous rupture of intercostal artery after severe cough. Am J Emerg Med 2015; 33 (1): 131. DOI: 10.1016/j.ajem.2014.06.033
63. Lee CH, Lan CC, Wang CC, et al. Spontaneous rupture of gastroduodenal artery pseudoaneurysm following vigorous cough. Am J Gastroenterol 2009; 104 (2): 529–30. DOI: 10.1038/ajg.2008.52
64. Dorgalaleh A. Bleeding and Bleeding Risk in COVID-19. Semin Thromb Hemost 2020; 46 (7): 815–8. DOI: 10.1055/s-0040-1713434
65. Joob B, Wiwanitkit V. Hemorrhagic Problem Among the Patients With COVID-19: Clinical Summary of 41 Thai Infected Patients. Clin Appl Thromb Hemost 2020; 26: 1076029620918308. DOI: 10.1177/1076029620918308
66. Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology 2020; 296 (2): E119–20. DOI: 10.1148/radiol.2020201187
67. Zulfiqar AA, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med 2020; 382 (18): e43. DOI: 10.1056/NEJMc2010472; PMID: 32294340; PMCID: PMC7179995.
68. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol 2020. DOI: 10.1016/j.jacc.2020.04.031
69. Barrett CD, Moore HB, Yaffe MB, Moore EE. ISTH interim guidance on recognition and management of coagulopathy in COVID-19: a comment. J Thromb Haemost 2020. DOI: 10.1111/jth.14860
70. Testa S, Prandoni P, Paoletti O, et al. Direct oral anticoagulant plasma levels’ striking increase in severe COVID-19 respiratory syndrome patients treated with antiviral agents: the Cremona experience. J Thromb Haemost 2020.
DOI: 10.1111/jth.14871
71. Liu X, Zhang X, Xiao Y, et al. Heparin-induced thrombocytopenia is associated with a high risk of mortality in critical COVID-19 patients receiving heparin-involved treatment. medRxiv 2020. DOI: 10.1101/2020.04.23.20076851
72. Marietta M, Ageno W, Artoni A, et al. COVID-19 and haemostasis: a position paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus 2020. DOI: 10.2450/2020.0083-20
73. Preventing Hospital-Associated Venous Thromboembolism. A Guide for Effective Quality Improvement. Available at: https://www.ahrq.gov/sites/default/files/publications/files/vteguide.pdf
1 ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой», Москва, Россия;
2 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, Москва, Россия;
3 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
*t_reshetnyak@yahoo.com
________________________________________________
Tatiana M. Reshetnyak*1,2, Fariza A. Chel'dieva1,2, Aleksandr M. Lila1,2, Evgenii L. Nasonov1,3
1 Nasonova Research Institute of Rheumatology, Moscow, Russia;
2 Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
3 Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
*t_reshetnyak@yahoo.com